Journal of King Saud University — Engineering Sciences (2014) 26, 93-102

Journal of King Saud University — Engineering Sciences

King Saud University &

www.ksu.edu.sa
www.sciencedirect.com

ORIGINAL ARTICLE

Osmotic dehydration of some agro-food tissue pre-treated
by pulsed electric field: Impact of impeller’s Reynolds
number on mass transfer and color

E. Amami *°, L. Khezami *¢, A.B. Jemai *%*, E. Vorobiev ?
9 9 9

& Département Génie Chimique, Centre de Recherche de Royallieu, Université de Technologie de Compicgne, BP 20529-60206,

Compiegne Cedex, France

® Unité de Recherche en Mécanique des Fluides Appliquée et Modélisation, Ecole Nationale d’Ingénieurs de Sfax, B.P ‘W’ 3038

Sfax, Tunisia

¢ Al-Imam Mohammed ibn Saud Islamic University, College of Sciences Chemistry Department, P.O. Box 90950, Riyadh

11623, Saudi Arabia

4 King Saud University, College of Engineering, Chemical Engineering Dept., P.O. Box 800, Riyadh 11421, Saudi Arabia

Received 21 April 2012; accepted 7 October 2012

Available online 16 October 2012

KEYWORDS

Solid-liquid mass transport;
Pulsed electric field treat-
ment;

Kinetics of water and solute
transport;

Mass transfer rate

Abstract Tissues of apple, carrot and banana were pre-treated by pulsed electric field (PEF) and
subsequently osmotically dehydrated in an agitated flask at ambient temperature using a 65%
sucrose solution as osmotic medium. The effect of stirring intensity was investigated through water
loss (WL) and solid gain (SG). Changes in product color were also considered to analyze the impact
of the treatment. The impeller’s Reynolds number was used to quantify the agitation. The Reynolds
number remained inferior to 300 thus displaying laminar flow regime. Water loss (WL) and solid
gain (SG) increase with the increase of Reynolds number. Mass transfer in osmotic dehydration
of all three test particles has been studied on the basis of a two-exponential kinetic model. Then,
mass transfer coefficients were related to the agitation intensity. This paper shows that the proposed
empirical model is able to describe mass transfer phenomena in osmotic dehydration of these tis-
sues. It is also shown that a higher agitation intensity improves both the kinetics of water loss
and solid gain.

© 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University.

1. Introduction

* Corresponding author. Tel.: +966 1 4697373 Recently, the development of intermediate moisture foods for
E-mail address: abessadok @ksu.edu.sa (A.B. Jemai). human consumption produced by osmotic dehydration has re-
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processed products. The use of osmotic dehydration in the
food industry has several advantages such as higher nutritional
contents than any other drying methods (Raoult-Wack, 1994).
Osmotic dehydration minimizes the thermal damage on color
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and flavor, prevents enzymatic browning, limiting the need to
use sulfur dioxide and increases nutrient retention during sub-
sequent air drying (Ponting, 1973; Islam and Flink, 1982;
Sapers and Ziokowski, 1987; Khin et al., 2005). As a result,
by choosing the appropriate conditions, the final product qual-
ity can be controlled (Krokida et al., 2000). The color of food
plays an important role in appearance, processing, and accept-
ability of food materials (Krokida et al., 2001). The color of
any product may be represented in terms of tristimulus L-,
a-, and b-values, or combination thereof, depending upon
the nature of pigment present in the food material (Rocha
et al., 1993).

Osmotic dehydration (OD) is often applied as a pre-treat-
ment process. The complex cell wall structure of the food acts
as a semi-permeable membrane, which is not completely selec-
tive. The consequence is counter-current mass transfer flows:
diffusion of water from food to solution and diffusion of solute
from solution to food (Kowalska and Lenart, 2001;
Panagiotou et al., 1998). The mechanisms of water migration
and solid transport are complex in nature and are generally
indirectly deduced during studies. For instance, to describe
mass transfer, Fick’s approximation is traditionally used.
Some simplifications are normally assumed namely the use of
effective diffusion coefficient which takes into account all
transport mechanisms contributing to diffusion (Moreira and
Sereno, 2003). Mavroudis et al. (1998) indicate free convection
as a possible mechanism concerning solute transport during
the first stage in OD of apple tissue, while diffusion dominates
at later stages.

