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It is well known that a continuous function f:Z, — Q, can be expanded by

iew metadata, citation and similar papers at core.ac.uk

compact subset of a local field. We study the function field case in this paper. The
function field analogue of Mahler’s basis is the Carlitz polynomials, and the corre-
sponding result for continuous functions has already been established by Wagner
(Acta Arith. 17 (1971), 389-406). We show that the conditions for a continuous
function to be locally analytic in the function field case are completely similar to the
Q, case. An application to using integral calculus to analytically continue charac-
teristic p-valued L-series is briefly mentioned at the end of the paper. © 1998
Academic Press

1. INTRODUCTION

Ultra-metric analysis consists of the p-adic analysis over number fields
and the analysis of function fields of characteristic p. Since both the p-adic
number fields and the function fields of characteristic p are equipped with
similar non-archimedean absolute values, it is natural to expect that they
have similar properties in analysis. For a detailed study on p-adic analysis,
see [6].

In this paper, p is a fixed prime number and r is a power of p.

Let L denote a local field with a discrete valuation, ¢ its valuation ring,
A =7n0 its maximal ideal, and & = /.4 its residue field of ¢ elements,
where ¢ is a power of p (later on ¢ will also be a power of r). The valuation
v of L is normalized such that v(z) =1, and the absolute value is denoted

* 1 thank Professor D. Gross for suggesting this problem to me and for help in writing this
paper, and Professor K. Conrad for helpful comments.
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|?]. In applications we will actually only consider the case where L is either
Q,, or the completion of I,(U) at some finite place v.

An L-Banach space is a complete normed L-vector space E with the
norm |?| satisfying the ultra-metric inequality:

lx+ yl <max(|[x], |y[)  for x, yekE.

We will only consider separable Banach spaces here, i.e., spaces with a
countable subset generating a dense subspace. For example, let X be any
compact subset of L, denote C(X, L) the space of continuous functions
from X to L and equip C(X, L) with the sup norm, ||/ =sup,.x{[f(x)|}
for fe C(X, L). Then C(X, L) is such a space according to Kaplansky’s
theorem (6, Theorem 43.3].

DErINITION 1. Let E be an L-Banach space. A sequence {e,},>, in E
is an orthonormal basis for E if for any element x € E we have:

(1) xcan be uniquely writtenas x =Y °_, 4,e, with 4, € L,and 4, — 0;
(2) lIxl =supuzollal}-

For L=Q,, consider the Banach space C(Z,, Q,). Then the binomial
polynomials () map Z, into Z, as they are obviously continuous and the
p-adically dense positive integers are mapped to p-adic integers. K. Mahler
[5] established the following theorem.

THEOREM 1. The sequence of binomial polynomials {(¥)} .= is an ortho-
normal basis of C(Z,,Q,). Moreover, let fe C(Z,,Q,) and write it as
f(x)=>"_oa,(3). Then the coefficients a, can be recovered as

n

0= 3 (<1 (3) fn=k= £ (=0 ()

Now we consider the corresponding Banach spaces of continuous
functions over function fields. We follow the notations of Chapter 3 and
Section 8.22 of [3]. Let [, be the finite field of r elements, and for i a non-
negative integer, set

A=F,[U] and k = F(U) the quotient field of A,

[i1=U"-U,
[i[i—=17---[1] if ix>1,
Di:{l, , ., Ti=0
[ari—11"---[17" if i1,
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X if d=0,
il d—i i Dd
ey (x)= [T (x=—m)y=) (1) "'x"——
i=0

deg (m)<d DiL:i—i

if d is a positive integer.

Let n be a non-negative integer which we write r-adically as n=mny+n;r
+ - +nyr%, with 0 <n,<r. Then the Carlitz polynomials are defined as

0
l

(e"(x)> it 0<i<r—1,
1

( >—1 i I=r—1.

(N.B.: the polynomials G'(x) are not the derivatives of G,(x).) The polyno-
mials G,(x) and G’(x) are of degree n, and behave like binomial polyno-
mials, see [2]. (Notice the difference between the polynomials G,(x) and
G (x) defined here and those of Carlitz’s original paper [2], as we divide
by D, and Carlitz does not.) In [2], the next result is proved.

ProrosiTiON 1.  Both G,(x) and G,(x) map A to itself.

Let v be an arbitrary monic prime polynomial of A, hence it corresponds
to a finite place of k, which we still denote by v; the associated valuation
will be denoted by a non-bold v. The completion of A and k at v are
denoted by A, and k,, respectively; we will assume that v(z)=1 for any
parameter 7 of k,. Then we see that the space C(A,,k,) of continuous
functions from A, to k, is a k,-Banach space with the sup norm. An
analogue of Mahler’s theorem was discovered by C. Wagner [ 8] (see also
[4]) with the binomial polynomials () replaced by the Carlitz polyno-
mials G,(x); this result is our next theorem.

