
INFORMATION AND CONTROL 66, 103-121 (1985)

The Complexity of Equivalence Problems
for Commutative Grammars

DUNG T. HUYNH

Computer Science Department, Iowa State University, Ames, Iowa 50011

In this paper we investigate the computational complexity of the inequivalence
problems for commutative grammars. We show that the inequivalence problems for
type 0 and context-sensitive commutative grammars are undecidable whereas
decidability in nondeterministic exponential-time holds for the classes of regular
and context-free commutative grammars. For the latter the inequivalence problems
are ZP-hard. © 1985 Academic Press, Inc.

0. INTRODUCTION

In this paper we continue our investigation of the computational com-
plexity of commutative grammars that have been introduced in [6]. We
will focus our attention on the complexity of the equivalence problems for
various commutative grammar classes. (The word problems have been
investigated in [6].)

Among others we will show the following results:
Concerning the classes of type 0 and context-sensitive commutative

grammars the inequivalence problems are undecidable. The proof employs
Rabin's proof for vector addition systems presented in [3] by Hack.

We will show that the inequivalence problems for context-free and
regular grammars are decidable in nondeterministic exponential time and
that they are ZP-hard. For the finite case we obtain a sharper result. We
show that the finite inequivalence problems for these classes are Z p-
complete. Although a sharp result is not obtained for the general case, we
will see that in the case of l-letter terminal alphabet these problems are Z p-
complete.

The paper is organized as follows. There are three sections. Section 1
deals with type 0 and context-sensitive commutative grammars. Section 2 is
devoted to context-free commutative grammars. In Section 3 we investigate
the complexity of inequivalence problems for regular commutative gram-
mars and rational expressions.

The reader is referred to [-6, Sect. 1] for definitions and notations. We
reproduce here only a few important ones.

103
0019-9958/85 $3.00

Copyright © 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.

104 DUNG T. HUYNH

Let V be a finite alphabet. V* denotes the free monoid generated by V.
denotes the empty word and V + := V*\{~}. We shall use V e to denote the
free commutative monoid generated by V. If V= {Vl,..., v~}, then a word w
in V e will be written in the form

w=vill"'v~ r, i jE~0, j = l,...,r,

where [~0 denotes the set of nonnegative integers. Thus w with ij = 0,
j = 1,..., r, is the empty word of V e and is also denoted by a. A word in V e
is sometimes called a commutative word. V~+ denotes the free commutative
semigroup generated by V: V~+=Ve\{e}. In V e concatenation is
sometimes written as addition, e.g., w = u + v, where u, v, w E V s.

We define a homomorphism from V* into V e as follows. Again let
V= {vl vr}. For j = 1,..., r let # (vj, w) denote the number of occurrences
of vj in w, where w is in V*. Define

¢ v: V* ~ V e

w ~ v~ (~l'w)''' v~ (~'w)

¢ v is known as the Parikh mapping on V*.

DEFINITION 0.1. A 4-tuple G"=(N, T, S, pc) is called a commutative
(com. for short) grammar iff the following conditions hold:

(1) N and T are disjoint finite alphabets,

(2) SEN,

(3) pc is a finite subset of Ne+ × (Nw T) e.

As usual, N is the set of nonterminals, T is the set of terminals, S is the
axiom and pc is the set of productions.

The language generated by G c, denoted by L(GC), is

L(GC):= { w E T ® : S ~ w } ~ T e.

DEFINITION 0.2. Let GC= (N, T, S, pc) be a com. grammar. G c is said to
be

(1) of type 0 if there is no restriction on pc.

(2) context-sensitive (c.s. for short) if for each p = (7, 6) EPe it
h o l d s I 161/> lY[.

1 For we V*,]w[denotes the length of w and for # ~ V *, Ik] also denotes the length of
which is the sum of the exponents of ~ written as com. word.

COMPLEXITY OF EQUIVALENCE PROBLEMS 105

(3) context-free (c.f. for short) if pc is a subset of N x V e, i.e., each
production has the form (A, 6), where A e N.

(4) regular (reg. for short) if pc is a subset of N x (T e . (N u {e})),
i.e., each production is of the form (A, xB), x e T ¢, A eN, and B e N u {e}.

A com. language L c T e is said to be of type 0 (c.s., c.f., reg.) if there is a
type 0 (c.s., c.f., reg.) com. grammar G c such that L(G c) = L.

DEFINITION 0.3. (1) The size of the grammar G = (N, T, S, P), denoted
by IIGII, is the following number:

I l G l [: = l o g (# V) (~ 171+161),
(7,5)e P

where V:= N u T. (All logarithms are to the base 2.)

(2) For a com. word w e V e, w=vel I V r, e jeNo, j = 1,...,r, let
exp(w) denote the number

exp(w) := ~ [-log(ej)7.
j = l,ej>~ l

The size of w, denoted by Ilwll, is defined as

Ilwll := log(# V)' exp(w).

(3) The size of the com. grammar G"= (N, T, S, P") is

] lGCl l := log (#g) ' (~ exp(7)+exp(3)) ,
(7,6)e P c

where V:= N w T.

