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Let X be a Banach space and Z a nonempty subset of X. Let J:Z — R be a lower
semicontinuous function bounded from below and p > 1. This paper is concerned with
the perturbed optimization problem of finding zp € Z such that ||x — zo||P + J(z0) =
inf,ez{llx — z|IP + J(2)}, which is denoted by minj(x, Z). The notions of the J-strictly
convex with respect to Z and of the Kadec with respect to Z are introduced and used
in the present paper. It is proved that if X is a Kadec Banach space with respect to Z
and Z is a closed relatively boundedly weakly compact subset, then the set of all x € X for
which every minimizing sequence of the problem min;(x, Z) has a converging subsequence
is a dense Gs-subset of X \ Zp, where Zy is the set of all points z € Z such that z is
a solution of the problem minj(z, Z). If additionally p > 1 and X is J-strictly convex with

respect to Z, then the set of all x € X for which the problem minj(x, Z) is well-posed is
a dense Gs-subset of X\ Zp.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a real Banach space endowed with the norm || - ||. Let Z be a nonempty closed subset of X, J: Z — R a function
defined on Z and let p > 1. The perturbed optimization problem considered here is of finding an element zg € Z such that

||x720llp+](20)=Zig§{llx72||"+](2)} (11)

which is denoted by minj(x, Z). Any point zg satisfying (1.1) (if exists) is called a solution of the problem min;(x, Z). In
particular, if J =0, then the perturbed optimization problem min;(x, Z) reduces to the well-known best approximation
problem.

The perturbed optimization problem min;(x, Z) was presented and investigated by Baranger in [2] for the case when
p =1 and by Bidaut in [6] for the case when p > 1. The existence results have been applied to optimal control problems
governed by partial differential equations, see for example, [2-6,8,16,26].

Assume that J is lower semicontinuous and bounded from below. In the case when p =1, Baranger in [2] proved that
if X is a uniformly convex Banach space then the set of all x € X for which the problem min;(x, Z) has a solution is a
dense Gs-subset of X, which clearly extends Stechkin’s results in [30] on the best approximation problem. Since then, this
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problem has been studied extensively, see for example [6,8,20,28]. In particular, Cobzas extended in [9] Baranger’s result to
the setting of reflexive Kadec Banach space; while Ni relaxed in [27] the reflexivity assumption made in Cobzas’ result.

For the general case when p > 1, this kind of perturbed optimization problems is only founded to be studied by Bidaut
in [6]. Recall from [23] that a sequence {z,} € Z is a minimizing sequence of the problem min;(x, Z) if

Jim (x = z0lP + J @) = inf (Ix — 2" + J ).

and that the problem min;(x, Z) is well-posed if min;(x, Z) has a unique solution and every minimizing sequence of the
problem min;(x, Z) converges to this solution. It was proved in [6] that if X is a uniformly convex Banach space and Z
is a bounded closed subset, then the set of all x € X such that the problem min;(x, Z) is well-posed is a dense G;-subset
of X\ Z. Recently, for the special case when p =2, Fabian proved in [17] that if X is reflexive and Kadec, then the set of all
x € X such that min;(x, Z) has a solution is a residual set of X.

The purpose of the present paper is to continue to carrying out investigations in this line and to try to extend the
results due to Bidaut in [6] to the general setting of nonreflexive Banach spaces. More precisely, we introduce the notions
of the J-strict convexity with respect to Z and of Kadec property with respect to Z, and prove that if Z is a nonempty
closed, relatively boundedly weakly compact subset of X (not necessarily bounded) and that X is a Kadec Banach space with
respect to Z, then the set of all x € X for which every minimizing sequence of the problem minj(x, Z) has a converging
subsequence is a dense Gs-subset of X \ Zg, where Zj is the set of all points z € Z such that z is a solution of the problem
minj(z, Z). If X is additionally assumed to be J-strictly convex with respect to Z and p > 1, then we further show that the
set of all x € X for which the problem minj(x, Z) is well-posed is a dense Gs-subset of X \ Zo. Examples are provided to
illustrate that our results obtained in the present paper extend the earlier ones even in the case when p =1.

2. Preliminaries

We begin with some standard notations. Let X be a Banach space with the dual X*. We use (-,-) to denote the inner
product connecting X* and X. The closed (respectively open) ball in X at center x with radius r is denoted by Bx(x, 1)
(respectively U(x,r)). In particular, we write By = Bx (0, 1) and B* = Bx+ for short, and omit the subscript if no confusion
caused. For a subset A of X, the linear hull and the closure of A are respectively denoted by span A and A. We first recall
the notation of Fréchet differentiability and a related important proposition, see for example [29].

