
J. Math. Anal. Appl. 346 (2008) 384–394

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

J. Math. Anal. Appl.

www.elsevier.com/locate/jmaa

Well-posedness of a class of perturbed optimization problems
in Banach spaces ✩

Li-Hui Peng a, Chong Li b,∗, Jen-Chih Yao c

a Department of Mathematics, Zhejiang Gongshang University, Hangzhou 310018, PR China
b Department of Mathematics, Zhejiang University, Hangzhou 310027, PR China
c Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 January 2008
Available online 27 May 2008
Submitted by B.S. Mordukhovich

Keywords:
Perturbed optimization problem
Strictly convex space
Kadec space
Well-posedness
Gδ-subset

Let X be a Banach space and Z a nonempty subset of X . Let J : Z → R be a lower
semicontinuous function bounded from below and p � 1. This paper is concerned with
the perturbed optimization problem of finding z0 ∈ Z such that ‖x − z0‖p + J (z0) =
infz∈Z {‖x − z‖p + J (z)}, which is denoted by min J (x, Z). The notions of the J -strictly
convex with respect to Z and of the Kadec with respect to Z are introduced and used
in the present paper. It is proved that if X is a Kadec Banach space with respect to Z
and Z is a closed relatively boundedly weakly compact subset, then the set of all x ∈ X for
which every minimizing sequence of the problem min J (x, Z) has a converging subsequence
is a dense Gδ-subset of X \ Z0, where Z0 is the set of all points z ∈ Z such that z is
a solution of the problem min J (z, Z). If additionally p > 1 and X is J -strictly convex with
respect to Z , then the set of all x ∈ X for which the problem min J (x, Z) is well-posed is
a dense Gδ-subset of X \ Z0.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a real Banach space endowed with the norm ‖ ·‖. Let Z be a nonempty closed subset of X , J : Z → R a function
defined on Z and let p � 1. The perturbed optimization problem considered here is of finding an element z0 ∈ Z such that

‖x − z0‖p + J (z0) = inf
z∈Z

{‖x − z‖p + J (z)
}

(1.1)

which is denoted by min J (x, Z). Any point z0 satisfying (1.1) (if exists) is called a solution of the problem min J (x, Z). In
particular, if J ≡ 0, then the perturbed optimization problem min J (x, Z) reduces to the well-known best approximation
problem.

The perturbed optimization problem min J (x, Z) was presented and investigated by Baranger in [2] for the case when
p = 1 and by Bidaut in [6] for the case when p � 1. The existence results have been applied to optimal control problems
governed by partial differential equations, see for example, [2–6,8,16,26].

Assume that J is lower semicontinuous and bounded from below. In the case when p = 1, Baranger in [2] proved that
if X is a uniformly convex Banach space then the set of all x ∈ X for which the problem min J (x, Z) has a solution is a
dense Gδ-subset of X , which clearly extends Stechkin’s results in [30] on the best approximation problem. Since then, this
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problem has been studied extensively, see for example [6,8,20,28]. In particular, Cobzas extended in [9] Baranger’s result to
the setting of reflexive Kadec Banach space; while Ni relaxed in [27] the reflexivity assumption made in Cobzas’ result.

For the general case when p > 1, this kind of perturbed optimization problems is only founded to be studied by Bidaut
in [6]. Recall from [23] that a sequence {zn} ⊆ Z is a minimizing sequence of the problem min J (x, Z) if

lim
n→∞

(‖x − zn‖p + J (zn)
) = inf

z∈Z

(‖x − z‖p + J (z)
)
,

and that the problem min J (x, Z) is well-posed if min J (x, Z) has a unique solution and every minimizing sequence of the
problem min J (x, Z) converges to this solution. It was proved in [6] that if X is a uniformly convex Banach space and Z
is a bounded closed subset, then the set of all x ∈ X such that the problem min J (x, Z) is well-posed is a dense Gδ-subset
of X \ Z . Recently, for the special case when p = 2, Fabian proved in [17] that if X is reflexive and Kadec, then the set of all
x ∈ X such that min J (x, Z) has a solution is a residual set of X .

The purpose of the present paper is to continue to carrying out investigations in this line and to try to extend the
results due to Bidaut in [6] to the general setting of nonreflexive Banach spaces. More precisely, we introduce the notions
of the J -strict convexity with respect to Z and of Kadec property with respect to Z , and prove that if Z is a nonempty
closed, relatively boundedly weakly compact subset of X (not necessarily bounded) and that X is a Kadec Banach space with
respect to Z , then the set of all x ∈ X for which every minimizing sequence of the problem min J (x, Z) has a converging
subsequence is a dense Gδ-subset of X \ Z0, where Z0 is the set of all points z ∈ Z such that z is a solution of the problem
min J (z, Z). If X is additionally assumed to be J -strictly convex with respect to Z and p > 1, then we further show that the
set of all x ∈ X for which the problem min J (x, Z) is well-posed is a dense Gδ-subset of X \ Z0. Examples are provided to
illustrate that our results obtained in the present paper extend the earlier ones even in the case when p = 1.

2. Preliminaries

We begin with some standard notations. Let X be a Banach space with the dual X∗ . We use 〈·,·〉 to denote the inner
product connecting X∗ and X . The closed (respectively open) ball in X at center x with radius r is denoted by BX (x, r)
(respectively U(x, r)). In particular, we write BX = BX (0,1) and B∗ = BX∗ for short, and omit the subscript if no confusion
caused. For a subset A of X , the linear hull and the closure of A are respectively denoted by span A and A. We first recall
the notation of Fréchet differentiability and a related important proposition, see for example [29].