DEFINITION 0.4. Let ff be a class of com. grammars. The inequivalence
problem for ff is: Given two com. grammars G~ and G~ in f¢ it is to deter-
mine whether L(G~I)#L(G~). The finite inequivalence problem for ~ is:
Given two com. grammars G~ and G~ in ~ generating finite languages it is
to determine whether L(G~)CL(G~).

1. COMPLEXITY OF THE EQUIVALENCE PROBLEMS FOR TYPE 0 AND

CONTEXT-SENSITIVE COMMUTATIVE GRAMMARS

In this section we show that the inequivalence problems for type 0 and
context-sensitive (c.s.) com. grammars are undecidable. Let INEQ-CSCG
denote the inequivalence problem for c.s. com. grammars. We modify the

106 DUNG T. HUYNH

proof of the undecidability of the inequivalence problem for vector addition
systems presented in [3] so that we obtain a recursive reduction from
Hilbert's tenth problem to INEQ-CSCG, showing that INEQ-CSCG is
undecidable.

We first define the polynomial graph inclusion problem which is
undecidable and then reduce this to INEQ-CSCG.

We introduce some notions. A polynomial Q(U1 Un) in the
polynomial ring 7 / [U 1 , . . . , Un] is called diophantine. (7/ is the ring of
integers.) Hilbert's tenth problem (HP) is the problem of deciding whether
a diophantine polynomial has an integer solution. It is well known that HP
is undecidable.

Consider polynomials in N0[U1,..., Un]. The graph of a polynomial
Q(U1 un) in No[U~ U,] is the set (cf. [3])

G(Q) = { (ai,..., a~, b) E N~ +1 [b ~< Q(al an)}.

The polynomial graph inclusion problem (PGIP for short) is the problem
of deciding for two polynomials Q~, Q2 in No[U~ U,] whether
G(Q1)~- G(Q2).

LEMMA 1.1. PGIP is undecidable.

Proof See [3] for a reduction of HP to PGIP. |

We now show how to reduce PGIP to INEQ-CSCG. The proof techni-
que is essentially similar to the one presented in [3]. Instead of simulating
addition and multiplication of integers by weak Petri net computers we
simulate these operations by c.s. com. productions. Since c.s. com. produc-
tions are in restricted form, we do not have the freedom as in the general
case. (Note that we do not have e-productions in c.s. com. grammars.)

In the sequel we first show how to "weakly compute" a monomial by c.s.
com. productions. (We use the term "weak computation" as in the case of
Petri nets because G(P) is, strictly speaking, not the graph of P.)

Weak Computation of a Monomial

Let M = M(U1 Un) be a monomial. Then the graph G(M) of M is the
set {(al,..., an, b) ~ N~ + 1[b <~ M(al,..., a,)}. Let X1 Xn be symbols and
$, ~ be two special symbols. 2 Further let X~ X'n, Z be other symbols. We
want to construct a set P of c.s. com. productions such that
$X~ I . . . X a. ~ * ~ w with we {Z, X1,...; X',} ~ iff w=ZbX'l al X'n , where
b <<. M(al an). Such a set of c.s. com. productions is said to weakly corn-

2 Special symbols are control symbols which start or stop computations. (This will be clear
later.)

COMPLEXITY OF EQUIVALENCE PROBLEMS 107

pute the monomial M. In order to construct such a set P, we need to con-
sider addition and multiplication of integers.

We introduce some technical notions. Let X, Y, Z, X', Y' be some sym-
bols and $, ~ be two special symbols. Let P be a set of c.s. com. productions
such that $X ~ y i ~ , ~ w with w e {Z, X', Y'} ~ iff w = ZiX '~ y,i, where i, e, f,

No and i<~ef We say that P weakly computes the product of non-
negative integers, X e and Y/are arguments of the weak computation by P.
Further, they are reproduced as X '~, Y'f. We say that the weak com-
putation of P does not consume its arguments. Similar definitions hold for
weak computations of other operations.

The following lemma shows that the product of two nonnegative integers
can be weakly computed.

LEMMA 1.2. Let X, Y, Z be some symbols and $, ~ be two special sym-
bols. Further let X', Y' be some other symbols. Then there is a set P of c.s.
com. productions such that $ X e Y r ~ * ~ w with w ~ { Z , X ' , Y ' } ® iff
w= ~ZiX'eY 'i, where i, e , f ~ N 0 and i<~ef

Proof Define P to be the following set of productions:

(1) $--*Al[~, X A I ~ X ' A 2 , YAz--*ZA3Aa, A 3 ~ A 2 ,

(2) A2--*B1, B1A4--+ YBI ,BI - -*AI ,

(3) Az---~C1, C1A4--* Y'C1, C1- -~ ,

(4) X ~ X ' ~ , Y ~ Y ' ~ , A 4 ~ Y ' ~ ,

where A1,..., A4, BI, C1 are new symbols.

The productions in (1) shows how to generate a number of Z's bounded
by the number of Y's after one X is converted to X'. The productions in (2)
change A4 to Y, whereas the productions in (3) change A4 to Y'. The
productions in (4) is used to convert remaining X's and Y's to X' and Y'.

