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The Complexity of Equivalence Problems 
for Commutative Grammars 

DUNG T. HUYNH 

Computer Science Department, Iowa State University, Ames, Iowa 50011 

In this paper we investigate the computational complexity of the inequivalence 
problems for commutative grammars. We show that the inequivalence problems for 
type 0 and context-sensitive commutative grammars are undecidable whereas 
decidability in nondeterministic exponential-time holds for the classes of regular 
and context-free commutative grammars. For the latter the inequivalence problems 
are ZP-hard. © 1985 Academic Press, Inc. 

0. INTRODUCTION 

In this paper we continue our investigation of the computational com- 
plexity of commutative grammars that have been introduced in [6].  We 
will focus our attention on the complexity of the equivalence problems for 
various commutative grammar classes. (The word problems have been 
investigated in [6].)  

Among others we will show the following results: 
Concerning the classes of type 0 and context-sensitive commutative 

grammars the inequivalence problems are undecidable. The proof employs 
Rabin's proof for vector addition systems presented in [3]  by Hack. 

We will show that the inequivalence problems for context-free and 
regular grammars are decidable in nondeterministic exponential time and 
that they are ZP-hard. For  the finite case we obtain a sharper result. We 
show that the finite inequivalence problems for these classes are Z p- 
complete. Although a sharp result is not obtained for the general case, we 
will see that in the case of l-letter terminal alphabet these problems are Z p- 
complete. 

The paper is organized as follows. There are three sections. Section 1 
deals with type 0 and context-sensitive commutative grammars. Section 2 is 
devoted to context-free commutative grammars. In Section 3 we investigate 
the complexity of inequivalence problems for regular commutative gram- 
mars and rational expressions. 

The reader is referred to [-6, Sect. 1] for definitions and notations. We 
reproduce here only a few important ones. 
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Let V be a finite alphabet. V* denotes the free monoid generated by V. 
denotes the empty word and V + := V*\{~}. We shall use V e to denote the 
free commutative monoid generated by V. If V= {Vl,..., v~}, then a word w 
in V e will be written in the form 

w=vill"'v~ r, i jE~0,  j =  l,...,r, 

where [~0 denotes the set of nonnegative integers. Thus w with ij = 0, 
j = 1,..., r, is the empty word of V e and is also denoted by a. A word in V e 
is sometimes called a commutative word. V~+ denotes the free commutative 
semigroup generated by V: V~+=Ve\{e}. In V e concatenation is 
sometimes written as addition, e.g., w = u + v, where u, v, w E V s.  

We define a homomorphism from V* into V e as follows. Again let 
V= {vl ..... vr}. For j =  1,..., r let # (vj, w) denote the number of occurrences 
of vj in w, where w is in V*. Define 

¢ v: V* ~ V e 

w ~ v~ (~l'w)''' v~ (~'w) 

¢ v is known as the Parikh mapping on V*. 

DEFINITION 0.1. A 4-tuple G"=(N, T, S, pc) is called a commutative 
(com. for short) grammar iff the following conditions hold: 

(1) N and T are disjoint finite alphabets, 

(2) SEN,  

(3) pc is a finite subset of Ne+ × (Nw T) e. 

As usual, N is the set of nonterminals, T is the set of terminals, S is the 
axiom and pc is the set of productions. 

The language generated by G c, denoted by L(GC), is 

L(GC):= { w E T ® : S ~ w } ~ T  e. 

DEFINITION 0.2. Let GC= (N, T, S, pc) be a com. grammar. G c is said to 
be 

(1) of type 0 if there is no restriction on pc. 

(2) context-sensitive (c.s. for short) if for each p =  (7, 6) EPe it 
h o l d s  I 161/> lY[. 

1 For we V*, ]w[ denotes the length of w and for # ~  V *, Ik] also denotes the length of 
which is the sum of the exponents of ~ written as com. word. 
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(3) context-free (c.f. for short) if pc is a subset of N x  V e, i.e., each 
production has the form (A, 6), where A e N. 

(4) regular (reg. for short) if pc is a subset of N x  (T e .  ( N u  {e})), 
i.e., each production is of the form (A, xB), x e  T ¢, A eN,  and B e N u  {e}. 

A com. language L c T e is said to be of type 0 (c.s., c.f., reg.) if there is a 
type 0 (c.s., c.f., reg.) com. grammar G c such that L(G c) = L. 

DEFINITION 0.3. (1) The size of the grammar G =  (N, T, S, P), denoted 
by IIGII, is the following number: 

I l G l [ : = l o g ( # V ) (  ~ 171+161), 
(7,5)e P 

where V:= N u  T. (All logarithms are to the base 2.) 

(2) For a com. word w e V  e, w=vel I . . . . .  V r, e jeNo,  j =  1,...,r, let 
exp(w) denote the number 

exp(w) := ~ [-log(ej)7. 
j =  l,ej>~ l 

The size of w, denoted by Ilwll, is defined as 

Ilwll := log(#  V)' exp(w). 