Definition 2.1. Let A be an open subset of X and f: A — R a real-valued function. Let x € A. f is said to be Fréchet
differentiable at x if there exists an x* € X* such that
L fO) - F) Xy —x)
lim =0.
y—x ly —xIl

x* is called the Fréchet differential at x which is denoted by D f(x).

Proposition 2.1. Let f be a locally Lipschitz continuous function on an open subset A of X. Suppose that X is a reflexive Banach space.
Then f is Fréchet differentiable on a dense subset of A.

The following notions are well-known, see for example, [7,25].

Definition 2.2. X is said to be

(i) strictly convex if, for any x1, xo € B, the condition ||x; + x2|| =2 implies that x; = x;
(ii) uniformly convex if, for any sequences {x,},{yn} € B, the condition lim,—« [|X, + Ynll = 2 implies that
limy s o0 |Xn — ynll =0;
(iii) (sequentially) Kadec if, for any sequence {x,} C B, xg € B with ||x;|| — [Ixo||, the condition x;, — xo weakly implies that
limp— oo 1X7 — Xoll = 0.

The notions in the following definition are the refinements and extensions of the corresponding ones in Definition 2.2,
where part (i) is known in [1]. Let Z be a subset of X and ] be a real-valued function on Z.

Definition 2.3. X is said to be

(i) strictly convex with respect to (w.r.t.) Z, if, for any z;, z; € Z such that ||[x—2z;|| = ||[x—z,|| for some x € X, the condition
X —z1 +x— 22l = X — z1]| + [|X — z2|| implies that z; = z3;

(ii) J-strictly convex with respect to (w.r.t.) Z, if, for any z1, zp € Z such that ||x — z1|| = ||x — 22| for some x € X, the
conditions that ||x —z1 + x — z2|| = ||x — z1|| + |x — z2|| and J(z1) = J(zz) imply that z; = z;

(iii) J-strictly convex, if X is J-strictly convex w.r.t. X;
(iv) (sequentially) Kadec with respect to (w.r.t.) Z, if, for any sequence {z,} € Z and zp € Z such that there exists a point
x € X satisfying lim,_, 4o [|X — zn|| = |IX — 2o||, the condition z,;, — zp weakly implies that lim,_,  ||zy — zo|| = 0.
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In particular, in the case when Z = X, the strict convexity w.r.t. Z (respectively the Kadec property w.r.t. Z) reduces
to the strict convexity (respectively the Kadec property), while in the case when ] =0, the J-strict convexity w.r.t. Z
reduces to the strict convexity w.r.t. Z. Moreover, the following implications are clear for any subset Z of X and real-valued
function J on Z:

the strict convexity — the strict convexity w.r.t. Z

4 4
the J-strict convexity = the J-strict convexity w.r.t. Z (2.1)
and
the Kadec property — the Kadec property w.r.t. Z. (2.2)

Note that X is Kadec w.r.t. Z provided that Z is locally compact. The following example presents the cases when X is
J-strictly convex w.r.t. Z and/or Kadec w.r.t. Z but not strictly convex and/or Kadec. Recall from [18,19] that X is said to be
uniformly convex in every direction if, for every z € X\ {0} and € > 0, there exists a § > 0 such that |A| <€ if [|x]| =y =1,
x—y =2z and %Hx—f— y|l > 1—46. From [11], it follows that X is uniformly convex in every direction if and only if, for any
sequences {x,} € B and {y,} € B, the conditions {x, — y,} C span{z} for some z € X and ||x, + yn| — 2 imply ||x, — yn|| — O.

Example 2.1. Let Y be a Banach space and let X =l (Y) denote the Banach space of all sequences (x;) of Y such that
sup; [|x;]| < oo with the norm || - ||« defined by

[Xlloo = sup [Ixi||  for each x = (x;) € oo (Y).
1

Let X, =1.(Y) be the subspace of I (Y) given by
le(Y) = {x= () €loo(Y): {x;}ien is totally bounded}.

Clearly, Y can be isometrically embedded in X, by the mapping y — (x,x, ...,) for each y € Y. Then the following assertions
hold.

(1) If Y is Kadec, then X, is Kadec w.r.t. Y.

(2) If Y is strictly convex, then X, is strictly convex w.r.t. Y.