It is not hard to see that sxeyf~*~W with w e { Z , X ' , Y ' } e iff
w=¢ZiX'eY 'i, where i,e, f e N o and i<~ef]

In view of Lemma 1.2 we see that if we want to weakly compute U~, then
we need several copies of the argument. We avoid this since according to
Definition 0.2 we cannot erase symbols by c.s. com. productions.

LEMMA 1.3. Let X be some symbol and $, ~ be two special symbols.
Further let Z, X' be some other symbols. Then there is a set P of c.s. com.
productions such that $Xe ~ * ~ w with w c { Z , Z ' } e i f f w = Z i X 'e, where i,
eE No and i<<,e s (s is some f ixed integer >~i.)

Proof Consider the case s--2. Define P to be the following set of
productions:

108 DUNG T. HUYNH

(1) $ ~ A 1 , A 1 X ~ A 1 Z X ' I A I X ' , A I ~ ,

(2) $ ~ A2, A 2 X ~ A3X2X3, A3X--~ A3X1X2, A3 ~ C,

(3) Productions for CX~-xx~ ~ * DZiX'le-lx'.2e, i<~e(e - 1).

(4) D ~ , X ' ~ - - , Z~, X3~--, Z~ ,X '~- - , X'~.

From Lemma 1.2 it follows that productions for (3) can be constructed.
Now, (1) implies that $X ~ =~*~ZW'", i<~e. Productions in (2) generate
two copies for the arguments for the multiplication performed by (3). Thus
with (2), (3), and (4) we have that S x e ~ * ~ W with w e { Z , X ' } e iff
w = ¢SZ;X '~, where e ~< i ~< e 2. Thus, P weakly computes the monomial U 2. A
generalization for arbitrary s is straightforward. |

The next lemma shows how we can weakly compute the sum of two
integers by c.s. com. productions.

LEMMA 1.4. Let
bols. Further let X',
com. productions such that $ X e Y r ~ * ~ w with w 6 { Z , X ' , Y ' } e
w = Z i x ' e y 'f, where i, e, f e ~o and i <~ e + f

Proof Define P to be the following set of productions

$ ~ B, XB ~ X'A, A ~ ZB, YB ~ Y'A, B ~ ~.

Clearly, these are c.s. com. productions and it holds that $X~Y f ~ * ~w with
w E { Z , X ' , y , } e iff w~Z;X , ey, f, where i, e, f E N o , and i<~e+f |

We now show how monomials can be weakly computed by c.s. com.
productions.

X, Y, Z be some symbols and $, ~ be two special sym-
Y' be some other symbols. Then there is a set P of e.s.

iff

LEMMA 1.5. Let M(U1 U,) be a monomial. Let X1 X, be some
symbols and $, ~ be two special symbols. Further let Z, X' 1,..., X'n be some
other symbols. Then there is a set P of c.s. com. productions s.t.
$X~' ye, ~ , ~,~, iff w ~ZiX'I el ,e, • " X , , where i, e l , . . . , e , ~ o and

~x n p ~ r v

i ~ M(el e,).

Proof We apply Lemmas 1.2 and 1.3. By Lemma 1.3 we see that US.;
can be weakly computed by c.s. com. productions. To weakly compute
M(U1 Un)= U]'"" U s" we apply Lemma 1.2, where the inputs are the

Sl Sn outputs by the weak computation of U1 , U n .
Consider, for simplicity, U~ ~ U~ 2, s~, s2 >~ 1. By Lemma 1.3 there are two

sets, say P1, P2, of c.s. com. productions such that

s'x
P I

C O M P L E X I T Y OF E Q U I V A L E N C E P R O B L E M S 109

and

P2

where i ~< e sl and j ~<fs2 and the symbols are appropriately chosen. We con-
sider two cases.

Case 1. Either e ~< 1 orf~< 1. W.l.o.g. let e ~< 1. We can construct a set Po
of c.s. com. productions that perform the following task: (i) if e = 0 then
SX{z:~:c~X2 f, (ii) if e = l then SX{=r~*~ZJX2 f, where j<~f~2 and f~>l.
Other subcases can be treated in a similar way.

Case 2. Both e and f are /> 2. This can be tested by the production
SX~IX~2 ~ $'X~IX~2. We want to obtain

P3

such that k 4/.J for some set P3 of c.s. corn productions.
Observe that using the techniques in previous lemmas we can construct a

set P3 of c.s. com. productions that perform the following task:

(1) either @Z~Z{ ~ * ~Z ~+j,

(2) or if i~>3 andj~>3, then perform

L ' l z~ 2 za 1 ~'x2 ~

@,7 , , -27 , J -~ * #ZtB~-2B{-1, where l<<.(i-2)(j-1); L ' l ~ 2

B{ I ~ # ,C~j- 1) +m where m ~<j - 2;

'B~ 2C(2S 1)+md2dl . l l~ 2 ~=~ ~Z i+j+m

Note that by (2) we have @Z]Z~ =>* ~Z k, where i+j<~k<~ij. On the
other hand, since i,j can be any value ~<e sl and ~<fs2, respectively, it
follows that by P1, P2, P3 in Case 2 and Po in Case 1, U~' U~ 2 can be weakly
computed.