(3) The size of the com. grammar G"= (N, T, S, P") is 

] lGCl l := log ( #g ) ' (  ~ exp(7)+exp(3)) ,  
(7,6)e P c 

where V:= N w  T. 

DEFINITION 0.4. Let ff be a class of com. grammars. The inequivalence 
problem for ff is: Given two com. grammars G~ and G~ in f¢ it is to deter- 
mine whether L(G~I)#L(G~). The finite inequivalence problem for ~ is: 
Given two com. grammars G~ and G~ in ~ generating finite languages it is 
to determine whether L(G~)CL(G~). 

1. COMPLEXITY OF THE EQUIVALENCE PROBLEMS FOR TYPE 0 AND 

CONTEXT-SENSITIVE COMMUTATIVE GRAMMARS 

In this section we show that the inequivalence problems for type 0 and 
context-sensitive (c.s.) com. grammars are undecidable. Let INEQ-CSCG 
denote the inequivalence problem for c.s. com. grammars. We modify the 
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proof of the undecidability of the inequivalence problem for vector addition 
systems presented in [3] so that we obtain a recursive reduction from 
Hilbert's tenth problem to INEQ-CSCG, showing that INEQ-CSCG is 
undecidable. 

We first define the polynomial graph inclusion problem which is 
undecidable and then reduce this to INEQ-CSCG. 

We introduce some notions. A polynomial Q(U1 ..... Un) in the 
polynomial ring 7 / [ U 1 , . . .  , Un] is called diophantine. (7/ is the ring of 
integers.) Hilbert's tenth problem (HP) is the problem of deciding whether 
a diophantine polynomial has an integer solution. It is well known that HP 
is undecidable. 

Consider polynomials in N0[U1,..., Un]. The graph of a polynomial 
Q(U1 ..... un) in No[U~ ..... U,] is the set (cf. [3]) 

G(Q) = { (ai,..., a~, b) E N~ +1 [b ~< Q(al ..... an)}. 

The polynomial graph inclusion problem (PGIP for short) is the problem 
of deciding for two polynomials Q~, Q2 in No[U~ ..... U,] whether 
G(Q1)~- G(Q2). 

LEMMA 1.1. PGIP is undecidable. 

Proof See [3] for a reduction of HP to PGIP. | 

We now show how to reduce PGIP to INEQ-CSCG. The proof techni- 
que is essentially similar to the one presented in [3]. Instead of simulating 
addition and multiplication of integers by weak Petri net computers we 
simulate these operations by c.s. com. productions. Since c.s. com. produc- 
tions are in restricted form, we do not have the freedom as in the general 
case. (Note that we do not have e-productions in c.s. com. grammars.) 

In the sequel we first show how to "weakly compute" a monomial by c.s. 
com. productions. (We use the term "weak computation" as in the case of 
Petri nets because G(P) is, strictly speaking, not the graph of P.) 

Weak Computation of a Monomial 

Let M =  M(U1 ..... Un) be a monomial. Then the graph G(M) of M is the 
set {(al,..., an, b) ~ N~ + 1[ b <~ M(al,..., a,)}. Let X1 ..... Xn be symbols and 
$, ~ be two special symbols. 2 Further let X~ ..... X'n, Z be other symbols. We 
want to construct a set P of c.s. com. productions such that 
$X~ I . . . X  a. ~ * ~ w  with we  {Z, X1,...; X',} ~ iff w=ZbX'l al . . . . . .  X'n , where 
b <<. M(al ..... an). Such a set of c.s. com. productions is said to weakly corn- 

2 Special symbols are control symbols which start or stop computations. (This will be clear 
later.) 



COMPLEXITY OF EQUIVALENCE PROBLEMS 107 

pute the monomial M. In order to construct such a set P, we need to con- 
sider addition and multiplication of integers. 

We introduce some technical notions. Let X, Y, Z, X', Y' be some sym- 
bols and $, ~ be two special symbols. Let P be a set of c.s. com. productions 
such that $X ~ y i  ~ ,  ~ w with w e {Z, X', Y'} ~ iff w = ZiX  '~ y,i, where i, e, f,  

No and i<~ef We say that P weakly computes the product of non- 
negative integers, X e and Y/are arguments of the weak computation by P. 
Further, they are reproduced as X '~, Y'f. We say that the weak com- 
putation of P does not consume its arguments. Similar definitions hold for 
weak computations of other operations. 

The following lemma shows that the product of two nonnegative integers 
can be weakly computed. 

LEMMA 1.2. Let X, Y, Z be some symbols and $, ~ be two special sym- 
bols. Further let X', Y' be some other symbols. Then there is a set P of  c.s. 
com. productions such that $ X e Y r ~ * ~ w  with w ~ { Z , X ' , Y ' }  ® iff  
w= ~ZiX'eY 'i, where i, e , f ~  N 0 and i<~ef 

Proof Define P to be the following set of productions: 

(1) $--*Al[~, X A I ~ X ' A 2 ,  YAz--*ZA3Aa, A 3 ~ A 2 ,  

(2) A2--*B1, B1A4--+ YBI ,BI - -*AI ,  

(3) Az---~C1, C1A4--* Y'C1, C1- -~  , 

(4) X ~ X ' ~ ,  Y ~ Y ' ~ , A 4 ~ Y ' ~ ,  

where A1,..., A4, BI, C1 are new symbols. 