(3) If Y is uniformly convex, then X is Kadec w.r.t. Y.

(4) If Y is uniformly convex in every direction, then X is strictly convex w.r.t. Y.

(5) Xc contains an isometric copy of I, and hence X and X, are neither Kadec nor strictly convex even if Y is uniformly
convex.

Proof. Recall that a subset A of a Banach space is totally bounded if and only if its closure A is compact. Thus, the asser-
tion (5) is clear because, for some fixed y € Y with ||y|| =1, the mapping (¢;) — (;y) represents an isometric embedding
of I in Ic(Y) (noting that {o;y}icy is totally bounded for each (@;) € lx).

Below we only verify the assertion (1) because the other assertions can be proved similarly. Let {z,} €Y and zp € Y be
such that limy o |X — Znlloo = l1X — Z0|loo > O for some x = (x;) € I(Y) and z, — zo weakly. Let x* € [.(Y)* with ||x*|| =1
be such that (x*, (x — z9)) = ||x — zo||co- Then

X = zn + X — Zolloe = (X", (X — 20 + X — 20)) > 21X — 20| 0.

Thus ||x — zp + X — Zplloo = 21X — Z0|lco- Note that {x;};icn, the closure of {x;}icn, is compact since {x;}icy is totally bounded.
Then, by the definition of || - ||, there exists a sequence {a,} contained in {x;}ien such that

12X — zn — z0lloo = 120y — zn — 2z0|] foreachn=1,2,....

Moreover, without loss of generality, we may assume that a, — ag for some ag € {x;}ien. Since

|112an — zn — 20|l — 11200 — zn — Zol|| < 2llan — aol,
it follows that

lilgn” (ag — zn) + (a0 — 20)| = lim |28, — zo — 2ol = lim [|2X — 2o — zo |00 = 2[1X — 20| o- (2.3)
Note that |lag — zn|l < ||X — 2ollco and |lag — zoll < ||X — 2o |lco- This together with (2.3) implies that

llao — zoll = lIx — Zolloo and ~ lim flao — zn|l =[x — Zoloc-

Since ag — z, — ag — zg weakly and Y is Kadec, we have that ag — z; — ap — zp and hence |z, — zo|| — 0. This completes
the proof of the first assertion. O

Note that X is J-strictly convex w.r.t. Z if ] is one to one on Z. One example for which X is J-strictly convex w.r.t. Z
but not strictly convex w.r.t. Z is as follows.



L.-H. Peng et al. / J. Math. Anal. Appl. 346 (2008) 384-394 387

Example 2.2. Let X be the Banach space I, with the sup-norm defined by |x| = sup; |c;| for each x = (¢;) € I. Let Z :=
{z=(t,0,...) € X: t >0} and J: Z — R the function defined by J(z) = ||z|| for each z € Z. Then ] is one to one on Z.
Hence X is J-strictly convex w.rt. Z. Let z1 =(1,0,...)€ Z, z2=(2,0,...) € Z and x=(1,1,...) €ls. Then ||x — z1|| =1,
lx—2z2]l=1 and ||x — z1 + x — z2|| = 2. This means that X is not strictly convex w.r.t. Z because z{ # z3.

We end this section with the factorization theorem due to Davis, Figiel, Johnson and Pelczynski in [10], see also [14],
which will play an important role for our study in the next section.

Proposition 2.2. Let A be a weakly compact subset of a Banach space X and let Y = span A. Then there exist a reflexive Banach space
R and a one-to-one continuous linear mapping T : R — Y such that T (Bg) 2 A, where By denotes the unit ball in R.

3. Minimization problems

Let p > 1. For the remainder of the present paper, we always assume that Z is a nonempty closed subset of X, J: Z — R
is a lower semicontinuous function bounded from below. Without loss of generality, we may assume that

inf J(z) > 0. (3.1)
zeZ
Define the function ¢ : X — R by
1
Px) = in£{||x—z||p+](z)}l’ for each x € X. (3.2)
ze
Let x € X. Then zg € Z is a solution to the problem minj(x, Z) if and only if zq satisfies that

1
(IIx = zolI” + J(20)) ? = @ (x). (33)
The set of all solutions to the problem min;(x, Z) is denoted by Pz j(x), that is,
1
Pz x)={z0€Z: {lx—20l” + J(20)}? = p(x)}.
Lemma 3.1. Let ¢ : X — R be defined by (3.2). Then

lpx) — )| <lIx =X foranyx,x € X. (3.4)