Definition 2.1. Let A be an open subset of X and f : A → R a real-valued function. Let x ∈ A. f is said to be Fréchet
differentiable at x if there exists an x∗ ∈ X∗ such that

lim
y→x

f (y) − f (x) − 〈x∗, y − x〉
‖y − x‖ = 0.

x∗ is called the Fréchet differential at x which is denoted by D f (x).

Proposition 2.1. Let f be a locally Lipschitz continuous function on an open subset A of X . Suppose that X is a reflexive Banach space.
Then f is Fréchet differentiable on a dense subset of A.

The following notions are well-known, see for example, [7,25].

Definition 2.2. X is said to be

(i) strictly convex if, for any x1, x2 ∈ B, the condition ‖x1 + x2‖ = 2 implies that x1 = x2;
(ii) uniformly convex if, for any sequences {xn}, {yn} ⊆ B, the condition limn→∞ ‖xn + yn‖ = 2 implies that

limn→∞ ‖xn − yn‖ = 0;
(iii) (sequentially) Kadec if, for any sequence {xn} ⊆ B, x0 ∈ B with ‖xn‖ → ‖x0‖, the condition xn → x0 weakly implies that

limn→∞ ‖xn − x0‖ = 0.

The notions in the following definition are the refinements and extensions of the corresponding ones in Definition 2.2,
where part (i) is known in [1]. Let Z be a subset of X and J be a real-valued function on Z .

Definition 2.3. X is said to be

(i) strictly convex with respect to (w.r.t.) Z , if, for any z1, z2 ∈ Z such that ‖x− z1‖ = ‖x− z2‖ for some x ∈ X , the condition
‖x − z1 + x − z2‖ = ‖x − z1‖ + ‖x − z2‖ implies that z1 = z2;

(ii) J -strictly convex with respect to (w.r.t.) Z , if, for any z1, z2 ∈ Z such that ‖x − z1‖ = ‖x − z2‖ for some x ∈ X , the
conditions that ‖x − z1 + x − z2‖ = ‖x − z1‖ + ‖x − z2‖ and J (z1) = J (z2) imply that z1 = z2;

(iii) J -strictly convex, if X is J -strictly convex w.r.t. X ;
(iv) (sequentially) Kadec with respect to (w.r.t.) Z , if, for any sequence {zn} ⊆ Z and z0 ∈ Z such that there exists a point

x ∈ X satisfying limn→+∞ ‖x − zn‖ = ‖x − z0‖, the condition zn → z0 weakly implies that limn→∞ ‖zn − z0‖ = 0.
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In particular, in the case when Z = X , the strict convexity w.r.t. Z (respectively the Kadec property w.r.t. Z ) reduces
to the strict convexity (respectively the Kadec property), while in the case when J ≡ 0, the J -strict convexity w.r.t. Z
reduces to the strict convexity w.r.t. Z . Moreover, the following implications are clear for any subset Z of X and real-valued
function J on Z :

the strict convexity �⇒ the strict convexity w.r.t. Z
⇓ ⇓

the J -strict convexity �⇒ the J -strict convexity w.r.t. Z (2.1)

and

the Kadec property �⇒ the Kadec property w.r.t. Z . (2.2)

Note that X is Kadec w.r.t. Z provided that Z is locally compact. The following example presents the cases when X is
J -strictly convex w.r.t. Z and/or Kadec w.r.t. Z but not strictly convex and/or Kadec. Recall from [18,19] that X is said to be
uniformly convex in every direction if, for every z ∈ X \ {0} and ε > 0, there exists a δ > 0 such that |λ| < ε if ‖x‖ = ‖y‖ = 1,
x − y = λz and 1

2 ‖x + y‖ > 1 − δ. From [11], it follows that X is uniformly convex in every direction if and only if, for any
sequences {xn} ⊆ B and {yn} ⊆ B, the conditions {xn − yn} ⊆ span{z} for some z ∈ X and ‖xn + yn‖ → 2 imply ‖xn − yn‖ → 0.

Example 2.1. Let Y be a Banach space and let X = l∞(Y ) denote the Banach space of all sequences (xi) of Y such that
supi ‖xi‖ < ∞ with the norm ‖ · ‖∞ defined by

‖x‖∞ = sup
i

‖xi‖ for each x = (xi) ∈ l∞(Y ).

Let Xc = lc(Y ) be the subspace of l∞(Y ) given by

lc(Y ) = {
x = (xi) ∈ l∞(Y ): {xi}i∈N is totally bounded

}
.

Clearly, Y can be isometrically embedded in Xc by the mapping y �→ (x, x, . . . , ) for each y ∈ Y . Then the following assertions
hold.

(1) If Y is Kadec, then Xc is Kadec w.r.t. Y .
(2) If Y is strictly convex, then Xc is strictly convex w.r.t. Y .
(3) If Y is uniformly convex, then X is Kadec w.r.t. Y .
(4) If Y is uniformly convex in every direction, then X is strictly convex w.r.t. Y .
(5) Xc contains an isometric copy of l∞ and hence X and Xc are neither Kadec nor strictly convex even if Y is uniformly

convex.

Proof. Recall that a subset A of a Banach space is totally bounded if and only if its closure A is compact. Thus, the asser-
tion (5) is clear because, for some fixed y ∈ Y with ‖y‖ = 1, the mapping (αi) �→ (αi y) represents an isometric embedding
of l∞ in lc(Y ) (noting that {αi y}i∈N is totally bounded for each (αi) ∈ l∞).