OD is usually conducted with agitation of the liquid solu-
tion in order to reduce the external resistance and increase
the overall mass transfer rate (Moreira and Sereno, 2003).
Ponting et al. (1966) and Bongirwar and Sreenivasan (1977)
have studied the effect of agitation. They showed that agitated
samples exhibited greater weight loss than non-agitated ones.
Raoult-Wack (1994) and Garrotte et al. (1992) have studied
the effect of agitation on both water loss and solid gain.
Mavroudis et al. (1998) attempted to quantify the agitation
in engineering terms, that is, in terms of Reynolds number.
The mass transfer rate was found to be a function of many
variables such as the pre-treatment, temperature, concentra-
tion and composition of osmotic solution, the immersion time,
the nature and geometry of food and the solution to food ratio
(Lerica et al., 1985; McMinn and Magee, 1996; Forni et al.,
1997). It was also stated that a Pulsed Electric Field (PEF)
pre-treatment may be effective to enhance water and solute
transfer operations (Jemai and Vorobiev, 2003; Khezami
et al., 2010) and in particular to osmotically remove water
from fruits (Rastogi et al., 1999; Ade-Omowaye et al., 2001;
Amami et al., 2005). More recently, Grimi et al. (2011) pre-
sented an extensive work on the impact of PEF on apple juice
expression by studying several PEF + pressing test scenarios.

This study aims at evaluating the applicability of PEF for a
subsequent osmotic dehydration of porous fruits such as apple
and banana disks and vegetables such as carrot disk. In addi-
tion, it is desired to determine the effect of agitation on mass
transfer phenomena and color characteristics in the osmotic
dehydration. The OD kinetics were studied on the basis of a
two-exponential kinetic model developed earlier by Amami
et al. (2005) for a better consideration of the initial mass trans-
fer. Measurement data were also analyzed on the basis of the

solution of Fick’s law for unsteady state mass transfer in infi-
nite slab. Coefficients of transfer of water and solid were thus
predicted. Mass transfer coefficient was related to the
Reynolds number and the coefficient of diffusion.
Experimental method is based on the evaluation of solution
concentration, in addition to the weight loss and final moisture
of a single sample.

1.1. Theoretical aspects

Egs. (1) and (2) show a two-exponential kinetic model, pro-
posed earlier for OD combined with PEF (Amami et al.,
2005) and used here to describe the mass transfer. This model
involves two simultaneous processes with different kinetic
coefficients: (a) convection, with fast solute transfer from the
humidified solid surface and from outer broken cells to the sol-
vent; (b) diffusion, with a slower solute transfer from the inside
of the solid.

WL, — WL _ _

WL L= C e Xl 4 CpoeKat (1)
SG.. — SG . )

G = Cal ™ 4 G 2)

where WL and SG (%) represent the standard average of trip-
licate values of water loss (WL) and solute gain (SG), respec-
tively; The subscripts co and ¢ in Egs. (1) and (2) represent
WL and SG values at equilibrium and at actual time, respec-
tively. The equilibrium water loss (WL,.) and equilibrium solid

‘“T) against WL

and % against SG. C., and C., are respectively the final per-
centage of water loss and solid gain in the food due to the con-
vection stage alone; C, and C, are the final percentage of
water loss and solid gain in the food due to the diffusion stage
alone; K., and K, (s") are respectively the kinetic coefficients
of water and solute transfer during the convection stage of
OD; K, and K, (s~") are respectively the kinetic coefficients
of water and solute transfer during the diffusion stage of
OD. At the equilibrium state of OD, the total equilibrium
water loss equals the sum of infinite water losses during the
convection and diffusion stages:

WLy = WLes + WLy (3)

gain (SG,,) were determined from the plots

where WL, = WLy -C, and WLy = WL, -Cs (4)

Accordingly, the total equilibrium solid gain equals the sum of
infinite solid gain during the convection and diffusion stages:

SGs = SGoo. + SGope, (5)

where SG.o = SGy - C., and SGuo = SGo - Cye (6)

Subsequently, the effective diffusion coefficients of water
D,,, and solid D, were calculated over a range of Re number
(0-252) and for 65°Brix concentration of osmotic solution.
These coefficients can be defined by the Fick’s diffusion equa-
tion for an infinite slab of thickness (2/), reduced to the first
term (Egs. (7) and (8) ci- dessous). Amami et al. (2005) demon-
strated that these coefficients correspond well to the coeffi-
cients K; and K, of the diffusion stage of the two-
exponential kinetic model (Egs. (1) and (2)).



