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Abstract Considering that the uncertain information has serious influences on the safety of struc-

tural systems and is always limited, it is reasonable that the uncertainties are generally described as

interval sets. Based on the non-probabilistic set-theoretic theory, which is applied to measuring the

safety of structural components and further combined with the branch-and-bound method for the

probabilistic reliability analysis of structural systems, the non-probabilistic branch-and-bound

method for determining the dominant failure modes of an uncertain structural system is given.

Meanwhile, a new system safety measuring index obtained by the non-probabilistic set-theoretic

model is investigated. Moreover, the compatibility between the classical probabilistic model as well

as the proposed interval-set model will be discussed to verify the physical meaning of the safety

measure in this paper. Some numerical examples are utilized to illustrate the validity and feasibility

of the developed method.
ª 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Structural safety or reliability analysis plays an important role
in the analysis and design of structural systems. With the con-

tinuous development of technology, the complexity of the engi-
neering structural systems increases gradually so that the
anticipated influence of the uncertainty on them becomes more
and more profound.1 On the one hand, there exists multiple

uncertain information, such as random, fuzzy, uncertain-but-
bounded, etc. in the engineering structures2; on the other hand,
the experimental data are usually scant.3 Therefore, the appli-
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cable conditions of the probabilistic reliability model and fuzzy
reliability model cannot always satisfy the requirements. The
subjective assumptions about the probability density function
and membership functions will lead to the infeasible solutions

with large differences.4 In practice, the statistical information
on uncertainty may not be easily available whereas the bounds
on the uncertain information can be obtained readily. Consid-

ering that, Ben-Haim5 initially proposed the concept of the
non-probabilistic and robust reliability of structures. Recently,
the non-probabilistic reliability theory has been developed

extensively. Elishakoff 6 proposed the concept of the non-
probabilistic safety factor, which is defined as the ratio of
the yield stress––in case it is a deterministic quantity––by the
upper bound of stress. In the opposite case in which the stress

is deterministic but the strength is a non-probabilistic variable,
this safety factor equals the lower bound of the strength di-
vided by the stress. In the general case in which both the stress

and strength are interval variables, the non-probabilistic safety
factor is defined as the ratio of the lower bound of the strength
to the upper bound of the stress. Qiu et al.7 extensively revis-
SAA & BUAA. Open access under CC BY-NC-ND license.
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ited the concept of ‘‘non-probabilistic reliability’’ in the critical
light. They suggested a non-probabilistic convex reliability
model by using the partial order relation of the superscribed

hyper-rectangles or interval vectors. Guo et al.8 quantified
the uncertain structural parameters as interval variables and
proposed another measure of the ‘non-probabilistic reliability’,

which is taken as the shortest distance g from the origin to the
failure surface. They pointed out that the structure must be
safe when g > 1. The inequality g > 1 means that the set of

the stress has no common points with the set of the strength,
whereas the inequality 0 < g < 1 implies their interference.
The latter case will usually be the problem of our concern.
In view of the latter case, Wang et al.9 proposed a new non-

probabilistic set-theoretic safety measure for structures, where
based on the non-probabilistic set-theoretic stress–strength
interference model, the ratio of the volume of the safe region

to the total volume of the region associated with the variation
of the basic interval variables is suggested as the measure of the
non-probabilistic safety of the structural component. Never-

theless, the structural system reliability based on the non-prob-
abilistic method has not been extensively studied. It has been
recognized that a fully satisfactory estimation of the structural

reliability must be grounded on a system approach. In some
situations it is insufficient to estimate the reliability of the indi-
vidual structural members of a structural system.10

In this paper, based on the non-probabilistic set-theoretic

model of safety measure for structural components proposed
in Ref. 9, the non-probabilistic set-theoretic branch-and-bound
method is presented to determine the dominant failure modes

and the safety measure of a structural system.

2. Interval finite element analysis

Consider the safety analysis of structures subject to external
loads. Stress S and strength R are influenced by a great deal
of factors, and thus they can be expressed as the following

functions of variables, i.e.