The productions in (1) shows how to generate a number of Z's bounded 
by the number of Y's after one X is converted to X'. The productions in (2) 
change A4 to Y, whereas the productions in (3) change A4 to Y'. The 
productions in (4) is used to convert remaining X's and Y's to X' and Y'. 

It is not hard to see that sxeyf~*~W with w e { Z , X ' , Y ' }  e iff 
w=¢ZiX'eY 'i, where i,e, f e N o  and i<~ef ] 

In view of Lemma 1.2 we see that if we want to weakly compute U~, then 
we need several copies of the argument. We avoid this since according to 
Definition 0.2 we cannot erase symbols by c.s. com. productions. 

LEMMA 1.3. Let X be some symbol and $, ~ be two special symbols. 
Further let Z, X' be some other symbols. Then there is a set P of  c.s. com. 
productions such that $Xe ~ * ~ w  with w c { Z , Z ' }  e i f f  w = Z i X  'e, where i, 
eE No and i<<,e s (s is some f ixed integer >~i.) 

Proof Consider the case s--2. Define P to be the following set of 
productions: 



108 DUNG T. HUYNH 

(1) $ ~ A 1 , A 1 X ~ A 1 Z X ' I A I X ' , A I ~ ,  

(2) $ ~ A2, A 2 X ~  A3X2X3, A3X--~ A3X1X2, A3 ~ C, 

(3) Productions for CX~-xx~ ~ *  DZiX'le-lx'.2e, i<~e(e - 1). 

(4) D ~ , X ' ~ - - ,  Z~, X3~--, Z~ ,X '~- - ,  X'~. 

From Lemma 1.2 it follows that productions for (3) can be constructed. 
Now, (1) implies that $X ~ =~*~ZW'", i<~e. Productions in (2) generate 
two copies for the arguments for the multiplication performed by (3). Thus 
with (2), (3), and (4) we have that S x e ~ * ~ W  with w e { Z , X ' }  e iff 
w = ¢SZ;X '~, where e ~< i ~< e 2. Thus, P weakly computes the monomial U 2. A 
generalization for arbitrary s is straightforward. | 

The next lemma shows how we can weakly compute the sum of two 
integers by c.s. com. productions. 

LEMMA 1.4. Let 
bols. Further let X', 
com. productions such that $ X e Y r ~ * ~ w  with w 6 { Z , X ' , Y ' }  e 
w = Z i x ' e y  'f, where i, e, f e  ~o and i <~ e + f  

Proof Define P to be the following set of productions 

$ ~ B, XB ~ X'A, A ~ ZB, YB ~ Y'A, B ~ ~. 

Clearly, these are c.s. com. productions and it holds that $X~Y f ~ *  ~w with 
w E { Z , X ' ,  y , } e  iff w~Z;X ,  ey, f, where i, e, f E N o ,  and i<~e+f  | 

We now show how monomials can be weakly computed by c.s. com. 
productions. 

X, Y, Z be some symbols and $, ~ be two special sym- 
Y' be some other symbols. Then there is a set P of  e.s. 

iff 

LEMMA 1.5. Let M(U1 ..... U,) be a monomial. Let X1 ..... X,  be some 
symbols and $, ~ be two special symbols. Further let Z, X' 1,..., X'n be some 
other symbols. Then there is a set P of  c.s. com. productions s.t. 
$X~' ye, ~ , ~,~, iff  w ~ZiX'I el ,e, . . . .  • " X ,  , where i, e l , . . . , e , ~ o  and 

~x  n p ~ r v  

i ~ M(el ..... e,). 

Proof We apply Lemmas 1.2 and 1.3. By Lemma 1.3 we see that US.; 
can be weakly computed by c.s. com. productions. To weakly compute 
M(U1 ..... Un)= U]'"" U s" we apply Lemma 1.2, where the inputs are the 

Sl  Sn outputs by the weak computation of U1 .... , U n . 
Consider, for simplicity, U~ ~ U~ 2, s~, s2 >~ 1. By Lemma 1.3 there are two 

sets, say P1, P2, of c.s. com. productions such that 

s'x  
P I  
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and 

P2 

where i ~< e sl and j ~<fs2 and the symbols are appropriately chosen. We con- 
sider two cases. 

Case 1. Either e ~< 1 orf~< 1. W.l.o.g. let e ~< 1. We can construct a set Po 
of c.s. com. productions that perform the following task: (i) if e = 0 then 
SX{z:~:c~X2 f, (ii) if e = l  then SX{=r~*~ZJX2 f, where j<~f~2 and f~>l.  
Other subcases can be treated in a similar way. 