Osmotic dehydration of some agro-food tissue pre-treated by pulsed electric field: 95

WL;/ szL, o )
with Ay = ¢, - De/P (8)
with 7562(;:@ =C et 9)
s = q% : De.r/lz (10)

Then D,,, and D, are deducted only by determination of
the coefficients K, and K, where ¢ is the immersion time (s)
and / is the half thickness of the infinite slab (m); C; is equal
to 20(1 4 o) /(1 + o + o*¢?), where ¢, is the first non-zero posi-
tive root of the equation tan(q;) = —aq,. Here, « is the ratio of
mass of solution to sample (i.e. = 3).

Two phenomena occur at the material surface in OD. A
boundary layer is formed with a thickness that depends on
the agitation of the osmotic solution. At the surface of the
material and perpendicular to this surface, there is a large flux
of water coming out of the fruit under the osmotic gradient,
which is disturbing the boundary layer (Fernandez et al.,
2004). The boundary layer without bulk flow is obtained from
dimensionless correlations. According to Geankoplis (1983),
for a laminar flow past a submerged flat surface, the Sherwood
number is given as:

Sh= kﬁ” = 0.664Re'/*Sc'/? (11)

with k. = §0.664Re‘/25c‘/3 (12)
P

and

Re=1"" and Sc— p% (13)

where L is the length of the piece to dehydrate (assumed to
diameter of particle (d, = 2.8 cm)), the product (w x r) is the
superficial velocity equal to nnr/30, with n is number of rota-
tion per minute, r is the rayon of impeller, and p is the density
of the fluid. D corresponds to the effective diffusion coeffi-
cients of water D,,, and solid D,,.

In the present study, r was 5x 10™m, and p measured by
density-meter (M50 ISO 649 and ISO 387) was 1306 kg/m®.

(a)
flask M
N \
= Mobile electrode |
E - = Fixed electrode —
| J

Sample
Magnetic bar

Magnetic bar

D,,, and D, were deducted only by determination of the coef-
ficients K, and K, as mentioned above and y is the fluid vis-
cosity, 0.12235Pas was measured by a rotation coaxial
viscosimeter VT 550 (HAAKE), for the 65% sucrose solution
at 20 °C.

2. Materials and methods

Fresh products (apple, banana and carrots) were purchased
from a local market. Items having approximately homogenous
shapes (same size and ripeness) were chosen and refrigerated at
4 °C at maximum for 7 days until use. The samples were re-
moved from refrigeration and left to equilibrate at the room
temperature before experimentations. The apples were then
sliced into disks of 2.8 cm diameter and 0.85 cm thickness. In
the case of carrots and bananas, medium part was then cut
into disks of 2.8 cm diameter and 1 cm thickness. Commercial
sugar was used as the osmotic concentration agent. The osmo-
tic solution used had a level of sugar content of 65%, expressed
in percentage of weight of sugar per total solution weight
(w/w). Nowakunda et al. (2004) reported that an osmotic
solution of 65 °Brix seems to be the optimal concentration to
obtain a higher water loss. Besides, the duration of osmotic
pre-treatment will depend on the maximum sugar uptake con-
sidered acceptable from the sensorial point of view.

2.1. Pulsed electric field pre-treatment

Apple, banana and carrot disks were blotted using a paper tis-
sue and placed at the bottom of a cylindrical device (3 cm
diameter) between two electrodes. The electrodes were con-
nected to a PEF generator (1500 V-20 A, Electronic Depart-
ment of UTC, France) as shown in Fig. la. The disks were
placed on a fixed electrode and covered by a mobile electrode,
of 2.9 cm each in diameter. The mobile electrode was adjusted
on the top of the disk surface in order to ensure a good electri-
cal food-electrode contact. The experimental setup consisted in
applying for apple disk a field strength intensity of 0.90 kV/cm
for a constant time tpgr = 0.75 s (750 rectangular monopolar
pulses, each of 100 ps duration), for banana disk and carrot
disk 0.30 kV/cm and 0.60 kV/cm respectively for tpgr = 0.05 s
(500 rectangular monopolar pulses, each of 100 us duration).