S ¼ SðxS1 ; xS2 ; � � � ; xSqÞ
R ¼ RðxR1

; xR2
; � � � ; xRp

Þ

(
ð1Þ

where the variables xSiði ¼ 1; 2; � � � ; qÞ are related to the struc-
tural stress, such as force, moment, temperature, humidity,

over-loading, etc., and the variables xRi
ði ¼ 1; 2; � � � ; pÞ may

be associated with the structural strength, such as surface
roughness, material properties, scratch, and crack length, etc.
However, these parameters are usually uncertain so that the

structural stress and strength would have uncertainty too. It
is assumed that the uncertain parameters vary within a given
interval or hyper-rectangle, i.e.

x 6 x 6 �x or xi 6 xi 6 �xi ði ¼ 1; 2; � � � ; mÞ ð2Þ

where x = (xi) and �x ¼ ð�xiÞ are, respectively, the lower and
upper bound vectors of uncertain parameter vector x.

By use of the interval notations in interval mathemat-

ics,11,12 the inequality (2) can be rewritten as

x 2 xI or xi 2 xI
i ði ¼ 1; 2; � � � ; mÞ ð3Þ

where xI ¼ ½x; �x�; xI
i ¼ ½xi; �xi�.

In order to determine the structural stress interval SI, the
static displacement response interval uI should be solved firstly.
The static equilibrium equation of structures in the form of fi-
nite element method can be given as

KðxÞu ¼ fðxÞ ð4Þ

where K is the stiffness matrix, f the external load vector, and u

the displacement vector. K and f are both the functions of
uncertain parameter vector x.

Eq. (3) can be regarded as the constraint condition. Hence,

by solving the static displacement vector u= (ui), we mean to
solve the family of equilibrium equations in which the struc-
tural parameters can vary inside the bounded sets. That is to

say, the static displacement of the equilibrium equation with
uncertain-but-bounded parameters should be a set, which is
obtained by

C ¼ fu : u 2 Rn; KðxÞu ¼ fðxÞ; x 2 xIg ð5Þ

The calculation of the solution set, in general, is extremely
difficult, namely, the solution set C has a very complicated re-
gion and is not commonly convex. Taking this into account,

one has to determine a closed convex interval set [uimin,uimax]
for each component of the static displacement vector, which
is the smallest width one enclosing all possible values, satisfy-

ing K(x)u = f(x) when the structural parameters x = (xi) vary
within xI ¼ ½x; �x�. Therefore the static displacement problem
(4) subject to inequality (2) or Eq. (3) can be transformed into
the interval parameter linear equations

KðxIÞu ¼ fðxIÞ ð6Þ

or linear interval equations

KIu ¼ f I ð7Þ

In recent years, the two kinds of Eqs. (6) and (7) have been
widely investigated by various approaches, including the

approximate methods, such as interval matrix perturbation
method, interval parameter perturbation method, etc., and
the accurate methods, such as the vertex combination method

of interval matrices, the vertex combination method of interval
parameters and the optimization method, etc. However, the re-
searches on the stress interval problem of structures with inter-

val parameters were seldom done up to now.13

The relationship between the stress and the displacement
reads

S ¼ DBu ð8Þ

where S is the structural stress, D the elastic matrix and B the
geometric matrix.

Taking the first-order Taylor’s series expansion of the struc-
tural stress with uncertain parameter vector around the middle

or nominal value xc, the following expression can be easily
obtained

SðxÞ ¼ SðxcÞ þ
Xm
i¼1

oS

oxi

xi � xc
i

� �
ð9Þ

where

oS

oxi

¼ oD

oxi

BuþDB
ou

oxi

ð10Þ

and

ou

oxi

¼ K�1 � oK

oxi

uþ of

oxi

� �
ð11Þ
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By virtue of the natural interval extension, the stress inter-
val can be deduced by Eqs. (3) and (9)

SIðxÞ ¼ SðxcÞ þ
Xm
i¼1

oS

oxi

DxI
i ð12Þ

where
DxI ¼ DxI

i

� �
; DxI

i ¼ ½�Dxi;Dxi�; and Dxi ¼ ð�xi � xiÞ=2.
In practical engineering, a rational strength interval RI of

structures can be selected to measure the scatter of material
strength based on the manufacture accuracy and technological
level.