Case 2. Both e and f are /> 2. This can be tested by the production 
SX~IX~2 ~ $'X~IX~2. We want to obtain 

P3 

such that k 4/.J for some set P3 of c.s. corn productions. 
Observe that using the techniques in previous lemmas we can construct a 

set P3 of c.s. com. productions that perform the following task: 

(1) either @Z~Z{ ~ *  ~Z ~+j, 

(2) or if i~>3 andj~>3,  then perform 

L ' l  z~ 2 za 1 ~'x2 ~ 

@,7 , , -27 , J -~  * #ZtB~-2B{-1, where l<<.(i-2)(j-1); L ' l  ~ 2  

# B{ I ~ # ,C~j- 1) +m where m ~<j -  2; 

# 'B~ 2C(2S 1)+md2dl . l l~  2 ~=~ ~Z i+j+m 

Note that by (2) we have @Z]Z~ =>* ~Z k, where i+j<~k<~ij. On the 
other hand, since i,j can be any value ~<e sl and ~<fs2, respectively, it 
follows that by P1, P2, P3 in Case 2 and Po in Case 1, U~' U~ 2 can be weakly 
computed. 

The above construction can be generalized for arbitrary monomial. This 
completes the proof of Lemma 1.5. | 

COROLLARY 1.6. Lemma 1.5 holds if M(Ua ..... Un) is replaced by 
eM( U1,..., Un), where c >~ 1 is any integer. 
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Proof Straightforward. 1 

We are now able to show that polynomials in No[Ul,..., Un] can be 
weakly computed by c.s. com. grammars. 

PROPOSITION 1.7. Let Q(UI,..., U,) be a polynomial in N0[UI,..., Un]. 
Then there is a c .s .  com. grammar G c with terminal alphabet 
T= {~, tl,..., tn, t} such that 

~t~ 1"'" ta°tb6L(G c) iff (al ..... an, b)~G(Q). 

Proof From Corollary 1.6 and Lemma 1.4, G c can be easily construc- 
ted. The details are left to the reader. I 

THEOREM 1.8. INEQ-CSCG is undecidable. 

Proof. From Lemma 1.1 and Proposition 1.7 it follows that the 
C5 c c c problem of determining whether L(G~) _ L(G2), where GI, G 2 are c.s. com. 

grammars, is undecidable, since PGIP is recursively reducible to it. 
Observe that 

L(G~)~_L(G~) iff L(G~)=L(G~)uL(G~).  

Thus, INEQ-CSCG is undecidable. ] 

2. THE ][NEQUIVALENCE PROBLEMS FOR CONTEXT-FREE 

COMMUTATIVE GRAMMARS 

In this section we study the complexity of various versions of the 
inequivalence problems for context-free (c.f.) commutative grammars. The 
main result is that the general inequivalence problem for this grammar 
class is decidable in nondeterministic exponential time. 

Let INEQ-CFCG (FINEQ-CFCG) denote the (finite) inequivalence 
problem for c.f. com. grammars. From the result that the uniform word 
problem for c.f. com. grammars (UWP-CFCG) is NP-complete we will see 
later that it is not hard to show that INEQ-CFCG is in the second level 
(X~) of the exponential time hierarchy. To show that INEQ-CFCG is in 
nondeterministic exponential time (X~) we need some technical results con- 
cerning commutative images of c.f. languages, which are semilinear sets by 
Parikh theorem (cf. [2, p. 146]). 

In the following let G c = (N, T, S, pc) be a c.f. com. grammar. Further let 
G be a reduced c.f. grammar which induces G C (cf. [6, Sect. 1]), i.e., 
~(L(G)) = L(GC), where ~k is the Parikh mapping from T* onto T e, the 
free com. monoid generated by T. 
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Construction of a Representation for ¢(L(G))  

Following [1]  we define semilinear sets in T e as follows: 
For a finite subset W e  T e let W e denote the submonoid generated by 

W in T e. A subset L _ T e is called linear (lin.) if L -- c + W e for some 
c ~ T e and some finite subset W c T ¢. A subset SL c T e is semilinear (s.1. 
for short) if it is a finite union of lin. sets. 

If  S L = ( c l + W ~ ) ~ . . .  u(cm+W~),  then {(c~, W~),...,(cm, Wm)} is 
called a representation of SL; ci's (Wi's) are constants (period systems). 

A representation of L(G c) = ¢(L(G))  as a s.1. set may be obtained from 
the proof  of Parikh theorem as follows (cf. [2, p. 146]): 

Let V be any subset of N u  T containing T and S. Let s be card(V). Con- 
sider the set Lv of all words w in L(G) such that in some generation tree of 
S ~ *  w the nonterminals which are node labels are exactly V~T. Since 
L(G) is the union of all such Lv and there are only exponentially many 
such Lv, in order to obtain a representation for ¢(L(G)), it suffices to 
show how to obtain a representation for ¢(Lv).  

Let V be fixed and consider some nonterminal X e  V. Define two sets E 
and Dx as follows: A word w is in Dx iff the following two conditions are 
satisfied: 

(1) w contains exactly one occurrence of X and no other nonter- 
minals. 