Stirring at 0-1500 rpm

Figure 1

Experimental apparatus: (a) PEF treatment and (b) continuous osmotic dehydration.
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Measurements of electrical current amplitudes were ensured by
an HPVEE program (HP-VEE, V3.12, Hewlett—Packard Co.,
USA). The average energy input was in order of 15, 10 and
19 kJ/kg for apple, banana and carrot disks, respectively. It
is notable that the temperature increase due to PEF applica-
tion in apple, banana and carrot disks did not exceed 7 °C in
all the experiments.

2.2. Osmotic dehydration

To study the effect of agitation speed, the osmotic process
experiments were repeated at fixed sugar concentration (65%
w/w), fixed temperature (25 °C), for five different speeds of agi-
tation (0, 250, 500, 1000, 1500 rpm). Apple, carrot and banana
disks were treated by PEF and placed in OD flask with the
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Figure 2 Effect of Re number on water loss with osmotic
dehydration time: (a) apple; (b) banana and (c) carrot.

65% w/w sucrose solution in order to obtain a 3:1 solution
to sample ratio (w/w). It has been reported in a review by
Tortoe (2010) that a higher solution-to-solid is commonly used
to favor solute transfer, but smaller ratios (4:1 or 3:1) were also
used for small scale studies. In our case, the experimental setup
geometry constraint allowed to use a 3:1 ratio. In the experi-
mental set (Fig. 1(b)), the osmotic medium was agitated con-
tinuously with a magnetic stirrer at 0, 250, 500, 1000 and
1500 rpm corresponding to agitation levels of 0, 42, 84, 168
and 252 impeller Re number. The OD flask was covered with
a plastic plate to reduce moisture loss from syrup during exper-
iments. The °Brix of the solution and the weight of the sample
were evaluated after 5, 30, 60, 90, 120 and 240 min of immer-
sion. The measurements of °Brix were provided by a digital
refractometer (LEI 25 the leica AR200, AVANTEC, USA).
The weights were measured using an electronic balance
(Sartorius AG, Goettingen, Germany, Am = £ 0.01 g). The
sample was withdrawn from the solution and quickly rinsed
with fresh running water to withdraw excess solution. It was
subsequently slightly wiped with an absorbent paper and
weighed. The °Brix of osmotic solution was measured simulta-
neously. An additional amount of osmotic solution with the
same °Brix was prepared and added to the flask to compensate
the loss of solution adhering to the sample surface. The fruit or
vegetable disk was then put back into the osmotic solution to
continue the OD process. After 4 h of immersion, the sample
was washed and blotted with absorbing paper. The sample
was used to perform color measurement and the moisture con-
tent of the sample was determined by drying in an oven at
105 °C for 24 h. The water loss and solid gain were calculated
according to the method proposed by Amami et al. (2005). In
this method, the water loss (WL) and solid gain (SG) are

(a) 7 4 —®—0kV/cm; 0 Re
—8—0kV/cm; 42 Re
6 1 —a—0kV/cm; 84 Re
—6—0 kV/cm; 168 Re
5 1 ——0kV/cm; 252 Re
S 4
23
2
1
0 T T 1
0 100 200 300
Time (min)
b
(b) ,
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~_ 8 T
1S3
o ¢
w2
4 —&— (0 kV/cm; 0 Re
—&—0kV/cm; 42 Re
2 —A— 0 kV/cm; 84 Re
) —©—0 kV/cm; 168 Re
0 g —o— 0 kV/em; 252 Re
T 1
0 100 200 300

Time (min)

Figure 3 Effect of Re number on solid gain with osmotic
dehydration time: (a) apple and (b) carrot.
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calculated from the weight of osmotic solution. The WL and
SG were expressed in (%) of the initial weight of sample in or-
der to account for initial weight differences between samples.
The OD experiments at different conditions were done in trip-
licate. Mean values were indicated in this document with the
corresponding standard deviations.