3. Non-probabilistic set-theoretic model of structural safety

measure

Once the stress interval SI and the strength interval RI are
known, the non-probabilistic safety and failure measure of
components would be computed based on the non-probabilis-

tic set-theoretic model proposed in Ref. 9. For the following
convenience, the non-probabilistic set-theoretic model of struc-
tural safety measure will be introduced simply (see Ref. 9 for

detail).
In the analysis and design of structures, the stress and

strength have the same physical dimensions. Thus, their inter-

val descriptions can be placed on a number of axes. During the
design process, the strength is generally required to be larger
than the actual stress, implying that the structure with respect
to the median values must be safe, i.e. Rc > Sc. However, be-

cause of the scatter in the stress and strength, the intervals
themselves may share the same numerical values to yield an
intersection set as shown in Fig. 1 as the shaded region. This

region can be called the interference region. Similar to the ter-
minology in (probabilistic) reliability theory, Fig. 1 can be
dubbed as non-probabilistic set-theoretic stress–strength inter-

ference model. We are interested in adopting a measure of
safety (or reliability) that is interconnected with lower and
upper bounds of the stress and the strength.

The limit state of the structure is expressed as the function
of structural stress S and the structural strength R as follows:

MðR;SÞ ¼ R� S ð13Þ
Fig. 1 Non-probabilistic set-theoretic stress–strength interfer-

ence model.
Given the specified values of S and R, it is possible to judge
the structural state, in terms of it being in the state of safe or
the state of failure. Basic variables space will be divided into

two parts, namely the safe region and the failure region, by
the failure plane or the limit state plane, i.e.

MðR;SÞ ¼ R� S ¼ 0 ð14Þ

The positive value of M indicates the safe region of basic

variables, while the negative value of M represents the failure
region.

When the interference between the stress interval and

strength interval occurs as shown in Fig. 1, even though the
median value Sc of the stress is smaller than the median value
Rc of the strength, it cannot be ensured that the stress will take

on values not in excess of the strength. Thus, the possibility
that the stress is larger than the strength will be different from
zero. This fact can be described as

gðMðR;SÞ < 0Þ > 0 ð15Þ

where g(T) represents the possibility of the event T.

It is instructive to represent the stress and strength in a
plane as shown in Fig. 2. The solid rectangle shows the region
of variation of both stress and strength. It is crossed by the

failure plane R= S. The safe region is again hatched, whereas
the failure region is unshaded. The possibility that Eq. (15)
holds or the possibility that the stress is larger than the

strength will be referred to by us as the non-probabilistic set-
theoretic failure measure, which can be defined as the ratio
of the area of failure region to the total area of basic variables

region, i.e.

FM ¼ gðMðR;SÞ < 0Þ ¼ Afailure

Atotal

ð16Þ

The possibility that the stress is smaller than the strength is

called here with us the non-probabilistic set-theoretic safety
measure, which is naturally defined as the ratio of the area
of the safe region to the total area of basic region of variation,

i.e.

SM ¼ gðMðR;SÞ > 0Þ ¼ Asafe

Atotal

ð17Þ

Obviously, the process for evaluation of Afailure will be eas-
ier than that of Asafe. So, we represent SM as the complement
to FM,
Fig. 2 Scheme for normalized space of variables under interfer-

ence occurrence.
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SM ¼ 1� FM ¼ 1� Afailure

Atotal

ð18Þ

The coincidence of Eq. (17) with the reliability obtained by
probability theory in the case of uniform distribution of both
the stress and strength has been demonstrated in Ref. 9.

When the interference between the stress and the strength

does not take place, or else when the maximum value/upper
bound of the stress is equal to or smaller than the minimum
value/lower bound of the strength, the event that the stress is

bigger than the strength is impossible. In other words, the pos-
sibility that the stress is larger than the strength must be zero,
i.e.

FM ¼ gðMðR;SÞ < 0Þ ¼ Afailure

Atotal

¼ 0 ð19Þ

The state when the upper bound S of the stress is equal to

the lower bound R of the strength could be called ‘‘critical
state’’ as shown in Fig. 3.