(2) There is a generation tree o f X ~ *  w whose node labels belong to 
V such that none of them occurs more than s + 2 times in any path of the 
tree. 

A word w ~ T* is in E iff the following condition holds: 
There is a derivation tree of S ~ *  w whose interior node labels are 

exactly V~T and none of them occurs more than s + 2 times in any path of 
the tree. 

Let G denote ¢(E)  and H denote ¢(Ux Dx). (Note that for w e Dx, ~(w) 
is defined to be ¢(w'),  where w' is obtained from w by erasing X in w.) 
Then we have 

O(Lv)=G+ H e. (*) 

Taking the union of sets of the form G + H e,  where the union runs over 
all Vc_Nu T satisfying the above requirement, we obtain a s.1. set 
representation for ¢ ( L ( G ) ) =  L(GC). 

Complexity of FINEQ- CFCG 

From the above construction we can easily show that F I N E Q - C F C G  is 
XP-complete. 

643/66/1-2-8 



112 DUNG T. HUYNH 

PROPOSITION 2.1. FINEQ-CFCG is in Z p. 

Proof Let G c be a c.f. com. grammar. If L(G c) is finite, then in the s,1. 
set representation of L(G c) constructed above, all period systems are 
empty. The constants, encoded as in [6, Sect. 1 ], have sizes polynomially 
bounded in terms of II G c IL, the size of G c, since derivation trees for words in 
E have depths that are linearly bounded in the number of variables of G c. 
Therefore the following fact holds. 

Fact. Let G~ and G~ be two c.f. com. grammars generating finite 
languages. Then L(G~)~ L(G~) iff there is some com. word w in A(G~, G~) 
:= [L(GC~)\L(G~) ] w [L(G~)\L(G~)] such that 

llwll ~ Q(IIG~ II + 116211), 

where Q is a fixed polynomial. | 

Since U W P - C F C G  (the uniform word problem) is in NP, it is 
straightforward to see that F INEQ-CFCG is in ZP: 

- -  Guess a polynomially bounded com. word w. 

- -  Verify that w~A(G~, G~). 

This completes the proof of Proposition 2.1. | 

To show that F INEQ-CFCG is ZP-hard we reduce the inequivalence 
problem for integer expressions, denoted by INEQ-N, to FINEQ-CFCG.  
Since INEQ-N is known to be ZP-complete (cf. [12]), it will follow that 
F INEQ-CFCG is ZP-hard. 

Integer expressions are well-formed parenthesized expressions involving 
nonnegative integer constants written in binary notation and two binary 
operations: addition ( + )  and union (w). Integer expressions defined sub- 
sets of nonnegative integers recursively as follows: L ( a ) =  {a}, a ~ 0 ;  
L((EIUE))=L(E1)wL(E2) and L((EI+E2)) = L(E1)+L(E2) = 
{ x + y l x s L ( E 1 )  and y~L(E2)}. 

PROPOSITION 2.2. FINEQ-CFCG is Z~-hard. 

Proof. Since derivations in a c.f. com. grammar with a single-letter ter- 
minal alphabet can simulate (binary) addition and union, the log-space 
reduction of INEQ-N to F INEQ-CFCG is straightforward. Thus FINEQ- 
CFCG is Z~-hard. | 

COROLLARY 2.3. INEQ-CFCG is Z~-hard. 

Proof. Obvious. | 
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From Propositions 2.1 and 2.2 we obtain 

THEOREM 2.4. FINEQ-CFCG is S~-complete. 

Remark. Note that the finite inequivalence problem for (noncom- 
mutative) c.f. grammars is complete for nondeterministic exponential time 3 
(NEXPTIME) under log-space reduction, since it is obviously in 
NEXPTIME and it is NEXPTIME-hard by Theorem 4.5 in [5]. 

Before showing that INEQ-CFCG is in NEXPTIME we make some 
remarks. In Lemma 2.9 below, we will show that two c.f. com. grammars 
are inequivalent iff there is an exponentially bounded com. word witnessing 
that inequivalence. Hence, it follows that INEQ-CFCG is in _r~, the second 
level of the exponential hierarchy, since UWP-CFCG is in NP. To get the 
NEXPTIME upper bound we need to show that if the witnessing word is 
exponentially bounded, then the test for membership can be done deter- 
ministically. We need some technical results about the s.1. set representation 
of L(GC). 

Some Observations about the S.L. Set Representation of L(G c) 

In the following we provide some technical results for proving the 
NEXPTIME upper bound of INEQ-CFCG. Observe that the results 
derived in [6] cannot be applied to obtain a deterministic test for mem- 
bership, since a com. derivation word which is also of exponentially boun- 
ded size must be guessed in the test for membership. (This implies a 27[ 
upper bound.) 

LEMMA 2.5. In the representation of L(G") as a s.L set the constants and 
periods have sizes polynomially bounded in terms of [I GC JI. 