Below we only verify the assertion (1) because the other assertions can be proved similarly. Let {zn} ⊆ Y and z0 ∈ Y be
such that limn→∞ ‖x − zn‖∞ = ‖x − z0‖∞ > 0 for some x = (xi) ∈ lc(Y ) and zn ⇀ z0 weakly. Let x∗ ∈ lc(Y )∗ with ‖x∗‖ = 1
be such that 〈x∗, (x − z0)〉 = ‖x − z0‖∞ . Then

‖x − zn + x − z0‖∞ �
〈
x∗, (x − zn + x − z0)

〉 → 2‖x − z0‖∞.

Thus ‖x − zn + x − z0‖∞ → 2‖x − z0‖∞. Note that {xi}i∈N , the closure of {xi}i∈N , is compact since {xi}i∈N is totally bounded.
Then, by the definition of ‖ · ‖∞ , there exists a sequence {an} contained in {xi}i∈N such that

‖2x − zn − z0‖∞ = ‖2an − zn − z0‖ for each n = 1,2, . . . .

Moreover, without loss of generality, we may assume that an → a0 for some a0 ∈ {xi}i∈N . Since∣∣‖2an − zn − z0‖ − ‖2a0 − zn − z0‖
∣∣ � 2‖an − a0‖,

it follows that

lim
n

∥∥(a0 − zn) + (a0 − z0)
∥∥ = lim

n
‖2an − zn − z0‖ = lim

n
‖2x − zn − z0‖∞ = 2‖x − z0‖∞. (2.3)

Note that ‖a0 − zn‖ � ‖x − z0‖∞ and ‖a0 − z0‖ � ‖x − z0‖∞ . This together with (2.3) implies that

‖a0 − z0‖ = ‖x − z0‖∞ and lim
n→∞‖a0 − zn‖ = ‖x − z0‖∞.

Since a0 − zn → a0 − z0 weakly and Y is Kadec, we have that a0 − zn → a0 − z0 and hence ‖zn − z0‖ → 0. This completes
the proof of the first assertion. �

Note that X is J -strictly convex w.r.t. Z if J is one to one on Z . One example for which X is J -strictly convex w.r.t. Z
but not strictly convex w.r.t. Z is as follows.
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Example 2.2. Let X be the Banach space l∞ with the sup-norm defined by ‖x‖ = supi |ci| for each x = (ci) ∈ l∞ . Let Z :=
{z = (t,0, . . .) ∈ X: t � 0} and J : Z → R the function defined by J (z) = ‖z‖ for each z ∈ Z . Then J is one to one on Z .
Hence X is J -strictly convex w.r.t. Z . Let z1 = (1,0, . . .) ∈ Z , z2 = (2,0, . . .) ∈ Z and x = (1,1, . . .) ∈ l∞ . Then ‖x − z1‖ = 1,
‖x − z2‖ = 1 and ‖x − z1 + x − z2‖ = 2. This means that X is not strictly convex w.r.t. Z because z1 �= z2.

We end this section with the factorization theorem due to Davis, Figiel, Johnson and Pelczynski in [10], see also [14],
which will play an important role for our study in the next section.

Proposition 2.2. Let A be a weakly compact subset of a Banach space X and let Y = span A. Then there exist a reflexive Banach space
R and a one-to-one continuous linear mapping T : R → Y such that T (BR) ⊇ A, where BR denotes the unit ball in R.

3. Minimization problems

Let p � 1. For the remainder of the present paper, we always assume that Z is a nonempty closed subset of X , J : Z → R

is a lower semicontinuous function bounded from below. Without loss of generality, we may assume that

inf
z∈Z

J (z) > 0. (3.1)

Define the function ϕ : X �→ R by

ϕ(x) = inf
z∈Z

{‖x − z‖p + J (z)
} 1

p for each x ∈ X . (3.2)

Let x ∈ X . Then z0 ∈ Z is a solution to the problem min J (x, Z) if and only if z0 satisfies that

(‖x − z0‖p + J (z0)
) 1

p = ϕ(x). (3.3)

The set of all solutions to the problem min J (x, Z) is denoted by P Z , J (x), that is,

P Z , J (x) = {
z0 ∈ Z :

{‖x − z0‖p + J (z0)
} 1

p = ϕ(x)
}
.

Lemma 3.1. Let ϕ : X �→ R be defined by (3.2). Then∣∣ϕ(x) − ϕ(x′)
∣∣ � ‖x − x′‖ for any x, x′ ∈ X . (3.4)

Proof. Let x, x′ ∈ X . It suffices to verify that

ϕ(x) − ϕ(x′) � ‖x − x′‖. (3.5)

Since J (z) > 0 for each x ∈ Z by (3.1), we have that, for each z ∈ Z ,

(‖x − z‖p + J (z)
) 1

p �
((‖x − x′‖ + ‖x′ − z‖)p + (

0 + J (z)
1
p
)p) 1

p

� ‖x − x′‖ + (‖x′ − z‖p + J (z)
) 1

p . (3.6)

It follows that

inf
z∈Z

(‖x − z‖p + J (z)
) 1

p � ‖x − x′‖ + inf
z∈Z

(‖x′ − z‖p + J (z)
) 1

p

and (3.5) is proved. �
Lemma 3.2. Let Y be a subspace of X , x ∈ Y and y∗ ∈ Y ∗ . Suppose that

lim
t→0+

(
ϕ(x + th) − ϕ(x)

t
− 〈y∗,h〉

)
= 0 for each h ∈ Y . (3.7)