For the general nonlinear limit state function (shown in
Fig. 4), the above concept of the non-probabilistic safety mea-

sure can still be applied, as a ratio of the appropriate areas.
Another case should be particularly concerned about,

namely if the limit state plane is expressed as the function of

multi-dimensional interval variables, the multi-dimensional re-
gion (actually a range of hyper-rectangle) enclosed by basic
interval variables will be divided into safe region and failure re-
Fig. 3 Representation for critical state.

Fig. 4 Nonlinear limit state function.
gion by hyper-surface. Under such circumstances, the non-
probabilistic set-theoretic failure measure can be redefined as
the ratio of the hyper-volume of failure region to the hyper-

volume of basic interval variables region; meanwhile, the
non-probabilistic set-theoretic safety measure can be redefined
as the ratio of the hyper-volume of safe region to the hyper-

volume of basic interval variables region.

4. Compatibility and transition between non-probabilistic set-

theoretic model and probabilistic structural reliability

In order to illustrate the meaning of FM/SM in physics, the
analysis of compatibility and transition between the possibility

obtained by the non-probabilistic model and the traditional
probability based on the probability theory will be demon-
strated. In this section, a truncated normal distribution model

is discussed as the expression of the probability density func-
tion to describe the random variables. When the value of
parameters in the probability density function changes, the
variability of random variables will either increase or decrease.

With the increase of variability, the uncertain variable tends to
the uniform distribution. If so, the two results of structural
safety measure, derived from the probabilistic approach and

the non-probabilistic set-theoretic modeling method, may
show a good agreement. In other words, a nice transition from
probabilistic to set-theoretic modeling may be implemented.

Considering that the truncated normal probability density
function of two variables varying within a rectangle is used
to describe the distribution for strength R and stress S. The
expression of the above statements can be written as

fRSðr;sÞ¼
c exp �ðr�RcÞ2

a2
�ðs�ScÞ2

b2

 !
; when jr�Rcj6Rr; js�S cj6S r

0; when jr�Rcj>Rr; js�S cj>S r

8><
>:

ð20Þ

where fRS(r,s) is the joint probability density function of R and

S; Rc and Sc indicate the respective central values; Rr and Sr

denote the bounds of uncertainty for the random variables R
and S, respectively; a and b represent coefficients; the normal-

ization constant c is further derived from

c ¼ 4ab erf
Rr

a
;
Sr

b

� �� ��1
ð21Þ

where erf(x,y) is defined as

erfðx; yÞ ¼
Z x

0

Z y

0

e�ðn
2þg2Þdgdn ð22Þ

The probability distribution is specified as truncated nor-

mal; however, we may not know precisely its exact shape. It
is of utmost interest then to evaluate the safety as a function
of a and b. It can be seen that if the ranges of R and S are avail-

able, then the probability density fRS(r,s) depends exclusively
on a and b, namely, the variability of random variables in-
creases with the increase of a and b; when a and b are large en-

ough, the random variables tend to a uniform distribution
within a range of rectangle, as shown in Fig. 5.

Monte Carlo simulation can be carried out to obtain possi-
ble values of random variables R and S when the parameters a,

b, Rr and Sr are given (see Figs. 6–9 for detail). Consider the
limit state function in Eq. (14) as the criterion to judge the
structural safety/failure measure. It is easy to understand that



Fig. 5 Probability density function of random variables R and S

with different a and b.

Fig. 6 Random samples obtained by Monte Carlo simulation

when a= b= 0.25.

Fig. 7 Random samples obtained by Monte Carlo simulation

when a= b= 0.50.

Fig. 8 Random samples obtained by Monte Carlo simulation

when a= b= 1.

Fig. 9 Random samples obtained by Monte Carlo simulation

when a= b= 10.
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F prob
M ¼ gðR� S < 0Þ ¼ kf

n
ð23Þ

and

S prob
M ¼ gðR� S > 0Þ ¼ 1� F prob

M ¼ 1� kf
n

ð24Þ
where n is the number of random samples created by Monte
Carlo simulation, and kf means the number of points, which
may satisfy the criterion R � S< 0.