The above construction can be generalized for arbitrary monomial. This
completes the proof of Lemma 1.5. |

COROLLARY 1.6. Lemma 1.5 holds if M(Ua Un) is replaced by
eM(U1,..., Un), where c >~ 1 is any integer.

110 DUNG T. HUYNH

Proof Straightforward. 1

We are now able to show that polynomials in No[Ul,..., Un] can be
weakly computed by c.s. com. grammars.

PROPOSITION 1.7. Let Q(UI,..., U,) be a polynomial in N0[UI,..., Un].
Then there is a c .s . com. grammar G c with terminal alphabet
T= {~, tl,..., tn, t} such that

~t~ 1"'" ta°tb6L(G c) iff (al an, b)~G(Q).

Proof From Corollary 1.6 and Lemma 1.4, G c can be easily construc-
ted. The details are left to the reader. I

THEOREM 1.8. INEQ-CSCG is undecidable.

Proof. From Lemma 1.1 and Proposition 1.7 it follows that the
C5 c c c problem of determining whether L(G~) _ L(G2), where GI, G 2 are c.s. com.

grammars, is undecidable, since PGIP is recursively reducible to it.
Observe that

L(G~)~_L(G~) iff L(G~)=L(G~)uL(G~).

Thus, INEQ-CSCG is undecidable.]

2. THE][NEQUIVALENCE PROBLEMS FOR CONTEXT-FREE

COMMUTATIVE GRAMMARS

In this section we study the complexity of various versions of the
inequivalence problems for context-free (c.f.) commutative grammars. The
main result is that the general inequivalence problem for this grammar
class is decidable in nondeterministic exponential time.

Let INEQ-CFCG (FINEQ-CFCG) denote the (finite) inequivalence
problem for c.f. com. grammars. From the result that the uniform word
problem for c.f. com. grammars (UWP-CFCG) is NP-complete we will see
later that it is not hard to show that INEQ-CFCG is in the second level
(X~) of the exponential time hierarchy. To show that INEQ-CFCG is in
nondeterministic exponential time (X~) we need some technical results con-
cerning commutative images of c.f. languages, which are semilinear sets by
Parikh theorem (cf. [2, p. 146]).

In the following let G c = (N, T, S, pc) be a c.f. com. grammar. Further let
G be a reduced c.f. grammar which induces G C (cf. [6, Sect. 1]), i.e.,
~(L(G)) = L(GC), where ~k is the Parikh mapping from T* onto T e, the
free com. monoid generated by T.

COMPLEXITY OF EQUIVALENCE PROBLEMS 1l l

Construction of a Representation for ¢(L(G))

Following [1] we define semilinear sets in T e as follows:
For a finite subset W e T e let W e denote the submonoid generated by

W in T e. A subset L _ T e is called linear (lin.) if L -- c + W e for some
c ~ T e and some finite subset W c T ¢. A subset SL c T e is semilinear (s.1.
for short) if it is a finite union of lin. sets.

If S L = (c l + W ~) ~ . . . u(cm+W~), then {(c~, W~),...,(cm, Wm)} is
called a representation of SL; ci's (Wi's) are constants (period systems).

A representation of L(G c) = ¢(L(G)) as a s.1. set may be obtained from
the proof of Parikh theorem as follows (cf. [2, p. 146]):

Let V be any subset of N u T containing T and S. Let s be card(V). Con-
sider the set Lv of all words w in L(G) such that in some generation tree of
S ~ * w the nonterminals which are node labels are exactly V~T. Since
L(G) is the union of all such Lv and there are only exponentially many
such Lv, in order to obtain a representation for ¢(L(G)), it suffices to
show how to obtain a representation for ¢(Lv).

Let V be fixed and consider some nonterminal X e V. Define two sets E
and Dx as follows: A word w is in Dx iff the following two conditions are
satisfied:

(1) w contains exactly one occurrence of X and no other nonter-
minals.

(2) There is a generation tree o f X ~ * w whose node labels belong to
V such that none of them occurs more than s + 2 times in any path of the
tree.

A word w ~ T* is in E iff the following condition holds:
There is a derivation tree of S ~ * w whose interior node labels are

exactly V~T and none of them occurs more than s + 2 times in any path of
the tree.

Let G denote ¢(E) and H denote ¢(Ux Dx). (Note that for w e Dx, ~(w)
is defined to be ¢(w'), where w' is obtained from w by erasing X in w.)
Then we have

O(Lv)=G+ H e. (*)

Taking the union of sets of the form G + H e, where the union runs over
all Vc_Nu T satisfying the above requirement, we obtain a s.1. set
representation for ¢ (L (G)) = L(GC).

Complexity of FINEQ- CFCG

From the above construction we can easily show that F I N E Q - C F C G is
XP-complete.

643/66/1-2-8

112 DUNG T. HUYNH

PROPOSITION 2.1. FINEQ-CFCG is in Z p.

Proof Let G c be a c.f. com. grammar. If L(G c) is finite, then in the s,1.
set representation of L(G c) constructed above, all period systems are
empty. The constants, encoded as in [6, Sect. 1], have sizes polynomially
bounded in terms of II G c IL, the size of G c, since derivation trees for words in
E have depths that are linearly bounded in the number of variables of G c.
Therefore the following fact holds.