Proof Consider V and Lv in the construction above. Since the trees 
generating words in E and Dx, X~ II, have depths bounded by ( s+2)  2, 
s = Card(V) ~< Card(Nu T), the lemma follows. | 

From the construction above let us consider V ~ N w T ,  Lv, ¢(Lv), 
where G = (N, T, S, P) is the c.f. grammar inducing GO= (N, T, S, P"). We 
now show how to obtain from the representation (*) ¢ ( L v ) = G + H  e 
another representation of the form 

¢ (Lv)=  U e +  W e 

where the union runs over c ~ tP(Lv) with polynomiaUy bounded size and 
subsets W_= H with ~< k linearly independent periods, where k:= Card(T). 

3 N E X P T I M E  = Y ~  1 NTIME(cn*)  • 
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PROPOSITION 2.6. Let G = (N, T, S, P) be a c.f grammar inducing G c. 
Let V ~ N u  T such that V contains {S} and T. Then 

6 ( L v ) =  U c +  W ¢ 

where the union runs over c e ~9(Lv) with polynomially bounded size (in terms 
of IJ G c II) and subsets W__ H ( = ¢(U x~ z D x)) with ~< k( = Card(T)) linearly 
independent polynomialIy bounded periods. 

In the following, we proceed to show Proposition 2.6. This will be done 
via Lemmas 2.7 and 2.8. Obviously, we only need to show that g + H ¢, 
g ~ G, has a representation of the form 

g + H  e = U c +  W ¢ 

where the union runs over e ~ g + H e with polynomially bounded size and 
subsets W _  H with ~< k linearly independent periods. 

We need some technical notations. In the following two lemmas we may 
consider T e as ~ ,  since they are isomorphic. We also regard ~o k as subset 
of Qk, where Q is the set of rationals. Further Q + denotes the nonnegative 
rationals. C(H) denotes the cone generated by H: 

C(H):= f ~  rhh rh~Q+l .  
t . h ~ H  I J 

Let M(g, H) denote the set of lattice points in g+C(H) ,  i.e., 
M(g, H ) =  (g + C(H))~  ~k o. 

LEMMA 2.7. M(g, H) is a s,l. set with representation of the form 

M(g, H ) =  U F +  W e, 

where the union runs over subsets W~_ H of <~ k linearly independent periods 
and each element f ~ F has the form 

f = g +  ~ rihi, 0~<r i< l ,  
i = l  

with linearly independent vectors h 1 ,..., hn ~ H. 

Proof Let x e M(g, H). Since x e g + C(H), by Caratheodory's theorem 
for cones (cf. [13, p. 35]), there are n (~<k) linearly independent vectors 
hi ..... hn in H such that 

x = g +  ~ pihi, p i~Q+. 
i=1  
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This may be written as 

x = g +  ~ (pi-WpiJ)hi+ ~ WpiJhi. 
i = 1  i = 1  

Letting f be g + ZT= 1 (Pi -  LpiJ) hi, Lemma 2.7 follows. 

LEMMA 2.8. g + H e has a representation of  the form 

Uc+ W e 

where the union runs over c E g + H e with polynomially bounded sizes (in 
terms of  [JG c [[ ) and subsets W ~ H with <<, k linearly independent vectors. 

Proof Consider the intersection 

M(g, H) n (g + H e) = (UF+ W e ) n (g + H e) 

which is exactly (g+ He). It suffices to obtain a representation for 
( f +  W e) n (g + H ¢) with the desired property. 

Consider the minimal nonnegative integer solutions set of the system of 
equations with integer coefficients 

gT + HX v =fT + WyT, 

where the vectors in H and W are written as column vectors and x v, yV are 
appropriate vectors of unknowns. Let Sol denote this set. Define 

C=  { f +  Wy[3x: (x, y) E Sol}. 

Then from Theorem 5.6.1, [2, p. 180], we have 

( f +  W e )n  ( g + H  ¢ ) =  C+  W ®. 

We now show that c ~ C has polynomially bounded size (in terms of 
I]GC[[). The above equation system has rank l~< k. Let m be the number of 
unknowns. Then the coefficients of vectors in Sol is bounded by 
(m + 1 ) x N, where N is the maximum of the absolute values of all l × l sub- 
determinants of the system. (This is proved in [10] by Gathen and 
Sieveking.) A simple calculation shows that every c EC has size 
polynomially bounded in terms of [[GC[[. This completes the proof of Lem- 
ma 2.8. | 

From Lemma 2.8, Proposition 2.6 follows. 

INEQ-CFCG is in N E X P T I M E  

We are now able to show that INEQ-CFCG is in NEXPTIME. We need 
a lemma. 
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LEMMA 2.9. Let G~ and G~ be two c.f. com. grammars. Then 
L(G~) ~ L(G~) iff  there is a com. word w ~ fl(G~l, G~) such that 

Ilwll ~< 2 Q~ILG~II + llc~ll) 

for some f ixed polynomial Q. 

Proof We outline a proof sketch and omit the details. The idea of the 
proof is as follows. We apply Parikh theorem and the result about s.1. sets 
obtained in I-9] (or 1-8-1). First consider the s.1. set representations of L(G~) 
and L(G~) obtained by the construction at the beginning: From Lemma 2.5 
it follows that these representations have sizes that are exponentially boun- 
ded in terms of II aN II and II G~ II, respectively. Let RP~ and RP 2 denote 
these representations. 