Proof. Let x, X' € X. It suffices to verify that
PX) —p(X) < lIx =X (3.5)
Since J(z) > 0 for each x € Z by (3.1), we have that, for each z € Z,

==

(Ix—2I” + J@)? < ((Ix= X1+ 1¥ = 2I)" + (0 + J@)7)")
<lx=xX1+(IX —zI” + J(@)?. (3.6)
It follows that
H _ p 1 _ ] H /_ p 1
Zlgg(l\x ZIP + J(@)P < |x X||+212§(||x zZ|IP + J(2)?

and (3.5) is proved. O

Lemma 3.2. Let Y be a subspace of X, x € Y and y* € Y*. Suppose that

(¢(X+th) -
t

lim
t—0t

(y*,h)) =0 foreachheY. (3.7)

Let {z4} € Z be a minimizing sequence of the problem min  (x, Z) such that b(x) := limp_, o0 [|X — zy|| exists. Then

Iy < 2@

= eP1(x)" (3.8)

Proof. Let t > 0 and € > 0. Then, there exists N > 0 such that

1
(Ix = zall” + J(z0))? < @(x) +te for eachn > N. (3.9)
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Let h € Y and n > N. Then, in view of the definition of ¢, one has that

1 1
P +th) — ) < (Ix+th —zglIP + J(zn))? — (Ix =zl + J(zn)) P +te.
Write s; = ||x +th — z;|| — ||x — z]|. Then,
st < tllh]l.
Define the function y; : [0, +00) — R by
1
Ya(s) =[(Ix — zull +s)p + J(zn)]?  for each s € [0, +00).
Then
p -1
Ve = [(1x = zall +5)" + J@)] ? (Ix—2znll +5)""" for each s € [0, +00),
It follows from the Mean-Value Theorem that there exists 6 € (0, 1) such that

n — (0
w = [(Ix = zall +650)" + J zn)]

This together with (3.11) implies that

1-p _
7 (Ilx = zn |l +6s¢)” '

1 (50) — V(0 1 _

IO Z IO [ (1~ zall + 1R + Ja] 7 (12l + 1)~ .
Hence

. n — (0 1-p _

Jtim YEOZIE) [0 4-h)? + 9700~ b2 00] 7 (b -+ 1) I
and

B —1

i im0 =10 _ bl

t—0+t n—>-+oo t (pP*] (x)
By (3.10),

@x+th) —eX) <y(s) —y(0) +te;
hence
@x+th) —eX) < Yl — ¥n(0) te

X

t t
Combining this with (3.14), we get that

_ _ p-1
lim L& —e®) < lim lim Yn(st) — ¥n(0) < bP~1(x)
t—0+ t t— 0+ n—>+00 t eP~1(x)

Ihil+€

and so

_ p—1
lim @& +th) —px) _ bP7 (%)

< h|.
t—0+ t P~ 1(x) Il

This together with assumption (3.7) yields that
. bP~ 1 (x)

Yo < ——=—~

PP~ (%)
and (3.8) is seen to hold because h €Y is arbitrary. O

lIhll

Let g > 1 be such that % + % =1 and let a: B* — R be the function defined by

1
a(x*) = (1— [|x*|9)¢ for each x* € B*.
For § > 0, set
1
Z;x,80)={zeZ: (Ix—zI" + ] 2)? < p®) + 6}
and Zg={ze Z: ze Pz (2)}. Define for eachne N

there exist § > 0 and x* € B* such that

HY(Z)={xe X\ Zo: Ezin(f6){(X*’X_Z>+a(x*)];(z)}>(1_2_n)¢(x) .
y4 ]X,

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Furthermore we write

o0
HY(Z) = ﬂ HY(2) (3.19)
n=1
and
there is x* € B* such that for each € € [0, 1] there is § > 0
— . 1
M#(2) = {x € X\ Zo: satisfying inf {(x*,x—2) +a(x*)J? ()} > (1 — €)p(x)
zeZ(x,0)
Obviously,

M¥(Z) Cc H?(Z). (3.20)
Lemma 3.3. Let Z be a relatively boundedly weakly compact subset of X. Then H? (Z) is a dense Gs-subset of X \ Zj.