Let {zn} ⊆ Z be a minimizing sequence of the problem min J (x, Z) such that b(x) := limn→∞ ‖x − zn‖ exists. Then

‖y∗‖ � bp−1(x)

ϕp−1(x)
. (3.8)

Proof. Let t > 0 and ε > 0. Then, there exists N > 0 such that

(‖x − zn‖p + J (zn)
) 1

p < ϕ(x) + tε for each n � N. (3.9)
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Let h ∈ Y and n � N . Then, in view of the definition of ϕ , one has that

ϕ(x + th) − ϕ(x) �
(‖x + th − zn‖p + J (zn)

) 1
p − (‖x − zn‖p + J (zn)

) 1
p + tε. (3.10)

Write st = ‖x + th − zn‖ − ‖x − zn‖. Then,

st � t‖h‖. (3.11)

Define the function γn : [0,+∞) → R by

γn(s) = [(‖x − zn‖ + s
)p + J (zn)

] 1
p for each s ∈ [0,+∞).

Then

γ ′
n(s) = [(‖x − zn‖ + s

)p + J (zn)
] 1−p

p
(‖x − zn‖ + s

)p−1
for each s ∈ [0,+∞),

It follows from the Mean-Value Theorem that there exists θ ∈ (0,1) such that

γn(st) − γn(0)

st
= [(‖x − zn‖ + θ st

)p + J (zn)
] 1−p

p
(‖x − zn‖ + θ st

)p−1
. (3.12)

This together with (3.11) implies that

γn(st) − γn(0)

t
�

[(‖x − zn‖ + t‖h‖)p + J (zn)
] 1−p

p
(‖x − zn‖ + t‖h‖)p−1‖h‖. (3.13)

Hence

lim
n→+∞

γn(st) − γn(0)

t
�

[(
b(x) + t‖h‖)p + ϕp(x) − bp(x)

] 1−p
p

(
b(x) + t‖h‖)p−1‖h‖

and

lim
t→0+ lim

n→+∞
γn(st) − γn(0)

t
� bp−1(x)

ϕp−1(x)
‖h‖. (3.14)

By (3.10),

ϕ(x + th) − ϕ(x) � γ (st) − γ (0) + tε; (3.15)

hence

ϕ(x + th) − ϕ(x)

t
� γn(st) − γn(0)

t
+ ε.

Combining this with (3.14), we get that

lim
t→0+

ϕ(x + th) − ϕ(x)

t
� lim

t→0+ lim
n→+∞

γn(st) − γn(0)

t
� bp−1(x)

ϕp−1(x)
‖h‖ + ε

and so

lim
t→0+

ϕ(x + th) − ϕ(x)

t
� bp−1(x)

ϕp−1(x)
‖h‖.

This together with assumption (3.7) yields that

〈y∗,h〉 � bp−1(x)

ϕp−1(x)
‖h‖ (3.16)

and (3.8) is seen to hold because h ∈ Y is arbitrary. �
Let q � 1 be such that 1

p + 1
q = 1 and let a : B∗ → R be the function defined by

a(x∗) = (
1 − ‖x∗‖q) 1

q for each x∗ ∈ B∗.

For δ > 0, set

Z J (x, δ) = {
z ∈ Z :

(‖x − z‖p + J (z)
) 1

p < ϕ(x) + δ
}

(3.17)

and Z0 = {z ∈ Z : z ∈ P Z , J (z)}. Define for each n ∈ N

Hϕ
n (Z) =

⎧⎨
⎩x ∈ X \ Z0:

there exist δ > 0 and x∗ ∈ B∗ such that

inf
z∈Z J (x,δ)

{〈x∗, x − z〉 + a(x∗) J
1
p (z)

}
>

(
1 − 2−n)

ϕ(x)

⎫⎬
⎭ . (3.18)
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Furthermore we write

Hϕ(Z) =
∞⋂

n=1

Hϕ
n (Z) (3.19)

and

Mϕ(Z) =
⎧⎨
⎩x ∈ X \ Z0:

there is x∗ ∈ B∗ such that for each ε ∈ [0,1] there is δ > 0

satisfying inf
z∈Z J (x,δ)

{〈x∗, x − z〉 + a(x∗) J
1
p (z)

}
> (1 − ε)ϕ(x)

⎫⎬
⎭ .

Obviously,

Mϕ(Z) ⊂ Hϕ(Z). (3.20)

Lemma 3.3. Let Z be a relatively boundedly weakly compact subset of X . Then Hϕ(Z) is a dense Gδ-subset of X \ Z0 .

Proof. We first verify that Hϕ(Z) is a Gδ-subset of X . By (3.19), we only need to prove that Hϕ
n (Z) is open for each n. For

this end, let n ∈ N and x ∈ Hϕ
n (Z). Then there exist δ > 0 and x∗ ∈ B∗ such that

β := inf
z∈Z J (x,δ)

{〈x∗, x − z〉 + a(x∗) J
1
p (z)

} − (
1 − 2−n)

ϕ(x) > 0. (3.21)

Let λ > 0 be such that λ < min{δ/2, β/2}. It suffices to show that U(x, λ) ⊂ Hϕ
n (Z). To do this, let y ∈ U(x, λ) and δ∗ = δ−2λ.