Now, applying the main lemma in [9] we have that the symmetric dif- 
ference A(G~, G'2) is not empty iff there is some com. word w~A(G~, G~) 
such that 

II w [I <~ O l(size(RP1 ) + size(RP2)). 

Thus in terms of 116 4 II + IIa~ II the size of w is exponentially bounded, and 
Lemma 2.9 follows. | 

THEOREM 2.10. INEQ-CFCG is in NEXPTIME.  

Proof. We apply Proposition 2.6 and Lemma 2.9. Consider the follow- 
ing nondeterministic algorithm. Let G~' and G~ be two c.f. com. grammars 
in the input: 

- -  Guess an exponentially bounded com. word w. 

- -  Check that w e A(G~, Gg). 

Applying Proposition 2.6 we now show how the test w ~A(G~I, G~) can 
be carried out deterministically. We need only to show this for the test 
w ~ L(G~). Let k = Card(T). Consider the following algorithm: 

for all V c__ N u T such that S E V and T c_ V do 
for all com. word c e T ® which is polynomiaUy bounded in terms 

of IIGCll do 
begin check that c e 0(Lv);  

for all subsets W =  {hi ..... h,}, n ~ k, of linearly 
independent periods from 0(Ux~ v Dx) do 
i f  W = C + ~_n= 1 2ihi,  ~i ~ No then accept 

end. 

We have to show that if w is exponentially bounded in terms of IIG~ II, 
then the above algorithm is in deterministic exponential time (in terms of 

II a~ II ). 
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Since flc[I is polynomially bounded in terms of IIG~/[, the test c e q/(Lv) 
can be done nondeterministically in time polynomial in IIG~II + Ilcll (and 
hence in [[a~ J[ ), in view of the fact that UWP-CFCG is in NP. Thus this 
test can be done deterministically in exponential time. 

The innermost for-loop can be carried out in deterministic exponential 
time, since there are at most an exponential number of subsets of ~<k 
periods and since verifying w = c + ZT= 1 2ihi can be done deterministically 
in time polynomial in Ilwll + ][hl H + "'" + Ilhn II, and hence exponential in 
]IG~ II. 

Thus we conclude that w eA(G~, G~) can be done deterministically in 
exponential time. Hence 1NEQ-CFCG ~ NEXPTIME. This completes the 
proof of Theorem 2.10. | 

Remark. Unfortunately, there is still a gap between the upper and 
lower bounds for INEQ-CFCG. It seems that Lemma 2.9 can be 
strengthened so that the witnessing com. word has a polynomially bounded 
size. (In that case, such a proof would require a different technique.) This 
would imply that INEQ-CFCG is in SP and hence SP-complete. Such a 
result is interesting, since a Z~ upper bound for INEQ-CFCG also provides 
the XP upper bounds for the inequivalence problems for s.1. sets and con- 
text-free grammars with l-letter terminal alphabet (the reduction of s.1. set 
inequivalence to c.f. com. grammar inequivalence is straightforward and the 
other reduction is trivial), whose proofs employ completely different techni- 
ques and are non-trivial (cf. [-7, 9]). 

OPEN PROBLEM. Is INEQ-CFCG in XP? 

Remark. Notice that INEQ-CFCG is closely related to the com- 
mutative inequivalence of (noncommutative) c.f. grammars. From the 
results in [7] it is known that the latter is XP-hard, whereas completeness 
is (to the author's knowledge) an open question. In the following we will 
see that a SP upper bound for one problem implies such an upper bound 
for the other. 

The Case of Single Letter Terminal Alphabet CFCGs 

Let INEQ-CFCG-{0) (FINEQ-CFCG-{0}) denote INEQ-CFCG 
(FINEQ-CFCG) with the restriction that the terminal alphabets are 
singleton sets. 

THEOREM 2.11. FINEQ-CFCG-{O} is XP-complete. 

Proof Notice that the reduction in Proposition 2.2 outputs grammars 
with single-letter terminal alphabets. | 
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THEOREM 2.12. INEQ-CFCG-{O} is SP-complete. 

Proof We only need to show that INEQ-CFCG-{0} is in 22p. To this 
end we apply the result in [71 that deciding inequivalence of c.f. grammars 
with l-letter terminal alphabet is ZP-complete. We have to show that a c.f. 
com. production can be simulated by only a polynomial number of c.f. 
productions. This can be accomplished as follows. Consider a com. produc- 
tion of the form X ~  ~ q " .  Y2mm, where el ..... em ~ No. Define the following 
c.f. productions: 

X ~  Al,o. • • Am,o 
for each j = 1 ..... rn do 

begin 
for each l = 0,..., ej - 1 do 

define Aj, t ~ Aj, t+ iAj, l+ 1 ; 
define Aj, ej-~ Yj 

end 

Obviously this set of c.f. productions simulates the com. production 
above. From this observation it can easily be seen that INEQ-CFCG-{0} 
is log-space reducible to the inequivalence problem for c.f. grammars with 
l-letter terminal alphabet. Since the latter is in X~, it follows that INEQ- 
CFCG-{0} is in XP, too. Hence it is Z~-complete. | 