Proof. We first verify that H?(Z) is a Gs-subset of X. By (3.19), we only need to prove that HY (Z) is open for each n. For
this end, let n € N and x € H? (Z). Then there exist § > 0 and x* € B* such that

B = zezi?(a,a)“x*’ x—2)+ax")J? (2} - (1-2"")px) > 0. (3.21)

Let A > 0 be such that A < min{8/2, 8/2}. It suffices to show that U(x, 1) C H,‘f(Z). To do this, let y e U(x, 1) and §* =8 —2A.
Let ze Z;(y,8*) be arbitrary. Then

(ly —zI” + J@)"? < o(y) + 5*. (3.22)

It follows that

(x—zIP + J@)""" < (ly - 2IP + J@) """ + Iy — 2l < 9(y) + 5% + 4
since ||x — y|| < A. By (3.4), one has that
(Ix=2II” + 2)"P <o) + 8" + 1 < 9X) +8* + 21 = p(x) + 6.
Hence z € Z;(x, §). It follows from (3.21) that
& x—2)+ax) P2 = B+ (1-2"")px). (3.23)

Therefore,

&y —2)+ax) P (@) = (x*.x—2) +a(x*) ]'P(2) + (x*. y — x)
>B+(1-2")p —lx—yl
>B+(1-2""pW) —lIx—yll - (1-27")Ix— |
>(1-2"e» +B—2x
> (1-2"")e(y),

where the first inequality holds because of (3.23), the second one because of (3.4) and the last two hold because y € U(x, 1)
and A < min{§/2, 8/2}. Consequently,

i * *\ 11/p __9—n
zezi?yf,m{("’y 2) +a@) P @)} > (1-27")e). (3.24)

as ze Zj(y, %) is arbitrary. This means that y € H,‘f(Z) and so U(x, 1) C H,‘f(Z) holds.

Now we are to prove the density of H?(Z) in X\ Zy. By (3.20), we only need to prove that M¥(Z) is dense in X. To this
end, let xoe X\ Zpand 0 <€ < % Set N = ||lxo|| +4¢(x0) + 1. Let K denote the weak closure of the set (B(0, N) N Z) U {xo}
and Y =spanK. Then K is a weakly compact subset of Y. From Lemma 2.2, there exist a reflexive Banach space R and a
one-to-one continuous linear mapping T : R — Y such that T(Bg) 2 K. This implies that

T(R)DY. (3.25)
Define the function f7 : R — [0, +00) by
fz(u) =¢@xo+ Tu) for each u e R. (3.26)
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Then, by (3.4),
|fz(u) — fz(V)] = |p(Xo + Tu) — p(xo + Tv)| < [[Tu = Tv|| < [IT|[lu — v]| (3.27)

for any u, v € R; hence f7 is Lipschitz continuous on R. Since R is reflexive, Lemma 2.1 is applicable to concluding that
f7 is Fréchet differentiable on a dense subset of R. Therefore, there exists a point v € R such that ||T||||V|| <€ and f; is
Fréchet differentiable at v with the derivative D fz(v) = v*. Then

lim fz(v+uw) = fz(v) — (v*,u)
u—0 llull

—0. (3.28)

Therefore, for each r > 0,

i fz(v+tv) — fz(V) — (v*, tv)
im

t—0t t

=0 (3.29)

holds uniformly for all v € Bg(0,r). In particular, this implies that

(v*,u) <||Tu| for each u € R. (3.30)
Define a linear functional y* on TR by

(y*, Tu) = (v*,u) for each u e R. (3.31)

Then y* € T(R)* by (3.30) and hence y* € Y* by (3.25). Let x =xg+ Tv. Then x € U(xg, €) and x € K+ Tv C T(R). Moreover,

1T = | T "% + 7] < | T x| + 171 <1+ HGT“ (332)

In view of the definition of f, one has by (3.29) and (3.31) that
POALTY) — () = (y*.tTv) _

tir(r)lJr . (3.33)
holds uniformly for all v € Bg(0, r). By Hahn-Banach theorem, y* can be extended to x* € X* such that

Ix*I = ly* and (x*, Tu)=(v*,u) for each ueR. (3.34)
We claim that, for each ¢ > 0, there is § > 0 such that

(X", x—2z)+ a(x*)]% (2) > (1 —¢/2)p(x) foreach ze Zj(x,3). (3.35)
Granting this, x € M¥(Z) and the proof is complete since ||x — xo|| < €.