Fact. Let G~ and G~ be two c.f. com. grammars generating finite
languages. Then L(G~)~ L(G~) iff there is some com. word w in A(G~, G~)
:= [L(GC~)\L(G~)] w [L(G~)\L(G~)] such that

llwll ~ Q(IIG~ II + 116211),

where Q is a fixed polynomial. |

Since U W P - C F C G (the uniform word problem) is in NP, it is
straightforward to see that F INEQ-CFCG is in ZP:

- - Guess a polynomially bounded com. word w.

- - Verify that w~A(G~, G~).

This completes the proof of Proposition 2.1. |

To show that F INEQ-CFCG is ZP-hard we reduce the inequivalence
problem for integer expressions, denoted by INEQ-N, to FINEQ-CFCG.
Since INEQ-N is known to be ZP-complete (cf. [12]), it will follow that
F INEQ-CFCG is ZP-hard.

Integer expressions are well-formed parenthesized expressions involving
nonnegative integer constants written in binary notation and two binary
operations: addition (+) and union (w). Integer expressions defined sub-
sets of nonnegative integers recursively as follows: L (a) = {a}, a ~ 0 ;
L((EIUE))=L(E1)wL(E2) and L((EI+E2)) = L(E1)+L(E2) =
{ x + y l x s L (E 1) and y~L(E2)}.

PROPOSITION 2.2. FINEQ-CFCG is Z~-hard.

Proof. Since derivations in a c.f. com. grammar with a single-letter ter-
minal alphabet can simulate (binary) addition and union, the log-space
reduction of INEQ-N to F INEQ-CFCG is straightforward. Thus FINEQ-
CFCG is Z~-hard. |

COROLLARY 2.3. INEQ-CFCG is Z~-hard.

Proof. Obvious. |

COMPLEXITY OF EQUIVALENCE PROBLEMS 113

From Propositions 2.1 and 2.2 we obtain

THEOREM 2.4. FINEQ-CFCG is S~-complete.

Remark. Note that the finite inequivalence problem for (noncom-
mutative) c.f. grammars is complete for nondeterministic exponential time 3
(NEXPTIME) under log-space reduction, since it is obviously in
NEXPTIME and it is NEXPTIME-hard by Theorem 4.5 in [5].

Before showing that INEQ-CFCG is in NEXPTIME we make some
remarks. In Lemma 2.9 below, we will show that two c.f. com. grammars
are inequivalent iff there is an exponentially bounded com. word witnessing
that inequivalence. Hence, it follows that INEQ-CFCG is in _r~, the second
level of the exponential hierarchy, since UWP-CFCG is in NP. To get the
NEXPTIME upper bound we need to show that if the witnessing word is
exponentially bounded, then the test for membership can be done deter-
ministically. We need some technical results about the s.1. set representation
of L(GC).

Some Observations about the S.L. Set Representation of L(G c)

In the following we provide some technical results for proving the
NEXPTIME upper bound of INEQ-CFCG. Observe that the results
derived in [6] cannot be applied to obtain a deterministic test for mem-
bership, since a com. derivation word which is also of exponentially boun-
ded size must be guessed in the test for membership. (This implies a 27[
upper bound.)

LEMMA 2.5. In the representation of L(G") as a s.L set the constants and
periods have sizes polynomially bounded in terms of [I GC JI.

Proof Consider V and Lv in the construction above. Since the trees
generating words in E and Dx, X~ II, have depths bounded by (s+2) 2,
s = Card(V) ~< Card(Nu T), the lemma follows. |

From the construction above let us consider V ~ N w T , Lv, ¢(Lv),
where G = (N, T, S, P) is the c.f. grammar inducing GO= (N, T, S, P"). We
now show how to obtain from the representation (*) ¢ (L v) = G + H e
another representation of the form

¢ (Lv)= U e + W e

where the union runs over c ~ tP(Lv) with polynomiaUy bounded size and
subsets W_= H with ~< k linearly independent periods, where k:= Card(T).

3 N E X P T I M E = Y ~ 1 NTIME(cn*) •

114 DUNG T. HUYNH

PROPOSITION 2.6. Let G = (N, T, S, P) be a c.f grammar inducing G c.
Let V ~ N u T such that V contains {S} and T. Then

6 (L v) = U c + W ¢

where the union runs over c e ~9(Lv) with polynomially bounded size (in terms
of IJ G c II) and subsets W__ H (= ¢(U x~ z D x)) with ~< k(= Card(T)) linearly
independent polynomialIy bounded periods.

In the following, we proceed to show Proposition 2.6. This will be done
via Lemmas 2.7 and 2.8. Obviously, we only need to show that g + H ¢,
g ~ G, has a representation of the form

g + H e = U c + W ¢

where the union runs over e ~ g + H e with polynomially bounded size and
subsets W _ H with ~< k linearly independent periods.

We need some technical notations. In the following two lemmas we may
consider T e as ~ , since they are isomorphic. We also regard ~o k as subset
of Qk, where Q is the set of rationals. Further Q + denotes the nonnegative
rationals. C(H) denotes the cone generated by H:

C(H):= f ~ rhh rh~Q+l .
t . h ~ H I J

Let M(g, H) denote the set of lattice points in g+C(H) , i.e.,
M(g, H) = (g + C(H))~ ~k o.