2.3. Color measurement

For the representation of color in the three-dimensional space,
the CIE 1976 L" 4" b" system was adopted. Color difference
values L", a”, and b" were calculated as:

(a) 60 -
50 -
__40 -
R
= 30 +
= —=—0.9 kV/cm; 0 Re
20 —8—0.9 kV/cm; 42 Re
—A&—0.9 kV/cm; 84 Re
10 —e— 0.9 kV/cm; 168 Re
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0 T T !
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Figure 4  Effect of PEF pre-treatment and Re number on water
loss with osmotic dehydration time: (a) apple; (b) banana and (c)
carrot.
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Figure 5  Effect of PEF pre-treatment and Re number on solid
gain with osmotic dehydration time: (a) apple and (b) carrot.
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Figure 6 Effect of PEF pre-treatment and Re number on mass
transfer coefficient (for water loss) with osmotic dehydration time.

L' =L — Ly (14)
a"=a—ay (15)
b" =b—by (16)

where t; represents the color taken as reference; L-value indi-
cates the lightness ranging from zero (black) to 100 (white)
in the international color system; a-value indicates the redness
ranging from + 60 (red) to —60 (green) in the international col-
or system; b-value indicates the yellowness ranging from + 60
(yellow) to —60 (blue) in the international color system. This
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allows evaluating the total difference of color defined by the
equation:

E,=Va?+b? + L7 (17)

The values of lightness (L), redness (a) and yellowness () of
fresh and osmotically-dehydrated apple, carrot and banana
were determined by direct reading with a Minolta Chroma me-
ter, CR321 (Minolta, Japan). The instrument was calibrated
each time with a white ceramic plate (calibrated with a stan-
dard white (L = 91.65; a = —0.05; b = 2.08). Each samples
were scanned at 3 different locations to determine the average
L, a, and b values over three measurements. From these values,
chroma (C”) was calculated according to the equation:
a2+ b7 (18)

ab =

A greater chroma value represents a more pure and intense
color (Rodrigues et al., 2003).

3. Results and discussion

The evolution of water loss (WL) is shown in Fig. 2a— as
function of time and Re numbers for apple, banana and car-
rots, respectively. The agitation has affected the water re-
moval. Both apple and banana samples showed higher WL
kinetics at higher agitation levels (Re = 168 and 252). The

corresponding values for banana and apple fruits are 43.5%
(Fig. 2b) and 36.7% (Fig. 2a), respectively. As shown in
Fig. 2c, the carrot WL can reach up to 52% of the initial carrot
mass, at the highest Re number. The dehydration is larger for
carrot due probably to a higher initial water content than fresh
banana and apple. The large difference in water content be-
tween the sample and the osmotic solution leads to a high
difference in osmotic pressure, which results in a higher water

3.00E-05
00 KV/cm; carrot  ® 0.6 KV/cm; carrot
© 0 KV/icm; apple & 0.9 KV/cm; apple
2.00E-05 -
Q ’
£ .
o4
1.00E-05 - 8 e
* &
' .
&
0.00E+00 T T
0 100 200 300
Re number

Figure 7  Effect of PEF pre-treatment and Re number on mass
transfer coefficient (for solid gain) with osmotic dehydration time.
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Color index
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(b)

banana (0 kV/cm)

25

20

HL* ma* mb* mC* mE*

15

10

Colorindex

82 168
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Figure 8 Effect of Re number on color measurement parameters after osmotic dehydration treatment (for 0 kV/cm PEF): (a) carrot; (b)
banana. (where L', a", b, C", and E" are relative color differences as described in Section 2.3).
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transport from the interior of fruit to the external solution.
Similar to water removal, solid gain SG was significantly af-
fected by the agitation level, as shown in Fig. 3a and b, where
SG kinetics are presented for various Reynolds numbers for
the apple and carrot. It suggests that the internal and external
mass transfer rates control the process. Such results are con-
firmed by Panagiotou et al. (1999) who have worked at a high-
er temperature and in turbulent regime. They showed the solid
acquisition in the material was a function of speed of agitation.

Osmotic dehydration rates increase with the agitation speed
during process due to the reduction of the external resistance
against the water removal. It can be confirmed that a higher
Re number improves the water loss and the solid gain in the
sample, in reason of a higher gradient of water activity. For
Re = 252, the equilibrium may be obtained after approxi-
mately 2 h of immersion time. This duration is smaller in a fas-
ter agitation speed, as shown in Fig. 2a and b.