Let z ∈ Z J (y, δ∗) be arbitrary. Then

(‖y − z‖p + J (z)
)1/p

< ϕ(y) + δ∗. (3.22)

It follows that

(‖x − z‖p + J (z)
)1/p �

(‖y − z‖p + J (z)
)1/p + ‖y − x‖ < ϕ(y) + δ∗ + λ

since ‖x − y‖ < λ. By (3.4), one has that
(‖x − z‖p + J (z)

)1/p � ϕ(y) + δ∗ + λ � ϕ(x) + δ∗ + 2λ = ϕ(x) + δ.

Hence z ∈ Z J (x, δ). It follows from (3.21) that

〈x∗, x − z〉 + a(x∗) J 1/p(z) � β + (
1 − 2−n)

ϕ(x). (3.23)

Therefore,

〈x∗, y − z〉 + a(x∗) J 1/p(z) = 〈x∗, x − z〉 + a(x∗) J 1/p(z) + 〈x∗, y − x〉
� β + (

1 − 2−n)
ϕ(x) − ‖x − y‖

� β + (
1 − 2−n)

ϕ(y) − ‖x − y‖ − (
1 − 2−n)‖x − y‖

�
(
1 − 2−n)

ϕ(y) + β − 2λ

�
(
1 − 2−n)

ϕ(y),

where the first inequality holds because of (3.23), the second one because of (3.4) and the last two hold because y ∈ U(x, λ)

and λ < min{δ/2, β/2}. Consequently,

inf
z∈Z J (y,δ∗)

{〈x∗, y − z〉 + a(x∗) J 1/p(z)
}

>
(
1 − 2−n)

ϕ(y), (3.24)

as z ∈ Z J (y, δ∗) is arbitrary. This means that y ∈ Hϕ
n (Z) and so U(x, λ) ⊂ Hϕ

n (Z) holds.
Now we are to prove the density of Hϕ(Z) in X \ Z0. By (3.20), we only need to prove that Mϕ(Z) is dense in X . To this

end, let x0 ∈ X \ Z0 and 0 < ε < 1
3 . Set N = ‖x0‖ + 4ϕ(x0) + 1. Let K denote the weak closure of the set (B(0, N) ∩ Z) ∪ {x0}

and Y = span K . Then K is a weakly compact subset of Y . From Lemma 2.2, there exist a reflexive Banach space R and a
one-to-one continuous linear mapping T : R → Y such that T (BR) ⊇ K . This implies that

T (R) ⊇ Y . (3.25)

Define the function f Z : R → [0,+∞) by

f Z (u) = ϕ(x0 + T u) for each u ∈ R. (3.26)
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Then, by (3.4),∣∣ f Z (u) − f Z (v)
∣∣ = ∣∣ϕ(x0 + T u) − ϕ(x0 + T v)

∣∣ � ‖T u − T v‖ � ‖T ‖‖u − v‖ (3.27)

for any u, v ∈ R; hence f Z is Lipschitz continuous on R . Since R is reflexive, Lemma 2.1 is applicable to concluding that
f Z is Fréchet differentiable on a dense subset of R . Therefore, there exists a point v̄ ∈ R such that ‖T ‖‖v̄‖ < ε and f Z is
Fréchet differentiable at v̄ with the derivative D f Z (v) = v∗ . Then

lim
u→0

f Z (v̄ + u) − f Z (v̄) − 〈v∗, u〉
‖u‖ = 0. (3.28)

Therefore, for each r > 0,

lim
t→0+

f Z (v̄ + tv) − f Z (v̄) − 〈v∗, tv〉
t

= 0 (3.29)

holds uniformly for all v ∈ BR(0, r). In particular, this implies that

〈v∗, u〉 � ‖T u‖ for each u ∈ R. (3.30)

Define a linear functional y∗ on T R by

〈y∗, T u〉 = 〈v∗, u〉 for each u ∈ R. (3.31)

Then y∗ ∈ T (R)∗ by (3.30) and hence y∗ ∈ Y ∗ by (3.25). Let x = x0 + T v̄ . Then x ∈ U(x0, ε) and x ∈ K + T v ⊂ T (R). Moreover,

∥∥T −1x
∥∥ = ∥∥T −1x0 + v̄

∥∥ �
∥∥T −1x0

∥∥ + ‖v̄‖ � 1 + ε

‖T ‖ . (3.32)

In view of the definition of f Z , one has by (3.29) and (3.31) that

lim
t→0+

ϕ(x + tT v) − ϕ(x) − 〈y∗, tT v〉
t

= 0 (3.33)

holds uniformly for all v ∈ BR(0, r). By Hahn–Banach theorem, y∗ can be extended to x∗ ∈ X∗ such that

‖x∗‖ = ‖y∗‖ and 〈x∗, T u〉 = 〈v∗, u〉 for each u ∈ R. (3.34)

We claim that, for each ε > 0, there is δ > 0 such that

〈x∗, x − z〉 + a(x∗) J
1
p (z) > (1 − ε/2)ϕ(x) for each z ∈ Z J (x, δ). (3.35)

Granting this, x ∈ Mϕ(Z) and the proof is complete since ‖x − x0‖ < ε .
To verify the claim, suppose on the contrary that there exist an ε0 > 0 and a sequence {zn} in Z such that

lim
n→∞

(‖x − zn‖p + J (zn)
) 1

p = ϕ(x) (3.36)

and

〈x∗, x − zn〉 + a(x∗) J
1
p (zn) � (1 − ε0/2)ϕ(x) for each n ∈ N. (3.37)

Without loss of generality, we may assume that b(x) := limn ‖x − zn‖ exists and

ϕ(x) �
(‖x − zn‖p + J (zn)