3. THE INEQUIVALENCE PROBLEMS FOR REGULAR COMMUTATIVE GRAMMARS 
AND RATIONAL EXPRESSIONS IN COMMUTATIVE MONOIDS 

In this section we classify the complexity of the inequivalence problems 
for regular (reg.) com. grammars (INEQ-RCG) and rational expressions in 
com. monoids (cf. [6] for definitions). The latter problem is denoted by 
INEQ-RE( V, k) if the com. monoid is finitely generated by V and k is the 
upper bound for the star heights of the expressions, and by INEQ-RE(V) if 
there is no restriction on the star heights. 

THEOREM 3.1. For any f ixed finite alphabet V and nonnegative integer k, 
INEQ-RE( V, k) is Z~-complete. 

Proof We first show that this problem is ZP-hard. To this end consider 
the restricted case that V= {0} is a singleton set and k = 0 .  Obviously, 
rational expressions in {0} e without stars can simulate integer expressions. 
Thus, INEQ-RE({0}, 0) is ZP-hard. 

We now show that INEQ-RE(V, k) is in Z~ for any fixed k and finite 
alphabet V. The idea is to show that rational expressions with bounded 
star heights have s.1. set representations with polynomially bounded sizes. 
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This can be done recursively as follows. Let e be a rational expression in 
V e. Let RP(e) be the s.l. set representation for e which is to be construc- 
ted: 

(1) I f ~ = w , w ~ V  e, then R P ( ~ ) = { ( w , ~ ) }  

(2) If ~ = (~1 k-) 0~2)  , then RP(~) = RP(~I) w RP(~2) 

(3) ~ = (~1 '~2)- Let RP(~i) = {(cl, W1) ..... (cm, Win)} and 

RP(~2)= {(d~, U1)  .... (dn, Un) }. 

Since ~ defines the set 

U (c,+ w~)+ (dj+ u?) 
i.j 

it suffices to show how to obtain a representation for 

(e,+ w~)+ (aj+ ~:?). 

This can be represented by 

(~, + dj) + ( w , ~  uj) ®. 

(4) ~ = (~1)*, where RP(~I)= {(cl, W1),..., (cm, Wm)). 
Since ~ defines the set 

which is 

[(c1+ Wle)U '"  U(Cm+ W2)]* 

(C1-~- ml~)@ --~ ... ~- (Cm- ~ m@m ) G, 

we only need, by induction and (3), to consider the case m = 1. Obviously, 
(c1 + W~) e defines the set 

{~} ~ [cl + ({cl) u w,)~]. 

Now, if k is fixed, then every rational expression ~ has a s.1. set represen- 
tation RP(~) whose size is polynomially bounded in II~H. (Notice that this 
fact, according to our argument, does not hold if k is not fixed.) Further 
RP(~) can be computed deterministically in polynomial time. Thus INEQ- 
RE(V, k) is in S p, since the inequivalence problem for s.1. sets is in Sp (cf. 
[8, and 9]). This completes the proof of Theorem 3.1. | 

COROLLARY 3.2. INEQ- RE( { O } , k) is SP-complete for any fixed k. 

Proof Follows from the above proof. | 
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Since INEQ-RCG and INEQ-RE are polynomially related, we obtain 
from the results in previous section. 

THEOREM 3.3. (1) INEQ-RE(V) and INEQ-RCG are in NEXPTIME, 

(2) INEQ-RE(V) and INEQ-RCG are ZP-hard, 

(3) INEQ-RE({0}) and INEQ-RCG-{0} is XP-compIete, 

(4) FINEQ-RE({0}) and FINEQ-RCG-{0} is Z~-eomplete, 

where (4) is the finite version of (3). 

4. CONCLUDING REMARKS 

In this paper we have investigated the complexity of the equivalence 
problems for various classes of commutative grammars. The results are 
summarized in Table I. For type 0 com. grammars the inequivalence 
problem is recursively enumerable (r.e.), since it is now known that the 
uniform word problem is decidable, as shown recently by Mayr (cf. [6]). 
From the results of Van Leeuwen [11] and Hopcroft and Pansiot [4] it 
follows that this inequivalence problem for type 0 com. grammars is 
decidable if the number of symbols is bounded by 5. It would be interesting 
to extend this bound. Specifically, we do not know whether this problem is 
still decidable when the number of symbols is bounded. 

TABLE I 

Inequivalence problem Upper bound Lower bound 

Type 0 and c.s. com. grammars r.e. undecidable 

Context-free and regular General  NEXPTIME Xe2-hard 
commutative grammars Finite S~ Complete 

One terminal X~ Complete 
letter 

Rational expressions 

General NEXPTIME Z~-hard 
Bounded star Z'~ Complete 

heights 
Finite _r~ Complete 

One terminal Z~ Complete 
letter 
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