F prob
M ¼ FM and S prob

M ¼ SM ð25Þ

Thus, with the increasing deviation of R and S, these two ran-

dom variables tend to be uniformly distributed within a given
rectangle, and hence the results of reliability based on probabi-
listic as well as set-theoretic modeling are anticipated to show a

good consistency.9

As above mentioned, it is necessary to emphasize that the
proposed possibility based on the non-probabilistic set-theo-

retic model and the classical reliability based on probabilistic
theory has the same nature and physical meaning when they
are used to measure the uncertain structural safety.

5. Non-probabilistic set-theoretic safety analysis of structural

systems

There are so many failure modes in large structures with a high

degree of redundancy that it is impossible to identify all of



Fig. 10 Flow chart of the proposed non-probabilistic branch-and-bound method.

Fig. 11 Procedures of non-probabilistic branch-and-bound

method.
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them a prior for estimating structural systems’ reliability or
possibility of failure. Different failure modes may have differ-
ent possibilities of occurrence. By virtue of the idea of the

branch-and-bound method10 in the probabilistic reliability the-
ory, the non-probabilistic set-theoretic branch-and-bound
method of a structural system is built based on the non-prob-
abilistic set-theoretic model of the safety measure for structural

components in previous section. The difference and relation
between the two kinds of branch-and-bound methods are: (1)
both of them are proposed for analyzing the influences of

uncertain factors on the structural safety; (2) they adopt two
kinds of different descriptive forms of uncertainty, i.e., the
bounded set for the non-probabilistic method and the random

variables for the stochastic method.
In the non-probabilistic branch-and-bound method,

branching is to choose the failure element in the failure path,
while bounding is to remain the failure paths corresponding

to the dominant failure modes and abandon the minor failure
modes according to some certain criteria. The flowchart of the
branch-and-bound method based on the non-probabilistic set-

theoretic measure of structural system safety is given in
Fig. 10. The procedures of the non-probabilistic branch-and-
bound method for seeking the dominant failure paths are given

as follows:

Step 1 Set the initial state: k = 0, m= 0, tm.

Step 2 Operation of branching: compute the non-probabilis-
tic set-theoretic failure measure FM,i of the candidate
elements in this failure level and arrange them in
order, then go to Step 3.
Step 3 Operation of bounding: judge whether this failure
path should be retained according to the inequation

Fl 6 Fb: (1) if this failure path is not retained (as w

shown in Fig. 11), then go to Step 4; (2) if this failure
path is retained (as m shown in Fig. 11), then go to

Step 5.
Step 4 Go back to the previous failure level along the origi-

nal path, and let k � 1) k. Restore the stiffness and

loading states to the previous level structures, and go
to Step 6.

Step 5 Check whether the structural system is failed: (1) if
the structural system does not fail (as m shown in

Fig. 11), then let k + 1) k, modify the stiffness
and loading state of structures, and go to Step 2; (2)
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if the structural system is failed so that the structural

stiffness matrix becomes singular, i.e. ŒKŒ = 0, (as n

shown in Fig. 11), then go to Step 8.
Step 6 Check whether the end criterion is satisfied: (1) if one

of the end criteria is satisfied, then go to Step 9; (2) if
one of the end criteria is not satisfied, then go to Step
7.

Step 7 Check whether there are still the candidate failure ele-

ments in this failure level: (1) if exits (as w shown in
Fig. 11), then include the failure elements into the
new failure paths, and go to Step 3; (2) if not, then

go to Step 4.
Step 8 Form a new failure mode and let m+ 1) m, and go

to Step 6.

Step 9 End.

Especially, in Step 6, two end criteria can be chosen: (1)
m= tm, i.e., the number of the retained failure modes reaches

the pre-specified number; (2) k= 0, which implies that all op-
tional failure paths have been searched.

In Fig. 10, k is the failure level, m the number of the re-

tained failure modes, tm the pre-specified number of the re-
tained failure modes, FM,i the non-probabilistic set-theoretic
failure measure for the ith component, Fb the bound of the fail-

ure measure of the retained failure modes, which will decide
the total number of the remained failure modes, and Fl the fail-
ure measure corresponding to the lth failure mode, which can

be computed as

Fl ¼
Y
ri

FM;ri ; ri 2 fr1; r2; � � � ; rqg ð26Þ

where ri is the failure element series in the lth failure mode.

