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It is well known that a continuous function f : Zp � Qp can be expanded by
Mahler's basis: f (x)=��

n=0 an( x
n), with an � 0. Amice (Bull. Soc. Math. France 92

(1964), 117�180) has established conditions on the coefficients an for the function
f to be locally analytic, as well as more general results when Zp is replaced by some
compact subset of a local field. We study the function field case in this paper. The
function field analogue of Mahler's basis is the Carlitz polynomials, and the corre-
sponding result for continuous functions has already been established by Wagner
(Acta Arith. 17 (1971), 389�406). We show that the conditions for a continuous
function to be locally analytic in the function field case are completely similar to the
Qp case. An application to using integral calculus to analytically continue charac-
teristic p-valued L-series is briefly mentioned at the end of the paper. � 1998

Academic Press

1. INTRODUCTION

Ultra-metric analysis consists of the p-adic analysis over number fields
and the analysis of function fields of characteristic p. Since both the p-adic
number fields and the function fields of characteristic p are equipped with
similar non-archimedean absolute values, it is natural to expect that they
have similar properties in analysis. For a detailed study on p-adic analysis,
see [6].

In this paper, p is a fixed prime number and r is a power of p.
Let L denote a local field with a discrete valuation, O its valuation ring,

M=?O its maximal ideal, and F=O�M its residue field of q elements,
where q is a power of p (later on q will also be a power of r). The valuation
v of L is normalized such that v(?)=1, and the absolute value is denoted
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|?|. In applications we will actually only consider the case where L is either
Qp or the completion of Fr(U) at some finite place v.

An L-Banach space is a complete normed L-vector space E with the
norm &?& satisfying the ultra-metric inequality:

&x+ y&�max(&x&, &y&) for x, y # E.

We will only consider separable Banach spaces here, i.e., spaces with a
countable subset generating a dense subspace. For example, let X be any
compact subset of L, denote C(X, L) the space of continuous functions
from X to L and equip C(X, L) with the sup norm, & f &=supx # X[ | f (x)|]
for f # C(X, L). Then C(X, L) is such a space according to Kaplansky's
theorem (6, Theorem 43.3].

Definition 1. Let E be an L-Banach space. A sequence [en]n�0 in E
is an orthonormal basis for E if for any element x # E we have:

(1) x can be uniquely written as x=��
n=0 *nen with *n # L, and *n � 0;

(2) &x&=supn�0[ |*n |].

For L=Qp , consider the Banach space C(Zp , Qp). Then the binomial
polynomials ( x

n) map Zp into Zp as they are obviously continuous and the
p-adically dense positive integers are mapped to p-adic integers. K. Mahler
[5] established the following theorem.

Theorem 1. The sequence of binomial polynomials [( x
n)]n�0 is an ortho-

normal basis of C(Zp , Qp). Moreover, let f # C(Zp , Qp) and write it as
f (x)=��

n=0 an( x
n). Then the coefficients an can be recovered as

an= :
n

k=0

(&1)k \n
k+ f (n&k)= :

n

k=0

(&1)n&k \n
k+ f (k).

Now we consider the corresponding Banach spaces of continuous
functions over function fields. We follow the notations of Chapter 3 and
Section 8.22 of [3]. Let Fr be the finite field of r elements, and for i a non-
negative integer, set

A=Fr[U] and k=F(U) the quotient field of A,

[i]=U r i
&U,

Li={1
[i][i&1] } } } [1]

if i=0,
if i�1,

Di={1
[i][i&1]r } } } [1]r i & 1

if i=0,
if i�1,
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ed (x)={
x if d=0,

`
deg (m)<d

(x&m)= :
d

i=0

(&1)d&i xr i Dd

Di Lr i

d&i

if d is a positive integer.

Let n be a non-negative integer which we write r-adically as n=n0+n1 r
+ } } } +nsrs, with 0�ni<r. Then the Carlitz polynomials are defined as

Gn(x)= `
s

i=0
\ei (x)

Di +
ni

, and

G$n(x)= `
s

i=0

G$ni r
i where

G$lr i (x)={\
ei (x)
D i +

l

\ei (x)
Di +

l

&1

if 0�l<r&1,

if l=r&1.

(N.B.: the polynomials G$n(x) are not the derivatives of Gn(x).) The polyno-
mials Gn(x) and G$n(x) are of degree n, and behave like binomial polyno-
mials, see [2]. (Notice the difference between the polynomials Gn(x) and
G$n(x) defined here and those of Carlitz's original paper [2], as we divide
by Di and Carlitz does not.) In [2], the next result is proved.

Proposition 1. Both Gn(x) and G$n(x) map A to itself.

Let v be an arbitrary monic prime polynomial of A, hence it corresponds
to a finite place of k, which we still denote by v; the associated valuation
will be denoted by a non-bold v. The completion of A and k at v are
denoted by Av and kv , respectively; we will assume that v(?)=1 for any
parameter ? of kv . Then we see that the space C(Av , kv ) of continuous
functions from Av to kv is a kv -Banach space with the sup norm. An
analogue of Mahler's theorem was discovered by C. Wagner [8] (see also
[4]) with the binomial polynomials ( x

n) replaced by the Carlitz polyno-
mials Gn(x); this result is our next theorem.

