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1. 

Let dz (HEN= {l, 2, 3, . ..} 

INTRODUCTION 

) be the class of functions of the form: 

cc 
f(z)=z+ c akzk (nEM)> (1.1) 

k=n+ 1 
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which are analytic in the open unit disk & = (z: II/ < 1 ). Then a function 
f(z) in LC$ is said to be in the class .Y’,T if and only if 

Re C(z) 
i-1 .f(z) ‘O 

(z E 42). (1.2) 

On the other hand, a functionf(z) in -c4, is said to be in the class Jt/n if and 
only if 

Re{l +%I>0 (ZE@)). (1.3) 

It is easily observed that 

f(z) E xn 0 zf’(z) E 9; (Vn E Jv), (1.4) 

and that 9: and & are the familiar classes of starlike and convex 
functions. Thus, using the corresponding results of Silverman [3], we 
immediately have the following lemmas which we shall require in our 
present investigation of the classes Y,* and %jZ (Vn EM). 

LEMMA 1. If the function f(z) defined by ( 1.1) satisfies 

‘f k la,J < 1 (n~.$-), 
k=n+l 

then f (z) E 9’:. The equality in (1.5) is attained by the function 

Zk 

gl(zl=z+k (k>n+ l;nEJ‘;zE%). 

LEMMA 2. If the function f(z) defined by ( 1.1) satisfies 

then f (z) E X,. The equality in (1.7) is attained by the &nction 

g,(z) = z + $ (k > n + 1; n E .,4‘; z E %). 

(1.5) 

(1.6) 

(1.7) 

(1.8) 
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2. DEFINITIONS AND ELEMENTARY PROPERTIES OF 
THE FRACTIONAL INTEGRAL OPERATORS 

Let F(a, 6; c; z) be the Gauss hypergeometric function defined, for z E “%, 
by (cf., e.g., C4, p. 181) 

= (ah(b), k F(a, b; c; z) = C ___ z 
k=O (C)k(l)k ’ 

(2.1) 

where (A), denotes the Pochhammer symbol defined by 

if k = 0, 

A(%+ l)...(A+k- l), VkEJf. (2.2) 

Making use of the Gauss hypergeometric function (2.1), Srivastava, 
Saigo, and Owa [6] have introduced the fractional integral operators Z;;$q 
and J:I!,~ defined below. 

DEFINITION 1. For real CI > 0, B, and q, the fractional integral operator 
I:;!” is defined by 

where f(z) is an analytic function in a simply-connected region of the 
z-plane containing the origin, with the order 

f(z) = m4”)> z --t 0, 

where 

s>max(O,p-rj} - 1, 

and the multiplicity of (z - 4’)” ~ ’ is removed by requiring log(z - i) to be 
real when z-c >O. 

The operator ZE;Fq is a generalization of the fractional integral operator 
Z$cq introduced by Saigo [2] and studied subsequently by Srivastava and 
&go [S]. 

DEFINITION 2. Under the hypotheses of Definition 1, let 

or > 0, min{cc+q, -fl+q, -/I}> -2, and 
B(a + v) 

n>- -2 (rlEJv). 
ci 

(2.4) 
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Then the fractional integral operator J~:!q is defined by 

(2.5) 

In order to derive our results, we shall also need the following lemma 
due to Srivastava, Saigo, and Owa [6]. 

LEMMA 3. Let u > 0, /?, and ye be real, and let K > B - 9 - 1. Then 

p.f.)1y = r(K+ l)f(k--b+‘l+ 1) IK+,j 
0.L 

~(K-,6+l)~(K+c1+~+1)c ' 
(2.6) 

Now we prove 

THEOREM 1. Under the constraints (2.4), if the function f(z) defined by 
(1.1) satisfies 

f, k I4 6 
(2 - PM2 + u + rl), 
(2-P+rlL(l)n+I 

(n E .N), (2.7) 
k=n+l 

then J@“f (z) belongs to the class Y,* . 

Proof By virtue of Lemma 3 and Definition 2, we have 

J$y(z) = z + c @(k)akzk, 
k=,z+ I 

where, for convenience, 

(2.8 1 

@(k) = (2-P+rtL,(1), 
wBL1(2+~+rlLI 

(k 3 n + 1; n E ,t’). (2.9) 

Noting that Q(k) is a non-increasing function of k, we have 

(2-P+rMlL+, 
O<~(k)g~(n+1)=(2-P),(2+u+?), (n E N). (2.10) 

It follows from (2.7) and (2.10) that 

f k@(k) iakl <@(n+ 1) 5 k Ia,1 d 1. (2.11) 
k=n+ 1 k=tl+ I 

Hence, by Lemma 1, we conclude that JG$qf (z) E Y,*, which proves 
Theorem 1. 
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Remark 1. As a function f(z) satisfying (2.7), we can take the function 

g3( z )=z+(2-8)k-,(2+1+l?)k~, Zk 

W-B+rlL,(l), 
@an+ l;n~,~;z~q). (2.12) 

Our next result (Theorem 2 below), characterizing the class XH, can be 
proven similarly. 