Based on the obtained non-probabilistic set-theoretic fail-
ure measure Fl (l= 1,2, � � �, tm) corresponding to the tm domi-
nant failure modes of a structural system, the non-probabilistic
set-theoretic failure measure Fs of a structural system can be

computed as

Fs ¼ 1�
Ytm
l¼1
ð1� FlÞ ð27Þ
6. Numerical examples

In this section, two numerical examples are performed to illus-
trate the validity of the presented non-probabilistic set-theo-
retic measure model of structural system safety.
Fig. 12 Simple structural system.
6.1. A simple structural system

Consider the simple structural system shown in Fig. 12 loaded
by a single concentrated load P. System failure is assumed to
be the compressed failure in Element 1 or Element 2. The elas-

tic moduli and cross-sectional areas of elements are 60 GPa
and 0.015 m2 for Element 1, and 80 GPa and 0.010 m2 for Ele-
ment 2. The external load and the compressive strength of
these two materials are supposed to be uncertain and changing

within the following intervals, respectively,

PI ¼ ½Pc � aPc;Pc þ aPc� ð28Þ
rI
r1 ¼ rc

r1 þ brc
r1; r

c
r1 � brc

r1

� 	
ð29Þ

rI
r2 ¼ rc

r2 þ brc
r2; r

c
r2 � brc

r2

� 	
ð30Þ

where their central values are

Pc ¼ 1:0� 106 N; rc
r1 ¼ �55:0 MPa; rc

r2 ¼ �80:0 MPa, and
their uncertain coefficients are a = 10% and b = 10%.

It is obvious that there are two failure modes as shown in
Fig. 13 for the two-bar plane truss.

According to the flowchart of the proposed non-probabilis-
tic branch-and-bound method, the non-probabilistic set-theo-
retic failure measure for the components in the failure paths

needs to be computed firstly.
The compressive stress of the two elements can be easily ob-

tained as

rs1 ¼ P=
ffiffiffi
2
p

A1

rs2 ¼ P=
ffiffiffi
2
p

A2

(
ð31Þ

From Eq. (28), the intervals of stress rs1 and rs2 are ex-
pressed as

rI
s1 ¼

PIffiffiffi
2
p

A1

¼ ½rs1; �rs1� ¼ ½42:43; 51:85� ð32Þ

and

rI
s2 ¼

PIffiffiffi
2
p

A2

¼ ½rs2; �rs2� ¼ ½63:64; 77:78� ð33Þ

Similarly, the intervals of strength rr1 and rr2 are got from
Eqs. (29) and (30)

rI
r1 ¼ ½rr1; �rr1� ¼ ½49:5; 60:5� ð34Þ

and

rI
r2 ¼ ½rr2; �rr2� ¼ ½72:0; 88:0� ð35Þ

By virtue of Eq. (16) and Eqs. (32)–(35), the non-probabi-
listic set-theoretic failure measure for Element 1 and Element
2 can be obtained as
Fig. 13 Search tree of failure modes for simple structural system.



Fig. 14 Probability density function for a truncated normally

distributed random variable (Dx= 50.0).
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FM;1 ¼
1=2ð�rs1 � rr1Þ2

ð�rr1 � rr1Þð�rs1 � rs1Þ
¼ 2:67% ð36Þ

and

FM;2 ¼
1=2ð�rs2 � rr2Þ2

ð�rr2 � rr2Þð�rs2 � rs2Þ
¼ 7:39% ð37Þ

Further, the non-probabilistic failure measures correspond-
ing to the two failure paths shown in Fig. 13 are, respectively,

F1 ¼ FM;1 ¼ 2:67% for the first failure path : 0! 1 ð38Þ

and

F2 ¼ FM;2 ¼ 7:39% for the second failure path : 0! 2 ð39Þ

Therefore, the non-probabilistic set-theoretic failure mea-
sure Fs of the structural system can be computed as

Fs ¼ 1� ð1� 2:67%Þð1� 7:39%Þ ¼ 9:86% ð40Þ

For the comparison with the probabilistic reliability meth-
od, the uncertain parameters are assumed to obey the trun-

cated normal distribution within the given intervals for the
probabilistic reliability analysis (for detail, see Section 4). By
virtue of the numerical results obtained by two methods, the

validity and feasibility of the new non-probabilistic structural
safety measure developed in this paper will be demonstrated.
In addition, the physical meaning of the proposed FM/SM

may be more clearly embodied by the analysis of compatibility
and transition.