Theorem 2. The Carlitz polynomials Gn(x), n�0, are an orthonormal
basis of C(Av , kv ). Moreover, for any f # C(Av , kv ), write it as f (x)=
��

n=0 an Gn(x). Then the coefficients an can be recovered from the function f
as

an=(&1)k :
deg (m)<k

G$rk&1&n(m) f (m), for any k such that n<rk.
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Theorem 2 is proved via the techniques in [1] ([4] gives a different
proof). In this paper, we discuss the conditions imposed on the coefficients
in the expansion of f to make it locally analytic. For f # C(Zp , Qp), the
results are already in [1]. For f # C(Av , kv ), we will show that Amice's
result in [1] also applies to the coefficients of f as given in Theorem 2.

2. NEWTON TYPE INTERPOLATION POLYNOMIALS

In [1], Amice constructed Newton type interpolation polynomials to
study interpolation problems over non-archimedean fields. We use a special
case of Amice's construction [1] which is also used in [8]. Let S=
[:0 , :1 , ..., :q&1]/O be a system of representatives of F=O�M, and we
assume that S contains 0. Then any element x # L can be written as

x= :
�

k>>&�

;k?k, where ;k # S.

We see that x is in O if and only if ;k=0 for all k<0. To any non-negative
integer n=n0+n1 q+ } } } +nsqs, 0�n i�q&1, we assign the element un

of O with un=:n0
+:n1

?+ } } } +:ns
?s. We now define two sequences of

polynomials [Pn(x)]n�0 and [Qn(x)]n�0 as follows:

P0(x)=1, Pn(x)=(x&u0)(x&u1) } } } (x&un&1) for n�1,

Q0(x)=1, Qn(x)=Pn(x)�Pn(un) for n�1.

Notice that when L=Qp , O=Zp , ?= p, and S=[0, 1, ..., p&1], then
Qn(x) is just the binomial polynomial ( x

n). Amice [1] proved the next
result.

Theorem 3. (1) The sup norm of Pn(x) as an element of C(O, L) is
&Pn&=|?| *n=|Pn(un)|, where *n=��

i=1 [n�q i].

(2) [Qn(x)]n�0 is an orthonormal basis of C(O, L).

3. LOCALLY ANALYTIC FUNCTIONS.

Let a # L, R=|\|>0 for some \ # L and B=Ba, R= the closed ball with
center a and radius R,

B=[x # L: |x&a|�R].
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Definition 2. A function f # C(B, L) is said to be analytic on B if and
only if f can be expanded as a Taylor series

f (x)= :
�

n=0

an \x&a
\ +

n

,

which is convergent for all x # B, i.e., an � 0 as n � �. The norm of f is
defined as & f &B=supn�0[ |an |], and the space of analytic functions on B
is denoted A(B).

It can be proved that the expansion property of f, and & f &B , depend
only on the closed ball B, and not on the choices of a and \.

Definition 3. A function f # C(O, L) is said to be locally analytic on O

if and only if for each x # O, there exists a non-trivial closed ball Bx which
contains x such that the restriction f |Bx

is analytic on Bx . The space of
locally analytic function on O is denoted LA(O).

Definition 4. A locally analytic function f # LA(O) is said to be of
order h if for each x # O, the closed ball Bx in Definition 3 can be chosen
to have radius at least |?|h. The space of locally analytic functions of order
h on O is denoted LAh(O). Write O as a disjoint union of balls with radius
|?|h: O=�1�i�q h Bai

.

Then we define the norm of f # LAh(O) by & f &h=sup i[& f &Bai
].

Remarks. (1) In Definition 2 the norm & f &B for f # A(B) is equal to
supz # a+\O� [ | f (z)|] where O� is the integral closure of O in the algebraic
closure L� of L, by the maximum principle for analytic functions, see [6].

(2) LAh(O) is a separable L-Banach space, and has an obvious
orthonormal basis [/m, i (x)]m�0, i=1, ..., qh with

/m, i (x)={\
x&a i

?h +
m

0

if x # Bai
,

if x � Bai
.

(3) We have LAh(O)�LAh+1(O) for any positive integer h, and as O

is compact, LA(O)=� h�0 LAh(O).

Through investigating the orthonormal basis [/m, i (x)]m�0, i=1, ..., q h of
LAh(O) and the norm &Pn &h in LAh(O), Amice [1] proved the following
result.

Theorem 4. (1) For h�1, the polynomials (1�Sn, h) Pn(x), with sn, h # L,
form an orthonormal basis of LAh(O) if and only if v(sn, h)=�h

i=1 [n�qi].
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(2) Let f # C(O, L) and expand it with respect to the orthonormal basis
[Qn(x)]n�0 as f (x)=��

n=0 anQn(x). Then f is locally analytic on O if and
only if lim infn(v(an)�n)>0.

Corollary. Let f # C(Zp , Qp) be written as f (x)=��
n=0 an( x

n). Then f
is locally analytic on Zp if and only if lim infn(v(an)�n)>0.