THEOREM 2. Under the constraints (2.4), if the function f (z) defined by 
( 1.1) satisfies 

f k2 I4 6 (2 - PLP + fx + rl)n 
(2-B+rMlL+I 

(nEJtr), (2.13) 
k=n+ 1 

then J~:~,qf(z) belongs to the class -X,. 

Remark 2. As a functionf(z) satisfying (2.13), we can take the function 

g4(z~=Z+(2-Pl)k~L(2+GI+~)k- 1 Zk 

k2(2-P+‘I)k-,(1)k 

(k>n+l;nEN;zEUZ(). (2.14) 

3. CHARACTERIZATION THEOREMS INVOLVING THE 
HADAMARD PRODUCT OR CONVOLUTION 

Let the functions hi(z) (j = 1,2) in s9, be given by 

f,(z)=z+ f u,,kZk (n E N). 
k=nf I 

(3.1) 

We define the Hadamardproduct or convolution (f, * f2)(z) of the functions 
fib) andf2W by 

(fi *fzb)=z+ : qka2,kZ 
k 

(r2E.N). (3.2) 
k=n+l 

In order to prove our next characterization theorem, we recall here the 
following result due to Ruscheweyh and Sheil-Small [ 11. 

LEMMA 4. Let d(z) and g(z) be analytic in % and satisfy the condition: 

d(O) = g(0) = 0. 

Suppose also that 

Q(r)*{~“(Z)}fO (ZEG{O}) (3.3) 
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,for p and 0 on the unit circle. Then, ,fbr u ,furzction F(r) anulJtic in %/ and 
sati?fying the inequality%: 

Re{F(z)) >O (z E ‘//), 
(3.4) 

Applying Lemma 4, we shall prove 

THEOREM 3. In addition to the constraints (2.4), suppose that the 
function f(z) defined by (1.1) is in the class <V,T and satisfies 

h(z) * E’(z)}+0 (zE%- {O}) 

for p and CJ on the unit circle, where 

% 
h(z)=z+ 1 G-P+rL,(l)!f 

kc,,+, Q-P), ,P+a+‘1L I Zk 
(nEN). (3.6) 

Then Ji$yf(z) is also in the class .Y’,T. 

Proof: Notice from (2.8) and (3.6) that 

J;$“f(z)=z+ i G-B+YIL,(lL 

k=,,+, O-Bh 1(2+~+‘1LI uk 
zk = (h *f)(z), (3.7) 

which readily yields 

z(J;:!~“fW=z(h *f)‘(z)= (h *(zf’))(z) 
J$“f (z) (h *f)(z) (h *f)(z) ’ 

(3.8) 

Therefore, setting d(z) = h(z), g(z) =f (z), and F(z) = zf ‘(z)/f (z) in 
Lemma 4, we find that 

(3.9) 

which implies that J$$qf (z) E Y,*. 

Further, we have 

THEOREM 4. Under the constraints (2.4), if the function f (z) defined by 
(1.1) is in the class Xn and if 

(ZES- {O}) (3.10) 
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for p and o on the unit circle, where h(z) is given by (3.6), then Jt$“f(z) is 
also in the class Jr,. 

Proof. Using (1.4) and Theorem 3, we observe that 

f(z) E xn 0 zf’(z) E 9; = J;;$“zf’(z) E Yn* 

- (h * zf’)(z) E 9; o z(h *f)‘(z) E 9’; 

* (h *.f)(z) E K 0 J;$“f(z) E -x,, 

which completes the proof of Theorem 4. 

The proof of our next result (Theorem 5 below) is much akin to that of 
Theorem 3; indeed, it is based upon 

LEMMA 5 (Ruscheweyh and Sheil-Small [ 11). Let d(z) be conuex and 
let g(z) be starlike in %. Then, for each function F(z) analytic in % and 
satisfying the inequality: 

Re{F(z)} >O (ZE@), 

Re {(,“,::)ci;)}>O (zE%)). 
(3.11) 

THEOREM 5. Under the constraints (2.4), 

f(Z)E.~Pn* and h(z) E Z, * J;:~"f(z,Ec4p;, 

where h(z) is given by (3.6). 

Finally, we have 

THEOREM 6. Under the constraints (2.4), 

f(Z)EX and h(z) E X =P JgJf(z, E xn, 

where h(z) is given by (3.6). 

Remark 3. The function h(z) defined by (3.6) can be written in terms 
of the Clausenian hypergeometric series XF, in the form (cf. [4, p. 191): 

(2 - B + r1),(2), 
h(z)=z+ (2-P),(2+a+q),, 

xz “+13Fz(l,2-B+n+n,2+n;2-/I+n,2+cr+n+n;z), (3.12) 

which converges absolutely in %. In fact, this 3F2 series in (3.12) converges 
also for z = 1 when LX > 1, that is, when the order of the fractional 

409.140,2-IO 
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integration is greater than one. However, it does not seem to be easy to 
determine the precise constraints on the parameters x, j?, and q under 
which /I(Z) would satisfy the hypotheses of Theorems 3 to 6. 
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