) 1
p � ϕ(x) + ε for each n ∈ N. (3.38)

Hence, by (3.4), we get that, for each n ∈ N,

‖x0 − zn‖ �
(‖x − zn‖p + J (zn)

) 1
p + ‖x − x0‖ � ϕ(x0) + 2‖x − x0‖ + ε � ϕ(x0) + 1

(noting that ‖x − x0‖ < ε and ε � 1
3 ). Hence, ‖zn‖ � ϕ(x0) + ‖x0‖ + 1 < N and {zn} ⊆ K . Since K ⊆ T (BR), it follows

that ‖T −1zn‖ � 1 for each n ∈ N. This together with (3.32) implies that {T −1(x − zn)} ⊆ BR(0, r), where r = ε
‖T ‖ + 2. Take

{tn} ∈ (0,1) such that t2
n � (‖x − zn‖p + J (zn))

1
p − ϕ(x) and tn → 0. Then, by (3.33), one gets that

lim
n→∞

(
ϕ(x + tn(zn − x)) − ϕ(x)

tn
− 〈x∗, zn − x〉

)
= 0. (3.39)

For notational convenience, we write

M(z, t) = ∥∥(1 − t)(x − z)
∥∥p + J (z) for each z ∈ Z and t ∈ (0,1). (3.40)
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Let n ∈ N. Then,

(∥∥x + tn(zn − x) − zn
∥∥p + J (zn)

) 1
p = ‖(1 − tn)(x − zn)‖p + J (zn)

(M(zn, tn))
p−1

p

= (1 − tn)‖(1 − tn)(x − zn)‖p−1‖x − zn‖ + J (zn)

(M(zn, tn))
p−1

p

.

Consequently,

ϕ
(
x + tn(zn − x)

) − ϕ(x) �
(∥∥x + tn(zn − x) − zn

∥∥p + J (zn)
) 1

p − ϕ(x)

= ‖(1 − tn)(x − zn)‖p−1‖x − zn‖ + J (zn)

(M(zn, tn))
p−1

p

− ϕ(x) − tn
‖(1 − tn)(x − zn)‖p−1‖x − zn‖

(M(zn, tn))
p−1

p

. (3.41)

By Hölder inequality, we have
∥∥(1 − tn)(x − zn)

∥∥p−1‖x − zn‖ + J (zn) = ‖x − zn‖∥∥(1 − tn)(x − zn)
∥∥ p

q + J
1
p (zn) J

1
q (zn)

�
(‖x − zn‖p + J (zn)

) 1
p
(∥∥(1 − tn)(x − zn)

∥∥p + J (zn)
) 1

q

= (‖x − zn‖p + J (zn)
) 1

p
(
M(zn, tn)

) p−1
p . (3.42)

Hence,

‖(1 − tn)(x − zn)‖p−1‖x − zn‖ + J (zn)

(M(zn, tn))
p−1

p

− ϕ(x) �
(‖x − zn‖p + J (zn)

) 1
p − ϕ(x) � t2

n . (3.43)

Combing this and (3.41), we obtain that

lim sup
n→∞

(
ϕ

(
x + tn(zn − x)

) − ϕ(x)

tn
+ ‖(1 − tn)(x − zn)‖p−1‖x − zn‖

(M(zn, tn))
p−1

p

)
� 0.

By (3.39), one has that

lim inf
n→∞

(
〈x∗, x − zn〉 − (1 − tn)p−1‖x − zn‖p

(M(zn, tn))
p−1

p

)
� 0. (3.44)

Note that

lim
n→∞ M(zn, tn) = ϕp(x) and lim

n→∞‖x − zn‖ = b(x). (3.45)

It follows from (3.44) that

‖x∗‖ � bp−1(x)

ϕp−1(x)
(3.46)

and

lim inf
n→∞

(〈x∗, x − zn〉 + a(x∗) J
1
p (zn)

)
� bp(x)

ϕp−1(x)
+ a(x∗)

(
ϕp(x) − bp(x)

) 1
p (3.47)

because

lim
n→∞ J (zn) = lim

n→∞
(‖x − zn‖p + J (zn)

) − lim
n→∞‖x − zn‖p = ϕp(x) − bp(x). (3.48)

On the other hand, by (3.25) and (3.33), one sees that (3.7) holds. Note that {zn} ⊆ Z is a minimizing sequence of the

problem min J (x, Z). Hence we can apply Lemma 3.2 to get that ‖y∗‖ � bp−1(x)
ϕp−1(x)

. Hence ‖x∗‖ � bp−1(x)
ϕp−1(x)

thanks to (3.34).

Combing this with (3.46), we have that

‖x∗‖ = bp−1(x)

ϕp−1(x)
. (3.49)

Thus, by definition,

a(x∗) = (
1 − ‖x∗‖q) 1

q = (ϕp(x) − bp(x))
1
q

ϕp−1(x)
.

It follows from (3.47) that

lim inf
n→∞

(
〈x∗, x − zn〉 + a(x∗) J

1
p (zn)

)
� ϕ(x),

which contradicts (3.37) and completes the proof. �



392 L.-H. Peng et al. / J. Math. Anal. Appl. 346 (2008) 384–394
Lemma 3.4. Let Z be a relatively boundedly weakly compact subset of X . Suppose that X is a Kadec Banach space w.r.t. Z . Let
x ∈ Hϕ(Z). Then, any minimizing sequence of the problem min J (x, Z) has a converging subsequence.