To verify the claim, suppose on the contrary that there exist an €9 > 0 and a sequence {z;} in Z such that

1im (I~ 2l + J @) = p() (336)
and

(x*, x — zp) +a(x*)]% (zn) < (1 —&0/2)¢(x) for each n e N. (3.37)
Without loss of generality, we may assume that b(x) :=limy || x — z,|| exists and

o®) < (Ix—zall” + j(zn))% < @) +e€ foreachneN. (3.38)

Hence, by (3.4), we get that, for each n € N,

1
X0 — znll < (Ix — zall” + J(zn))? + 11X — Xoll < @(X0) + 2[x — Xo|l + € < @(x0) + 1

(noting that ||x — xg|| < € and € < %). Hence, ||zy]| < ¢(x0) + [Ix0ll + 1 < N and {z,} € K. Since K C T(Bg), it follows
that || T~1z,| <1 for each n € N. This together with (3.32) implies that {T~!(x — z,)} € Bg(0, 1), where r = ”ETH + 2. Take

{tn} € (0, 1) such that t,% > (Ix—zallP + ](zn))% — @(x) and t, — 0. Then, by (3.33), one gets that

(‘/’(X +tn(zn — X)) — @(x)
ty

lim
n—oo

— (X", zn — x)) =0. (3.39)

For notational convenience, we write

M@z t)=|(1-t(x—2) ”p + J(z) foreachzeZ andte(0,1). (3.40)
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Let n € N. Then,

_ _ p _ _ _ =1y _
(1% + ta(zn — %) — 24 ||p+](zn))% _ (1 —tn)(x Zn)llp;L J(zn) _ (1=t — ta)(x — zp) || HIIX Zy|| +J(Zn).
(M(zy,ty)) P (M(zn,tp)) P
Consequently,

P(x+ta(zn — %) — 90 < (|x+ tn(za — %) — zn| " + J(zn))% -9

1A =) & = z) 1PN = Znll + J (20) 1d —t) (X =z IP " lx — za|
= - —ty )

= ©(x) = (3.41)
(M(zn, tg)) P (M(zn, tg)) P
By Holder inequality, we have
_ P 1 1
11 =t — 20| 7 Ix = zall + J 20) = 1% — zall [ (4 = ta) X — 2a)| ¥ + J 7 20) ] (Z0)
1 1
< (Ix = zall” + J @) (| (1 = t) x — z0) |* + J(z0)) 7
1 p=1
= (Ix = zall? + J(z0)) ? (M(zn, tn)) * . (3.42)
Hence,
]_ n — 4n p_l — 4n n =
(1 —ta)(x — zp)|| II);1 Zull + J(zn) o) < (”X_Zn“p+](zn)); — e <t (3.43)
(M(zy,tp)) 7
Combing this and (3.41), we obtain that
_ _ _ _ =1y —
Hmsup(w(XHn(zn X)) — @) N (1 —tp)(x —zp) |l Hllx Zn”) <o
oo fn (M(zn,ta)) 7
By (3.39), one has that
)P 1y — p
1iminf<<x*,x—z,,) Gl Vi pf”” )20. (3.44)
e (M(zn.tn)) 7
Note that
lim M(z, ta) =P (x) and  lim |[x —z; || = b(x). (3.45)
It follows from (3.44) that
e bPT()
x|l > 7T ) (3.46)
and
liminf((x*, x — z )+a(x*)j%(z ) = LAV +a(x*) (¢P (x) —b”(x))% (3.47)
n—oo ’ n nj = (pP—l(x)
because
Jim ] (zn) =nan;o(IIX—znllp +J(zn) = lim |Ix = za]|P = ¢ (x) = bP (x). (3.48)

On the other hand, by (3.25) and (3.33), one sees that (3.7) holds. Note that {z;} € Z is a minimizing sequence of the

problem min;(x, Z). Hence we can apply Lemma 3.2 to get that ||y*|| < b2 ) Hence ||x*| < b2 ) thanks to (3.34).

PP eP=1(x)
Combing this with (3.46), we have that
bP=1(x)
lx*|| = — - (3.49)
YP~1(x)

Thus, by definition,

(@P(x) — bP (x))7

= (1 — *ql_
0t = (1= I = =— 2=

It follows from (3.47) that
lglminf((x*, X—2zy) +a(x*)]% (Zn)> = p(x),
—00

which contradicts (3.37) and completes the proof. O
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Lemma 34. Let Z be a relatively boundedly weakly compact subset of X. Suppose that X is a Kadec Banach space w.r.t. Z. Let
x € H?(Z). Then, any minimizing sequence of the problem min  (x, Z) has a converging subsequence.