LEMMA 2.7. M(g, H) is a s,l. set with representation of the form

M(g, H) = U F + W e,

where the union runs over subsets W~_ H of <~ k linearly independent periods
and each element f ~ F has the form

f = g + ~ rihi, 0~<r i< l ,
i = l

with linearly independent vectors h 1 ,..., hn ~ H.

Proof Let x e M(g, H). Since x e g + C(H), by Caratheodory's theorem
for cones (cf. [13, p. 35]), there are n (~<k) linearly independent vectors
hi hn in H such that

x = g + ~ pihi, p i~Q+.
i=1

COMPLEXITY OF EQUIVALENCE PROBLEMS 115

This may be written as

x = g + ~ (pi-WpiJ)hi+ ~ WpiJhi.
i = 1 i = 1

Letting f be g + ZT= 1 (Pi - LpiJ) hi, Lemma 2.7 follows.

LEMMA 2.8. g + H e has a representation of the form

Uc+ W e

where the union runs over c E g + H e with polynomially bounded sizes (in
terms of [JG c [[) and subsets W ~ H with <<, k linearly independent vectors.

Proof Consider the intersection

M(g, H) n (g + H e) = (UF+ W e) n (g + H e)

which is exactly (g+ He). It suffices to obtain a representation for
(f + W e) n (g + H ¢) with the desired property.

Consider the minimal nonnegative integer solutions set of the system of
equations with integer coefficients

gT + HX v =fT + WyT,

where the vectors in H and W are written as column vectors and x v, yV are
appropriate vectors of unknowns. Let Sol denote this set. Define

C= { f + Wy[3x: (x, y) E Sol}.

Then from Theorem 5.6.1, [2, p. 180], we have

(f + W e)n (g + H ¢) = C+ W ®.

We now show that c ~ C has polynomially bounded size (in terms of
I]GC[[). The above equation system has rank l~< k. Let m be the number of
unknowns. Then the coefficients of vectors in Sol is bounded by
(m + 1) x N, where N is the maximum of the absolute values of all l × l sub-
determinants of the system. (This is proved in [10] by Gathen and
Sieveking.) A simple calculation shows that every c EC has size
polynomially bounded in terms of [[GC[[. This completes the proof of Lem-
ma 2.8. |

From Lemma 2.8, Proposition 2.6 follows.

INEQ-CFCG is in N E X P T I M E

We are now able to show that INEQ-CFCG is in NEXPTIME. We need
a lemma.

116 DUNG T. HUYNH

LEMMA 2.9. Let G~ and G~ be two c.f. com. grammars. Then
L(G~) ~ L(G~) iff there is a com. word w ~ fl(G~l, G~) such that

Ilwll ~< 2 Q~ILG~II + llc~ll)

for some f ixed polynomial Q.

Proof We outline a proof sketch and omit the details. The idea of the
proof is as follows. We apply Parikh theorem and the result about s.1. sets
obtained in I-9] (or 1-8-1). First consider the s.1. set representations of L(G~)
and L(G~) obtained by the construction at the beginning: From Lemma 2.5
it follows that these representations have sizes that are exponentially boun-
ded in terms of II aN II and II G~ II, respectively. Let RP~ and RP 2 denote
these representations.

Now, applying the main lemma in [9] we have that the symmetric dif-
ference A(G~, G'2) is not empty iff there is some com. word w~A(G~, G~)
such that

II w [I <~ O l(size(RP1) + size(RP2)).

Thus in terms of 116 4 II + IIa~ II the size of w is exponentially bounded, and
Lemma 2.9 follows. |

THEOREM 2.10. INEQ-CFCG is in NEXPTIME.

Proof. We apply Proposition 2.6 and Lemma 2.9. Consider the follow-
ing nondeterministic algorithm. Let G~' and G~ be two c.f. com. grammars
in the input:

- - Guess an exponentially bounded com. word w.

- - Check that w e A(G~, Gg).

Applying Proposition 2.6 we now show how the test w ~A(G~I, G~) can
be carried out deterministically. We need only to show this for the test
w ~ L(G~). Let k = Card(T). Consider the following algorithm:

for all V c__ N u T such that S E V and T c_ V do
for all com. word c e T ® which is polynomiaUy bounded in terms

of IIGCll do
begin check that c e 0(Lv);

for all subsets W = {hi h,}, n ~ k, of linearly
independent periods from 0(Ux~ v Dx) do
i f W = C + ~_n= 1 2ihi, ~i ~ No then accept

end.

We have to show that if w is exponentially bounded in terms of IIG~ II,
then the above algorithm is in deterministic exponential time (in terms of

II a~ II).

COMPLEXITY OF EQUIVALENCE PROBLEMS 117

Since flc[I is polynomially bounded in terms of IIG~/[, the test c e q/(Lv)
can be done nondeterministically in time polynomial in IIG~II + Ilcll (and
hence in [[a~ J[), in view of the fact that UWP-CFCG is in NP. Thus this
test can be done deterministically in exponential time.