Proof. In view of the definition of Hϕ(Z) in (3.19), there exist a positive sequence {δn} and a sequence {x∗
m} ⊆ B∗ such that

inf
z∈Z J (x,δm)

{〈
x∗

m, x − z
〉 + a

(
x∗

m

)
J

1
p (z)

}
>

(
1 − 2−m)

ϕ(x) for each m ∈ N. (3.50)

Let {zn} be any minimizing sequence of the problem min J (x, Z), i.e.,

lim
n→∞

(‖x − zn‖p + J (zn)
) 1

p = ϕ(x). (3.51)

Without loss of generality, assume that

δn � δm and zn ∈ Z p(x, δm) if n > m, (3.52)

and that b(x) = limn→∞ ‖x − zn‖ exists. Then limn→∞ J (zn) exists by (3.51). Note that {zn} is bounded and Z is relatively
boundedly weakly compact. We also assume that, without loss of generality, zn → z0 weakly as n → ∞ for some z0 ∈ X .
Then we have that

(
‖x − z0‖p + lim

n→∞ J (zn)
) 1

p � lim
n→∞

(‖x − zn‖p + J (zn)
) 1

p = ϕ(x). (3.53)

Let m,n ∈ N satisfy n > m. Then, by (3.50) and (3.52),
〈
x∗

m, x − zn
〉 + a

(
x∗

m

)
J

1
p (zn) >

(
1 − 2−m)

ϕ(x) (3.54)

and so〈
x∗

m, x − z0
〉 + a

(
x∗

m

)
lim

n→∞ J
1
p (zn) �

(
1 − 2−m)

ϕ(x). (3.55)

Using Hölder inequality, we have

∥∥x∗
m

∥∥‖x − z0‖ + a
(
x∗

m

)
lim

n→∞ J
1
p (zn) �

(∥∥x∗
m

∥∥q + (
a
(
x∗

m

))q) 1
q ·

(
‖x − z0‖p + lim

n→∞ J (zn)
) 1

p
. (3.56)

Since 〈
x∗

m, x − z0
〉 + a

(
x∗

m

)
lim

n→∞ J
1
p (zn) �

∥∥x∗
m

∥∥‖x − z0‖ + a
(
x∗

m

)
lim

n→∞ J
1
p (zn), (3.57)

it follows from (3.56) that

〈
x∗

m, x − z0
〉 + a

(
x∗

m

)
lim

n→∞ J
1
p (zn) �

(∥∥x∗
m

∥∥q + (
a
(
x∗

m

))q) 1
q ·

(
‖x − z0‖p + lim

n→∞ J (zn)
) 1

p
. (3.58)

Noting that (‖x∗
m‖q + (a(x∗

m))q = 1 and (3.53), we get that

〈
x∗

m, x − z0
〉 + a

(
x∗

m

)
lim

n→∞ J
1
p (zn) �

(
‖x − z0‖p + lim

n→∞ J (zn)
) 1

p � ϕ(x).

This together with (3.55) implies that

(
‖x − z0‖p + lim

n→∞ J (zn)
) 1

p = ϕ(x). (3.59)

Combining this with (3.51), one sees that

lim
n→∞‖x − zn‖ = ‖x − z0‖. (3.60)

Noting that X is Kadec w.r.t. Z and zn → z0 weakly, it follows that limn→∞ ‖z0 − zn‖ = 0 and so z0 ∈ Z , which completes
the proof. �

Note that, for any x ∈ X , if every minimizing sequence of the problem min J (x, Z) has a converging subsequence, then
P Z , J (x) �= ∅. Thus, the following theorem is a direct consequence of Lemmas 3.3 and 3.4.

Theorem 3.1. Let Z be a relatively boundedly weakly compact subset of X . Suppose that X is Kadec w.r.t. Z . Then the set of all x ∈ X
such that P Z , J (x) �= ∅ and every minimizing sequence of the problem min J (x, Z) has a converging subsequence is a dense Gδ-subset
of X \ Z0 .

The following corollary is direct from (2.2) and Theorem 3.1.
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Corollary 3.1. Let Z be a relatively boundedly weakly compact subset of X . Suppose that X is Kadec. Then the set of all x ∈ X such that
P Z , J (x) �= ∅ and every minimizing sequence of the problem min J (x, Z) has a converging subsequence is a dense Gδ-subset of X \ Z0 .

Theorem 3.2. Let Z be a relatively boundedly weakly compact subset of X . Suppose that X is both Kadec w.r.t. Z and J -strictly convex
w.r.t. Z . Suppose further that p > 1. Then the set of all x ∈ X such that the problem min J (x, Z) is well-posed is a dense Gδ-subset
of X \ Z0 .

Proof. By Lemma 3.3, Hϕ(Z) is a Gδ-subset of X \ Z0; while, by Lemma 3.4, for each x ∈ Hϕ(Z) and any minimizing
sequence for the problem min J (x, Z) has a converging subsequence and so P Z , J (x) �= ∅. Thus, we only need to prove that
P Z , J (x) is a singleton for each x ∈ Hϕ(Z). To this purpose, let x ∈ Hϕ(Z) and z1, z2 ∈ P Z , J (x). Then, by the definition
of Hϕ(Z), for each n ∈ N, there exists x∗

n ∈ B∗ such that
〈
x∗

n, x − zi
〉 + a

(
x∗

n

)
J

1
p (zi) >

(
1 − 2−n)

ϕ(x) for each i = 1,2. (3.61)

Without loss of generality, we may assume that {x∗
n} converges weakly∗ to some x∗ ∈ B∗ . Then a(x∗) � limn→∞ a(x∗

n). Hence

〈x∗, x − zi〉 + a(x∗) J
1
p (zi) � ϕ(x) for each i = 1,2. (3.62)

It follows that

〈x∗, x − z1 + x − z2〉 + a(x∗)
(

J
1
p (z1) + J

1
p (z2)

)
� 2ϕ(x).