THEOREM 2. The Carlitz polynomials G,(x), n=0, are an orthonormal
basis of C(A,, k,). Moreover, for any feC(A,,Kk,), write it as f(x)=

% 0a,G.(x). Then the coefficients a,, can be recovered from the function f
as

a,=(=1% Y Gu_i_,(m) fm),  foranyk such that n <r.

deg (m) <k
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Theorem 2 is proved via the techniques in [1] ([4] gives a different
proof). In this paper, we discuss the conditions imposed on the coefficients
in the expansion of f to make it locally analytic. For fe C(Z,, Q,), the
results are already in [1]. For fe C(A,, k,), we will show that Amice’s
result in [ 1] also applies to the coefficients of f as given in Theorem 2.

2. NEWTON TYPE INTERPOLATION POLYNOMIALS

In [1], Amice constructed Newton type interpolation polynomials to
study interpolation problems over non-archimedean fields. We use a special
case of Amice’s construction [1] which is also used in [8]. Let S=
{ag, a1, s @y 1} = O be a system of representatives of # = /.4, and we
assume that S contains 0. Then any element x e L can be written as

x= Y pin*,  where fB,€eS.

k> —oo

We see that x is in ¢ if and only if 5, =0 for all £ <0. To any non-negative
integer n=no+n,q+ --- +n,q°, 0<n;<g—1, we assign the element u,
of O with u,=a, +a,n+ -+ +o,n". We now define two sequences of
polynomials {P,(x)},=o and {Q,(x)},=, as follows:

Pyx)=1, P, x)=(x—up)x—uy)---(x—u,_,) for n>1,
QO(X) = 19 Qn(x) = Pn(x)/Pn(un) for n> 1

Notice that when L=Q,, O=Z,, n=p, and S={0, 1, .., p—1}, then
0,(x) is just the binomial polynomial (}). Amice [1] proved the next
result.

THEOREM 3. (1) The sup norm of P,(x) as an element of C(O, L) is
1P, = |7l * = |Py(u,)], where 2,=372 [n/q'].

(2) {0,(x)} .50 is an orthonormal basis of C(0, L).

3. LOCALLY ANALYTIC FUNCTIONS.

Letae L, R=|p| >0 for some pe L and B= B, = the closed ball with
center a and radius R,

B={xeL:|x—a|<R}.
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DEerFINITION 2. A function f'e C(B, L) is said to be analytic on B if and
only if f can be expanded as a Taylor series

1) = i a (’“ = ">",

p

which is convergent for all xe B, ie., a, >0 as n— oo. The norm of £ is
defined as | f]|z=sup,sofla,|}, and the space of analytic functions on B
is denoted A(B).

It can be proved that the expansion property of f, and | f| 5, depend
only on the closed ball B, and not on the choices of @ and p.

DEerFINITION 3. A function fe C(0, L) is said to be locally analytic on ¢
if and only if for each x e ¢, there exists a non-trivial closed ball B, which
contains x such that the restriction f|p_is analytic on B,. The space of

locally analytic function on O is denoted LA(0).

DerFINITION 4. A locally analytic function fe LA(®) is said to be of
order 4 if for each x € O, the closed ball B, in Definition 3 can be chosen
to have radius at least |z|*. The space of locally analytic functions of order
h on O is denoted LA,(0). Write ¢ as a disjoint union of balls with radius
|7T|h5 0= U1<i<q" Ba,.~

Then we define the norm of f'e LA4,(C) by | f|,=sup{[lfl g}

Remarks. (1) In Definition 2 the norm | f||z for f€ A(B) is equal to

SUP, .4 a1 /(2)|} where O is the integral closure of ¢ in the algebraic
closure L of L, by the maximum principle for analytic functions, see [6].

(2) LA,0O) is a separable L-Banach space, and has an obvious
orthonormal basis {y,, ;(x)} >0 i1, With

<x—a,-
Xm,i(x): nh
0 if x¢B,.

> if xeB,,

(3) We have LA,(O)< LA, (0) for any positive integer s, and as ¢
is compact, LA(O)=1im ;5o LA,0O).

ey

LA,(0) and the norm || P, ], in LA,(O), Amice [ 1] proved the following
result.

THEOREM 4. (1) For h=1, the polynomials (1/S,, 1) P,(x), with s, , €L,
Jorm an orthonormal basis of LA,(O) if and only if v(s, ,)=>"_, [n/q'].
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(2) LetfeC(0O, L) and expand it with respect to the orthonormal basis
{0.X)} hs0 as f(x) =3% a,0,(x). Then f is locally analytic on O if and
only if lim inf,(v(a,)/n) > 0.

CorOLLARY. Let fe C(Z,, Q,) be written as f(x)=37"_,a,(;). Then f
is locally analytic on Z, if and only if lim inf,(v(a,)/n) > 0.