The innermost for-loop can be carried out in deterministic exponential
time, since there are at most an exponential number of subsets of ~<k
periods and since verifying w = c + ZT= 1 2ihi can be done deterministically
in time polynomial in Ilwll +][hl H + "'" + Ilhn II, and hence exponential in
]IG~ II.

Thus we conclude that w eA(G~, G~) can be done deterministically in
exponential time. Hence 1NEQ-CFCG ~ NEXPTIME. This completes the
proof of Theorem 2.10. |

Remark. Unfortunately, there is still a gap between the upper and
lower bounds for INEQ-CFCG. It seems that Lemma 2.9 can be
strengthened so that the witnessing com. word has a polynomially bounded
size. (In that case, such a proof would require a different technique.) This
would imply that INEQ-CFCG is in SP and hence SP-complete. Such a
result is interesting, since a Z~ upper bound for INEQ-CFCG also provides
the XP upper bounds for the inequivalence problems for s.1. sets and con-
text-free grammars with l-letter terminal alphabet (the reduction of s.1. set
inequivalence to c.f. com. grammar inequivalence is straightforward and the
other reduction is trivial), whose proofs employ completely different techni-
ques and are non-trivial (cf. [-7, 9]).

OPEN PROBLEM. Is INEQ-CFCG in XP?

Remark. Notice that INEQ-CFCG is closely related to the com-
mutative inequivalence of (noncommutative) c.f. grammars. From the
results in [7] it is known that the latter is XP-hard, whereas completeness
is (to the author's knowledge) an open question. In the following we will
see that a SP upper bound for one problem implies such an upper bound
for the other.

The Case of Single Letter Terminal Alphabet CFCGs

Let INEQ-CFCG-{0) (FINEQ-CFCG-{0}) denote INEQ-CFCG
(FINEQ-CFCG) with the restriction that the terminal alphabets are
singleton sets.

THEOREM 2.11. FINEQ-CFCG-{O} is XP-complete.

Proof Notice that the reduction in Proposition 2.2 outputs grammars
with single-letter terminal alphabets. |

118 DUNG T. HUYNH

THEOREM 2.12. INEQ-CFCG-{O} is SP-complete.

Proof We only need to show that INEQ-CFCG-{0} is in 22p. To this
end we apply the result in [71 that deciding inequivalence of c.f. grammars
with l-letter terminal alphabet is ZP-complete. We have to show that a c.f.
com. production can be simulated by only a polynomial number of c.f.
productions. This can be accomplished as follows. Consider a com. produc-
tion of the form X ~ ~ q " . Y2mm, where el em ~ No. Define the following
c.f. productions:

X ~ Al,o. • • Am,o
for each j = 1 rn do

begin
for each l = 0,..., ej - 1 do

define Aj, t ~ Aj, t+ iAj, l+ 1 ;
define Aj, ej-~ Yj

end

Obviously this set of c.f. productions simulates the com. production
above. From this observation it can easily be seen that INEQ-CFCG-{0}
is log-space reducible to the inequivalence problem for c.f. grammars with
l-letter terminal alphabet. Since the latter is in X~, it follows that INEQ-
CFCG-{0} is in XP, too. Hence it is Z~-complete. |

3. THE INEQUIVALENCE PROBLEMS FOR REGULAR COMMUTATIVE GRAMMARS
AND RATIONAL EXPRESSIONS IN COMMUTATIVE MONOIDS

In this section we classify the complexity of the inequivalence problems
for regular (reg.) com. grammars (INEQ-RCG) and rational expressions in
com. monoids (cf. [6] for definitions). The latter problem is denoted by
INEQ-RE(V, k) if the com. monoid is finitely generated by V and k is the
upper bound for the star heights of the expressions, and by INEQ-RE(V) if
there is no restriction on the star heights.

THEOREM 3.1. For any f ixed finite alphabet V and nonnegative integer k,
INEQ-RE(V, k) is Z~-complete.

Proof We first show that this problem is ZP-hard. To this end consider
the restricted case that V= {0} is a singleton set and k = 0 . Obviously,
rational expressions in {0} e without stars can simulate integer expressions.
Thus, INEQ-RE({0}, 0) is ZP-hard.

We now show that INEQ-RE(V, k) is in Z~ for any fixed k and finite
alphabet V. The idea is to show that rational expressions with bounded
star heights have s.1. set representations with polynomially bounded sizes.

COMPLEXITY OF EQUIVALENCE PROBLEMS 119

This can be done recursively as follows. Let e be a rational expression in
V e. Let RP(e) be the s.l. set representation for e which is to be construc-
ted:

(1) I f ~ = w , w ~ V e, then R P (~) = { (w , ~) }

(2) If ~ = (~1 k-) 0~2) , then RP(~) = RP(~I) w RP(~2)

(3) ~ = (~1 '~2)- Let RP(~i) = {(cl, W1) (cm, Win)} and

RP(~2)= {(d~, U1) (dn, Un) }.

Since ~ defines the set

U (c,+ w~)+ (dj+ u?)
i.j

it suffices to show how to obtain a representation for

(e,+ w~)+ (aj+ ~:?).