Using Hölder inequality and the fact that ‖x∗‖q + a(x∗)q = 1, one has that

2ϕ(x) �
(‖x − z1 + x − z2‖p + (

J
1
p (z1) + J

1
p (z2)

)p) 1
p

�
((‖x − z1‖ + ‖x − z2‖

)p + (
J

1
p (z1) + J

1
p (z2)

)p) 1
p

�
(‖x − z1‖p + J (z1)

) 1
p + (‖x − z2‖p + J (z2)

) 1
p

= 2ϕ(x). (3.63)

Consequently,

‖x − z1 + x − z2‖ = ‖x − z1‖ + ‖x − z2‖. (3.64)

Furthermore, since p > 1, (3.63) implies that

‖x − z1‖ = ‖x − z2‖ and J (z1) = J (z2). (3.65)

Thus the assumed J -strict convexity of X together with (3.64) and (3.65) implies that x − z1 = x − z2; hence z1 = z2. This
completes the proof. �

The following corollary is a direct consequence of (2.1), (2.2) and Theorem 3.2.

Corollary 3.2. Let Z be a relatively boundedly weakly compact subset of X . Suppose that X is Kadec and strictly convex. Suppose
further that p > 1. Then the set of all x ∈ X such that the problem min J (x, Z) is well-posed is a dense Gδ-subset of X \ Z0 .

The following example illustrates that our results obtained in the present paper are proper extensions of earlier results
in [9,27] even in the case when p = 1.

Example 3.1. Let Y be a uniformly convex Banach space and let X = l∞(Y ) be the Banach space defined as in Example 2.1.
Let Z be a nonempty closed subset of Y and J : Z → R a lower semicontinuous function bounded from below. Then Z is a
relatively boundedly weakly compact subset of X . Furthermore, X is both strictly convex and Kadec w.r.t. Z by Example 2.1.
Thus Theorems 3.1 and 3.2 are applicable. Therefore, the set of all x ∈ l∞(Y ) such that P Z , J (x) �= ∅ and every minimizing
sequence of the problem infz∈Z {‖x− z‖p + J (z)} has a converging subsequence is a dense Gδ-subset of l∞(Y )\ Z0. Moreover,
if p > 1, then the set of all x ∈ l∞(Y ) such that min J (x, Z) is well-posed is a dense Gδ-subset of l∞(Y ) \ Z0. Note that in
the case when p = 1, the corresponding results in [9,27] are not applicable because X is not Kadec.

The following example provides the case when Theorem 3.2 is applicable but not Corollary 3.2.

Example 3.2. Let X = l∞ be the Banach space as in Example 2.2. Let Z be a nonempty closed subset of the subspace
{z = (z,0, . . .) ∈ l∞: z > 0}. Then Z is locally compact and so X is Kadec w.r.t. Z . Let J : Z → R be the function defined as
in Example 2.2. Then X is J -strictly convex w.r.t. Z by Example 2.2. Suppose that p > 1. Then, Theorem 3.2 is applicable
and so the set of all x ∈ X such that the problem infz∈Z {‖x − z‖p + J (z)} is well-posed is a dense Gδ-subset of Xc \ Z0. Note
that Corollary 3.2 is not applicable.
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4. Concluding remarks

Let G and E be subsets of X . Recall that G is said to be porous in E if there exist t ∈ (0,1] and r0 > 0 such that for
every x ∈ E and r ∈ (0, r0] there is a point y ∈ E such that B(y, tr) ⊆ B(x, r) ∩ (E \ G). A subset G is said to be σ -porous
in E if it is a countable union of sets which are porous in E . The notion of σ -porousity was introduced by E.P. Dolzhenko
in [15] to describe a certain class of exceptional sets which appear in the study of boundary behavior of complex function.
This notion was applied in [13] by Blasi, Myjak and Papini to the study of the existence and uniqueness problem of the
best approximation. For the further applications in approximation theory, the reader is refereed to [12,21,22,24]. In the case
when p = 1, we proved in [23] that if X is uniformly convex then the set of all points x ∈ X \ Z0 for which the problem
min J (x, Z) fails to be approximatively compact (recalling that the problem min J (x, Z) is approximatively compact if every
minimizing sequence of the problem min J (x, Z) has a converging subsequence) is a σ -porous set in X \ Z0. One key fact
used in the proof of this result is that

z0 ∈ P Z , J (x) ⇒ z0 ∈ P Z , J
(
z0 + α(x − z0)

)
for each α ∈ [0,1]. (4.1)

However, in the case when p > 1, (4.1) is no longer valid in general. For example, let X = R, Z = [0,1] and J : Z → R

be defined by J (z) = z for each z ∈ Z . Take x = 2, z0 = 1 and p = 2. Then z0 ∈ P Z , J (x). However, for α = 3
4 , one has

that P Z , J (xα) = { 3
4 } and so z0 /∈ P Z (xα). We do not know whether the set of all points x ∈ X \ Z0 for which the problem

min J (x, Z) fails to be well-posed is a σ -porous subset of X \ Z0 in the case when p > 1 and X is uniformly convex.
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