4. LOCALLY ANALYTIC FUNCTIONS OVER
COMPLETIONS OF FR[U].

Now we consider the case L=kv for any finite place v of k=Fr(U). Thus
O=Av , and we let ? be an irreducible polynomial of degree d in U. Then
the cardinality of the residue field is q=rd, and Av is isomorphic to
Fq[[?]]. From Section 1 and Section 2, we know two sets of orthonormal
bases for the space C(Av , kv ): the Newton type interpolation polynomials
[Qn(x)]n�0 and the Carlitz polynomials [Gn(x)]n�0 . Both Qj (x) and
Gj (x) are polynomials of degree j, hence for each n�0, there exists
[gn, j] j=0, 1, ..., n /kv , such that Gn(x)=�n

j=0 gn, jQj (x) with max0� j�n

[ | gn, j |]=&Gn &=1. Write these relations using matrices. Thus for each
non-negative integer n, we have

\
G0(x)
G1(x)

b
Gn(x)+=\

g0, 0

g1, 0

b
gn, 0

0
g1, 1

b
gn, 1

0
0
b

gn, 2

} } }
} } }
. . .
} } }

0
0
b

gn, n
+\

Q0(x)
Q1(x)

b
Qn(x)+ .

Denote Gn=(gi, j)0�i�n, 0� j�n with gi, j=0 for i< j for each non-negative
integer n, then Gn # GL(n+1, Av ) and | gn, n |=max0� j�n[ | gn, j |]=1, as
the Gn 's and Qn 's are both orthonormal bases. The matrix G�=(gi, j)i�0, j�0

can be viewed as the transformation matrix from the orthonormal basis
[Qn(x)]n�0 to the orthonormal basis [Gn(x)]n�0 .

Lemma 1. Let E be an L-Banach space, E0=[x # E | &x&�1], and
E� =E0�?E0 . Then a sequence of elements [ei]i�0 in E is an orthonormal
basis of E if and only if ei # E0 for all i and the images e� i of ei in E� consist
of a basis (in the algebraic sense) of the O�?O-vector space E� .

Proof. See [7, p. 70].

Theorem 5. Fix a non-negative integer h. The polynomials ?+n, h Gn(x)
with n�0 form an orthonormal basis of the Banach space LAh(Av ), where
+n, h=��

i=h+1[n�qi].
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Proof. From the first part of Theorem 4, [?+n, h Qn(x)]n�0 is an ortho-
normal basis of the Banach space E=LAh(Av ). For any n�0, write
Rn(x)=?+n, hQn(x), Hn(x)=?+n, hGn(x), and hi, j= gi, j?+i, h&+j, h # Av , then
(hi, j)0�i�n, 0� j�n is a lower triangular matrix with diagonal elements
hi, i= gi, i having absolute value 1, and

\
H0(x)
H1(x)

b
Hn(x)+=\

h0, 0

h1, 0

b
hn, 0

0
h1, 1

b
hn, 1

0
0
b

hn, 2

} } }
} } }
. . .
} } }

0
0
b

hn, n
+\

R0(x)
R1(x)

b
Rn(x)+ .

This proves &Hi &h�1 for all i�0 and the reductions H� i (x) form a basis
of the Av �?Av -vector space E� . Then ?+n, hGn(x) forms an orthonormal basis
by Lemma 1.

Corollary. Let f (x)=��
n=0 Gn(x) be a continuous function on Av , and

let #=lim infn(v(an)�n). Then

(1) f (x) is locally analytic of order h if and only if

v(an)& :
�

i=h+1 _
n
qi&� � as n � �.

(2) f (x) is locally analytic if and only if #>0. If #>0 and
l=max(0, [&(log(q&1)+log #)�log q]+1), then f (x) is locally analytic of
order h�l.

Proof. The first part follows immediately from Theorem 5. For the
second part, notice that any locally analytic function on Av is locally
analytic of order h for some positive integer h, since Av is compact. Therefore
the equivalence condition is clear because the limit of ��

i=h+1 [n�qi]�n is equal
to 1�(q&1) qh>0. If #=lim infn(v(an)�n)>0 and l=max(0, [&(log(q&1)
+log #)�log q]+1), then for any integer h�l, #&limn � �(��

i=h+1 [n�qi])�
n>0, hence f (x) is locally analytic of order h.

As an application, let A=Fr[T] and let f+x
(z)=�i mx(i) (zi�i !) be the

divided power series associated to the v-adic zeta measure +x as in Section
8.22 of [3]. Note that +x is a 1-parameter family of measures when the
parameter x is sufficiently large. Goss points out that for small x Thakur's
calculation of f+x

(Th. 8.22.12 of [3]) implies that +x blows up (i.e., becomes
an unbounded distribution) logarithmically as a function of i. Moreover the
function on Av which is

t [ {tsv

0
if |t| v=1,
if |t| v<1,
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with sv as in Section 8.3 of [3], is obviously locally analytic. Thus Goss
points out that our main result, Theorem 5, can be used to analytically
continue the v-adic integral for the zeta function. In other words, our main
result makes possible an integral calculus approach to the v-adic analytic
continuation of this zeta function! This should be a very general phenom-
enon both v-adically and at �.
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