Proof. In view of the definition of H?(Z) in (3.19), there exist a positive sequence {5,} and a sequence {x;;} € B* such that

inf  {({xr,x—2z)+a(x; )]% ()} > (1-2"")px) for eachmeN (3.50)
2€Z;(x8m) m ' ’

Let {z,} be any minimizing sequence of the problem min;(x, 2), i.e.,

1
Jim (= za]l” + J (z0)) * = @(x). (351)
Without loss of generality, assume that
8 <8m and zpeZp(x,8m) ifn>m, (3.52)

and that b(x) = limp_  [|Xx — zn|| exists. Then lim,_, o J(z;) exists by (3.51). Note that {z,} is bounded and Z is relatively
boundedly weakly compact. We also assume that, without loss of generality, z;, — zo weakly as n — oo for some zy € X.
Then we have that

1 1
(1% =201 + lim J )" < lim (Jx = z0]1” + Jz0)) ? = (). (3.53)
Let m,n € N satisfy n > m. Then, by (3.50) and (3.52),
1
(X x—za)+a(xy) 7 (za) > (1=27")p(x) (3.54)
and so
1
* * : 7 —m
<xm,x—zo>+a(xm)n£rgojp(zn) > (1-2"")p®). (3.55)

Using Holder inequality, we have

o=

Il = z0ll + () tim 12 ) < (| + (@(5))")7 - (lx = 201 + lim_ Jz)”. (3.56)
Since
(5 X = 20) - a(x5) lim 7 (z) < x5 X = 200l +a(xi) lim 7 (@), (3.57)

it follows from (3.56) that

==

. 1 « « 1 .
(i X = 20) - a(xp) Jim 7 @) < ([ |* + (a(5))") T - (Ix = 2ol + lim J@))” (358)
Noting that (||x;;,[|7 + (a(x}))? =1 and (3.53), we get that

1
1 .
(i X = 20) - a(xs) im 7 z) < (I1x = 20l1” + lim J(zn))" <@ (x).

This together with (3.55) implies that
1
(=20l + lim J@)" =, (3.59)
Combining this with (3.51), one sees that
lim |x — zp|| = [Ix — zo||. (3.60)
n—oo

Noting that X is Kadec w.r.t. Z and z; — zo weakly, it follows that lim,_,« ||Zo — zz|| =0 and so zp € Z, which completes
the proof. O

Note that, for any x € X, if every minimizing sequence of the problem minj(x, Z) has a converging subsequence, then
Pz, ;j(x) # . Thus, the following theorem is a direct consequence of Lemmas 3.3 and 3.4.

Theorem 3.1. Let Z be a relatively boundedly weakly compact subset of X. Suppose that X is Kadec w.r.t. Z. Then the set of all x € X
such that Pz j(x) # @ and every minimizing sequence of the problem min (x, Z) has a converging subsequence is a dense Gs-subset
OfX \ Zp.

The following corollary is direct from (2.2) and Theorem 3.1.
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Corollary 3.1. Let Z be a relatively boundedly weakly compact subset of X. Suppose that X is Kadec. Then the set of all x € X such that
Pz j(x) # @ and every minimizing sequence of the problem min (x, Z) has a converging subsequence is a dense Gs-subset of X \ Zo.

Theorem 3.2. Let Z be a relatively boundedly weakly compact subset of X. Suppose that X is both Kadec w.r.t. Z and | -strictly convex
w.r.t. Z. Suppose further that p > 1. Then the set of all x € X such that the problem minj(x, Z) is well-posed is a dense Gs-subset
of X\ Zp.

Proof. By Lemma 3.3, HY(Z) is a Gs-subset of X \ Zgp; while, by Lemma 3.4, for each x € HY(Z) and any minimizing
sequence for the problem minj(x, Z) has a converging subsequence and so Pz ;(x) # . Thus, we only need to prove that
Pz j(x) is a singleton for each x € H?(Z). To this purpose, let x € H?(Z) and z1,z € Pz j(x). Then, by the definition
of H¥(Z), for each n € N, there exists x;; € B* such that

(x5 x—zi)+a(x) P @) > (1 —2")p(x) for eachi=1,2. (3.61)
Without loss of generality, we may assume that {x;;} converges weakly* to some x* € B*. Then a(x*) > limy_, o a(x;;). Hence
(x*,x—zi) + a(x*)]%(zi) >@(x) foreachi=1,2. (3.62)
It follows that
(0 X — 21 1~ 22) + a6 (JF (21) + ] 7 (22)) > 2000,
Using Holder inequality and the fact that ||x*||7 +a(x*)? =1, one has that
2000 < (Ix—21+x— 22" + (J7 (&) + J7 (22))")
< (=21l + Ix = 220)” + (J7 20) + 7 22))")?
< (k=217 + J@)? + (Ix— 22l + J(22))?
20(%). (3.63)