This can be represented by

(~, + dj) + (w , ~ uj) ®.

(4) ~ = (~1)*, where RP(~I)= {(cl, W1),..., (cm, Wm)).
Since ~ defines the set

which is

[(c1+ Wle)U '" U(Cm+ W2)]*

(C1-~- ml~)@ --~ ... ~- (Cm- ~ m@m) G,

we only need, by induction and (3), to consider the case m = 1. Obviously,
(c1 + W~) e defines the set

{~} ~ [cl + ({cl) u w,)~].

Now, if k is fixed, then every rational expression ~ has a s.1. set represen-
tation RP(~) whose size is polynomially bounded in II~H. (Notice that this
fact, according to our argument, does not hold if k is not fixed.) Further
RP(~) can be computed deterministically in polynomial time. Thus INEQ-
RE(V, k) is in S p, since the inequivalence problem for s.1. sets is in Sp (cf.
[8, and 9]). This completes the proof of Theorem 3.1. |

COROLLARY 3.2. INEQ- RE({ O } , k) is SP-complete for any fixed k.

Proof Follows from the above proof. |

120 DUNG T. HUYNH

Since INEQ-RCG and INEQ-RE are polynomially related, we obtain
from the results in previous section.

THEOREM 3.3. (1) INEQ-RE(V) and INEQ-RCG are in NEXPTIME,

(2) INEQ-RE(V) and INEQ-RCG are ZP-hard,

(3) INEQ-RE({0}) and INEQ-RCG-{0} is XP-compIete,

(4) FINEQ-RE({0}) and FINEQ-RCG-{0} is Z~-eomplete,

where (4) is the finite version of (3).

4. CONCLUDING REMARKS

In this paper we have investigated the complexity of the equivalence
problems for various classes of commutative grammars. The results are
summarized in Table I. For type 0 com. grammars the inequivalence
problem is recursively enumerable (r.e.), since it is now known that the
uniform word problem is decidable, as shown recently by Mayr (cf. [6]).
From the results of Van Leeuwen [11] and Hopcroft and Pansiot [4] it
follows that this inequivalence problem for type 0 com. grammars is
decidable if the number of symbols is bounded by 5. It would be interesting
to extend this bound. Specifically, we do not know whether this problem is
still decidable when the number of symbols is bounded.

TABLE I

Inequivalence problem Upper bound Lower bound

Type 0 and c.s. com. grammars r.e. undecidable

Context-free and regular General NEXPTIME Xe2-hard
commutative grammars Finite S~ Complete

One terminal X~ Complete
letter

Rational expressions

General NEXPTIME Z~-hard
Bounded star Z'~ Complete

heights
Finite _r~ Complete

One terminal Z~ Complete
letter

COMPLEXITY OF EQUIVALENCE PROBLEMS 121

ACKNOWLEDGMENTS

The author wishes to thank a referee for helpful suggestions that improve the presentation
of this paper.

RECEIVED April 5, 1984; ACCEPTED May 22, 1985

REFERENCES

1. E1LENBERG, S. AND SCHI~TZENBERGER, 1969), Rational sets in commutative monoids, J.
Algebra 13, 173-191.

2. GINSBUgc, S. (1966), "The Mathematical Theory of Context-Free Languages,"
McGraw-Hill, New York.

3. HACK, M. (1976), The equality problem for vector addition systems is undecidable,
Theoret. Comput. Sci. 2, 77-95.

4. HOPCROFT, J. AND PANSlOZ, J. (1979), On the reachability problem for 5-dimensional vec-
tor addition systems, Theoret. Comput. Sci. 8, 135-159.

5. HUNT, H., ROSENKRANTZ, D. AND SZYMANSKI, T. (1976), On the equivalence, contain-
ment and covering problems for the regular and context-free languages, J. Comput.
System Sci. 12, 222-268.

6. HUVNH, D. (1983), Commutative grammars: The complexity of uniform word problems,
Inform. Contr. 57, 21-39.

7. HUYNH, D. (1984), Deciding the inequivalence of context-free grammars with 1-1etter ter-
minal alphabet is Z'~-complete, Theoret. Comput. Sci. 33, 305-326.

8. HUVNH, D. (1982), The complexity of semilinear sets, Elektron. Informationsverarb. Kyber-
net. 18, 291-338.

9. HtSYNH, D. (in press), A simple proof for the _r~ upper bound of the inequivalence
problem for semilinear sets, Elektron. Informationsverarb. Kybernet.

10. YON ZUR GATm~N, J. AND SZEVEK1N6, M. (1978), A bound on solutions of linear integer
equalities and inequalities, Proc. Amer. Math. Soc. 72, 155-158.

11. VAN LEEUWEN, J. (1974), A partial solution to the reachability problem for vector
addition systems in, "Proc. 6th ACM Sympos. Theory of Computing," pp. 303-307,

12. STOCKMEVER, L. AND MEYER, A. (1973), Word problems requiring exponential time, in
"Proc. 5th ACM Sympos. Theory of Computing," pp, 1-9.

13. STOER, J. AND WITZGALL, C. (1970), "Convexity and Optimization in Finite Dimensions
I," Springer-Verlag, Berlin/New York.

Printed in Belgium