In some cases that we can obtain statistical properties of

these uncertain parameters from vast measurements or past
experience, they should be treated as random variables. The
normal distribution is a popular choice, but it may not be
appropriate for realistic cases in which the uncertain parame-

ters are measured to be limited in a certain range.
Under such circumstances, the truncated normal distribu-

tion model may take advantage. The univariate form can be

applied as14,15

pðxÞ ¼ cd exp �ðx� xcÞ2=b2d
� �

jx� xcj 6 Dx

0 jx� xcj > Dx

(
ð41Þ

where p(x) is the probability density function of x; Dx is the

uncertain bound for the random variable x; bd is a parameter,
and the normalization constant cd can be derived from

cd ¼ ½2berfðDx=bdÞ��1 ð42Þ

where erf(Æ) is the error function and defined as

erfðxÞ ¼
Z x

0

e�t
2

dt ð43Þ

Fig. 14 show the probability density functions of the ran-
dom variable at different parameters bd and Dx. If Dx is given,

then the probability density depends exclusively on bd. The
deviation of x increases with the growth of bd, namely, a large
bd corresponds to a large deviation of x. When b2d � Dx2; x is

nearly uniformly distributed, as shown by the case of
bd = 100.0 in Fig. 14.

For multi-dimensional uncertainty problem, the realization

of x, denoted by (x)k (k = 1,2, � � �), can be generated by

ðxÞk ¼ berf�1 ð2dk � 1Þerf Dx
bd

� �� �
ð44Þ
where dk (k = 1,2, � � �) are independent random numbers uni-

formly distributed in [0,1].
With given parameters Dx and bd in the probability density

functions p(x) of the uncertain parameters, Monte Carlo sim-

ulations can be carried out to obtain the reliability of struc-
tural system. Two cases with different deviations (bd = 10.0
and bd = 100.0) are investigated.

When bd = 10.0, the failure probability for the failure paths
0 fi 1 and 0 fi2 can be computed as, respectively,

P1 ¼ 2:07%; P2 ¼ 5:28% ð45Þ

So the failure probability of system is

Pf ¼ 1� ð1� 2:07%Þð1� 5:28%Þ ¼ 7:24% ð46Þ

When bd = 100.0, the failure probability for the failure
paths 0 fi 1 and 0 fi 2 can be respectively computed as

P1 ¼ 2:52%; P2 ¼ 7:26% ð47Þ

So the failure probability of system is

Pf ¼ 1� ð1� 2:52%Þð1� 7:26%Þ ¼ 9:60% ð48Þ

It can be seen from the results of the two cases that the fail-
ure probability of system in the case of large deviation of
uncertain parameters is closer to the non-probabilistic failure
Fig. 15 14-bar plane truss structure.



Fig. 16 Search tree of dominant failure modes for 14-bar plane

truss structure.
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measure than that in the case of small deviation. It also to
some extent illustrates the rationality for the safety estimation

deduced by interval analysis.

6.2. 14-bar truss structure

Consider a plane truss structure with 8 nodes and 14 elements
as shown in Fig. 15. The elastic moduli and cross-sectional
areas for all members are the same, which are 70 GPa and
0.004 m2, respectively. The external loads, the tensile and com-

pressive resistances of materials are supposed to be uncertain,
and change within the following intervals, respectively,