Consequently,

IX—z1+x— 22l = Ix — 211l + lIx — z2]. (3.64)
Furthermore, since p > 1, (3.63) implies that

Ix—zill=lx—2zIl and J(z1)=J(z2). (3.65)

Thus the assumed J-strict convexity of X together with (3.64) and (3.65) implies that x — z; = x — z3; hence zy = z,. This
completes the proof. O

The following corollary is a direct consequence of (2.1), (2.2) and Theorem 3.2.

Corollary 3.2. Let Z be a relatively boundedly weakly compact subset of X. Suppose that X is Kadec and strictly convex. Suppose
further that p > 1. Then the set of all x € X such that the problem min  (x, Z) is well-posed is a dense Gs-subset of X \ Zo.

The following example illustrates that our results obtained in the present paper are proper extensions of earlier results
in [9,27] even in the case when p =1.

Example 3.1. Let Y be a uniformly convex Banach space and let X = I, (Y) be the Banach space defined as in Example 2.1.
Let Z be a nonempty closed subset of Y and J:Z — R a lower semicontinuous function bounded from below. Then Z is a
relatively boundedly weakly compact subset of X. Furthermore, X is both strictly convex and Kadec w.r.t. Z by Example 2.1.
Thus Theorems 3.1 and 3.2 are applicable. Therefore, the set of all x € [o(Y) such that Pz j(x) # ¢ and every minimizing
sequence of the problem infzcz{||x —z||” + J(2)} has a converging subsequence is a dense Gs-subset of [, (Y)\ Zg. Moreover,
if p > 1, then the set of all x € l,o(Y) such that minj(x, Z) is well-posed is a dense Gs-subset of [,(Y) \ Zp. Note that in
the case when p =1, the corresponding results in [9,27] are not applicable because X is not Kadec.

The following example provides the case when Theorem 3.2 is applicable but not Corollary 3.2.

Example 3.2. Let X =, be the Banach space as in Example 2.2. Let Z be a nonempty closed subset of the subspace
{z=(z,0,...) €le: z> 0}. Then Z is locally compact and so X is Kadec w.r.t. Z. Let J: Z — R be the function defined as
in Example 2.2. Then X is J-strictly convex w.r.t. Z by Example 2.2. Suppose that p > 1. Then, Theorem 3.2 is applicable
and so the set of all x € X such that the problem inf,z{||x — z||P + J(2)} is well-posed is a dense Gs-subset of X\ Zg. Note
that Corollary 3.2 is not applicable.
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4. Concluding remarks

Let G and E be subsets of X. Recall that G is said to be porous in E if there exist t € (0, 1] and rg > 0 such that for
every x € E and r € (0, 1] there is a point y € E such that B(y,tr) S B(x,r) N (E \ G). A subset G is said to be o-porous
in E if it is a countable union of sets which are porous in E. The notion of o -porousity was introduced by E.P. Dolzhenko
in [15] to describe a certain class of exceptional sets which appear in the study of boundary behavior of complex function.
This notion was applied in [13] by Blasi, Myjak and Papini to the study of the existence and uniqueness problem of the
best approximation. For the further applications in approximation theory, the reader is refereed to [12,21,22,24]. In the case
when p =1, we proved in [23] that if X is uniformly convex then the set of all points x € X \ Zo for which the problem
min; (x, Z) fails to be approximatively compact (recalling that the problem min;(x, Z) is approximatively compact if every
minimizing sequence of the problem min;(x, Z) has a converging subsequence) is a o-porous set in X \ Zo. One key fact
used in the proof of this result is that

z0e Pz ;(x) = 2z9€ PZJ(ZO +o(x— zo)) for each « € [0, 1]. (4.1)

However, in the case when p > 1, (4.1) is no longer valid in general. For example, let X =R, Z=[0,1] and J:Z —> R

be defined by J(z) =z for each ze€ Z. Take x =2, zo =1 and p = 2. Then zg € Pz ;(x). However, for o = %, one has

that Pz j(xq) = {%} and so zp ¢ Pz(xy). We do not know whether the set of all points x € X \ Zg for which the problem
min; (x, Z) fails to be well-posed is a o-porous subset of X \ Zg in the case when p > 1 and X is uniformly convex.
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