4. LOCALLY ANALYTIC FUNCTIONS OVER
COMPLETIONS OF [ [ U].

Now we consider the case L =Kk, for any finite place v of k =F,(U). Thus
0O=A,, and we let = be an irreducible polynomial of degree d in U. Then
the cardinality of the residue field is ¢=r% and A, is isomorphic to
F,[[7]]. From Section 1 and Section 2, we know two sets of orthonormal
bases for the space C(A,, k,): the Newton type interpolation polynomials
{0.(x)} .50 and the Carlitz polynomials {G,(x)},>o. Both Q;(x) and
G;(x) are polynomials of degree j, hence for each n>0, there exists
{2, j}j:O, 1...n Ky, such that G,(x)=37_, g, ;0;(x) with max,<;<,
{lg, I} =1G,| =1. Write these relations using matrices. Thus for each
non-negative integer n, we have

Go(x) 8o,0 0 0 0 Oo(x)
Gy(x) _ Z1,0 81,1 0 0 0:(x)
Gn(x) gn,O gn,l gn,2 gn,n Qn(x)

Denote G, =(g; j)o<i<no<,j<n With g; ;=0 for i < j for each non-negative
integer n, then G, e GL(n+1,A,) and |g, | =max,,.,{lg, |} =1, as
the G,’s and Q,’s are both orthonormal bases. The matrix G, = (g; ;);>0, j>0
can be viewed as the transformation matrix from the orthonormal basis
{0,(x)} 0 to the orthonormal basis {G,,(x)},o.

LeMMA 1. Let E be an L-Banach space, Ey={x€eE||x| <1}, and
E=Ey/rnE,. Then a sequence of elements {e;},~, in E is an orthonormal
basis of E if and only if e; € E, for all i and the images ¢é; of e, in E consist
of a basis (in the algebraic sense) of the O/n0-vector space E.

Proof. See [7, p. 70].

THEOREM 5. Fix a non-negative integer h. The polynomials 7*n'G,(x)
with n=0 form an orthonormal basis of the Banach space LA,(A,), where

M, n :Zﬁh+l[n/qi]-
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Proof. From the first part of Theorem 4, {n*»+Q,(x)},>, is an ortho-
normal basis of the Banach space E=LA,A,). For any n>0, write
R,(x) =1#Q,(x), H,(x)=m"G,(x), and h, ;=g, ;m"+ *ireA,, then
(hi Jo<i<mo<j<n 18 @ lower triangular matrix with diagonal elements
h; ;= g, ; having absolute value 1, and

Hy(x) hoo O 0 0 Ry(x)
Hy(x) _ hio hiy 0 0 Ry(x)
Hn(x) hn, 0 hn, 1 hn, 2 e hn, n Rn(x)

This proves |H,|,<1 for all i>0 and the reductions H,(x) form a basis
of the A, /nA,-vector space E. Then n“»+G,(x) forms an orthonormal basis
by Lemma 1.

COROLLARY. Let f(x)=>2_, G,(x) be a continuous function on A, and

T 4Lun=0“n

let y=lim inf,(v(a,)/n). Then
(1) f(x) is locally analytic of order h if and only if

v(a,)— [nl}—myo as n-— .
i=h+1
(2) f(x) is locally analytic if and only if y>0. If y>0 and
[=max(0, [ —(log(q — 1) +1og y)/log g1+ 1), then f(x) is locally analytic of
order h=1.

Proof. The first part follows immediately from Theorem 5. For the
second part, notice that any locally analytic function on A, is locally
analytic of order / for some positive integer /4, since A, is compact. Therefore
the equivalence condition is clear because the limit of 3.7 , , ; [1/¢"]/n is equal
to 1/(g—1) ¢">0. If y=lim inf (v(a,)/n) >0 and /=max(0, [ —(log(g—1)
+log y)/log ¢] + 1), then for any integer h>1, y—lim, _, (37, [n/q'])/
n>0, hence f(x) is locally analytic of order A.

As an application, let A=F,[7] and let fﬂx(z) =3>".m,(i) (z'/i!) be the
divided power series associated to the v-adic zeta measure u, as in Section
8.22 of [3]. Note that u, is a 1-parameter family of measures when the
parameter x is sufficiently large. Goss points out that for small x Thakur’s
calculation of fux (Th. 8.22.12 of [3]) implies that u, blows up (i.e., becomes
an unbounded distribution) logarithmically as a function of i. Moreover the
function on A, which is

o if f],=1,
I— .
0 it |,<1,
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with s, as in Section 8.3 of [3], is obviously locally analytic. Thus Goss
points out that our main result, Theorem 5, can be used to analytically
continue the v-adic integral for the zeta function. In other words, our main
result makes possible an integral calculus approach to the v-adic analytic
continuation of this zeta function! This should be a very general phenom-
enon both v-adically and at oo.
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