PI ¼ ½Pc � aPc;Pc þ aPc� ð49Þ

rI
t;i ¼ rc

t;i � brc
t;i; r

c
t;i þ brc

t;i

h i
ð50Þ

rI
c;i ¼ rc

c;i þ brc
c;i; r

c
c;i � brc

c;i

h i
ð51Þ

where their central values are
Pc ¼ 1:2� 105 N; rc

t ¼ 60 MPa; rc
c ¼ �60 MPa, and their

uncertain coefficients are a = 10% and b = 10%. For com-

paring the non-probabilistic set-theoretic safety method and
the probabilistic reliability method, these uncertain parameters
are assumed to obey truncated normal distributions within the
Table 1 Failure measure and failure probability

Sequence number

of failure mode

Non-probabilistic m

Failure path Fail

(%)

1 8-3-13-7 3.35

2 8-3-13-11-4 3.35

3 8-3-13-11-7 3.35

4 8-3-13-4-7 3.35

5 8-3-13-4-11 3.35

6 8-3-13-4-1 0.42

7 13-1 0.27

8 8-1 0.26

9 8-3-11-13-4 0.25

10 8-3-11-13-7 0.25

Failure measure or probability

of structural systems (%)

16.88
given intervals, where only the case of bd = 10.0 in Eq. (41) is

considered.
Using the non-probabilistic and probabilistic branch-and-

bound method, we can get the first ten dominant failure modes

of the system. The search tree is shown in Fig. 16, which gives
the failure paths of the dominant failure modes.

Table 1 shows the failure measure and failure probability of
the first ten dominant failure modes obtained by the two meth-

ods. It can be seen from Table 1 that the two methods give the
same failure paths while the failure measures of every paths
obtained by the presented method are slightly larger than the

failure probabilities obtained by the probabilistic method.
Thus, the failure measure (16.88%) of structural system
yielded by the former method is larger than the failure proba-

bility (14.51%) of structural system yielded by the latter meth-
od. It can be seen from this that at this time, the non-
probabilistic set-theoretic safety theory is slightly more conser-
vative than the probabilistic reliability theory.

7. Conclusions

In view of the limitations of high demand on the original data
for the probabilistic reliability model and the fuzzy reliability
model, the uncertain information in structural safety analysis
is quantified as interval set in this paper. Intervals of displace-

ment and stress of a structural system are computed by the
interval finite element method.

Based on the non-probabilistic set-theoretic model, the new

non-probabilistic set-theoretic branch-and-bound method is
presented for determining the dominant failure modes. More-
over, the non-probabilistic set-theoretic safety measure of a

structural system is computed and further compared with the
classical probabilistic reliability. The study on compatibility
and transition of two models (random variable model and
bounded interval-set model) can not only show their inner

relations well but also explicitly illustrate the essence of the
safety measure in physics. The numerical examples demon-
strate that the present non-probabilistic and probabilistic

methods can identify the same dominant failure paths while
the former method may be slightly more conservative than
the latter method. That is to say, if the structural system is

computed and judged as being reliable by the presented non-
of the first ten dominant failure modes.

ethod Probabilistic method

ure measure Failure path Failure probability

(%)

8-3-13-7 2.87

8-3-13-11-4 2.87

8-3-13-11-7 2.87

8-3-13-4-7 2.87

8-3-13-4-11 2.87

8-3-13-4-1 0.33

13-1 0.20

8-1 0.20

8-3-11-13-4 0.19

8-3-11-13-7 0.19

14.51
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probabilistic set-theoretic method (i.e. if Fs > a, a is the spec-
ified safety measure level), then the structure system must be
evaluated to be reliable by the probabilistic method.

It is necessary to emphasize that the proposed safety mea-
sure requires less information on the uncertainty than the
probabilistic reliability model or fuzzy reliability model, where

only the bounds on the magnitude of uncertain parameters are
not sufficient. Therefore, in the absence of enough information
on uncertainties, the presented non-probabilistic set-theoretic

method can give a more feasible assessment for the structural
system safety.

Of course, the purpose of the paper is not to replace the
probabilistic reliability model by the presented non-probabilis-

tic set-based reliability model, which is only an alternative or
supplementary way to the structural reliability analysis. Since
the description form of uncertainties depends on the type

and the amount of uncertain information, and the type of
the chosen reliability analysis model depends on the descrip-
tion form of uncertainties, which model will be selected abso-

lutely depends on the type and the amount of the known
uncertain information in practice.
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