The effect of PEF pre-treatment on WL and SG from
osmotically dehydrated apple, banana and carrot is shown in
Figs. 4 and 5 for different agitation speeds. Under atmospheric
pressure, samples treated by PEF dehydrated in five agitation
speeds displayed a higher water loss (4-35%) than untreated
samples. These observations of PEF impact on water loss
agrees with the literature (Rastogi et al., 1999; Taiwo et al.,
2001; Amami et al., 2005). At the end of OD (4 h), PEF treated
samples had 15-60% greater solid gain than the untreated
samples. This improvement of solid gain with the PEF pre-
treatment was also put in evidence by Lazarides et al. (1995)
and Taiwo et al. (2001). Indeed, they showed that when mem-
branes lose their functionality under PEF, external solutes dif-
fuse freely to all parts of the tissue, not only to the open
intercellular spaces. Through Figs. 4 and 5, it can be observed
that water loss and solute gain rates were faster with PEF pre-
treatment.

For banana fruit, water loss increased with treatment time.
About 45% of the water loss occurred after 240 min for the
highest speed of agitation of PEF conditions. An extended
treatment in a high concentration of sucrose (65 °Brix) resulted
in a very soft product, which is difficult to handle and is unsuit-
able for further drying. The difference in behavior of WL and
SG with agitation may reflect different mechanisms. The ob-
served mass transport phenomenon can be modeled (empiri-
cally or fundamentally) to relate these mechanisms. An
empirical model developed by Amami et al. (2005) was used
to predict the diffusion coefficient of water and solid during os-
motic dehydration of apple, banana and carrot.

By means of the proposed model (Egs. (1) and (2)), effective
water and sucrose diffusivity coefficients (D.,, and D) were
identified for the experiments carried out at 65°Brix under dif-
ferent agitation speeds. The osmotic pressure gradient, which
is the driving force for osmotic mass transfer, depends on
the viscosity of the osmotic solution. Under otherwise similar
conditions, an increase in agitation speed results in a higher os-
motic pressure gradient, thus a higher mass transfer and there-
by higher values of effective diffusion coefficients. Identified
D.,, ranged from 7.89, 0.59 and 14.50 x 10~'° m?/s at Re = 0
to 10, 5.14 and 15.50 x 10~ 1° mz/s at Re = 252 for banana, ap-
ple and carrot, respectively. And the D, ranged from 3.11 and
9.65x 107" m?/s at Re = 0 to 5.04 and 10.90 x 1071 m?/s at
Re = 252 for apple and carrot, respectively. Previous experi-
ments without PEF were compared to PEF ones. Diffusivity
coefficients were higher after PEF. For instance, water and

sucrose diffusivity coefficients were D, = 1.27 and
16.1 x 107'° m?/s and Doy = 10.3 and 11.6 x 10~'° m?%/s for ap-
ple and carrot disks, respectively, osmosed under Re = 252.
Table 1 shows the equilibrium water loss from PEF pre-
treated apple, carrot and banana at infinite process time. The
agitation speed has a positive effect on this parameter for apple
and carrot. Table 2 shows for the same experiments the equi-
librium solid gain. The agitation speed has a moderate effect
on this parameter for apple and carrot. Tables 1 and 2 show
that values of kinetic coefficients K., and K, are increased
for a higher Re number, as well as the equilibrium coefficients
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Figure 9  Effect of PEF pre-treatment and Re number on color
measurement parameters after osmotic dehydration treatment: (a)
carrot; (b) banana; (c) apple. (where L*, a*, b*, C*, and E are
relative color differences as described in Section 2.3).
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Table 1 Effect of the Re number on the coefficients of the convection stage of OD kinetics model (Eq. (1)) as well as the equilibrium
water loss for the PEF pretreated apple, banana and carrot.

Parameters Samples 0 Re 39 Re 78 Re 156 Re 235 Re
WL (%) Apple 43.82 49.43 50.04 51.14 53.07
Banana 36.14 44.94 45.2 45.47 45.76
Carrot 50.55 53.43 55.84 57.82 58.50
Cee Apple 0.20 0.23 0.24 0.25 0.26
Banana 0.09 0.15 0.23 0.43 0.52
Carrot 0.19 0.23 0.24 0.25 0.26
K. (10°s7h Apple 2.28 3.38 3.39 3.45 3.79
Banana 0.22 0.88 0.90 0.96 0.97
Carrot 4.00 7.67 7.78 7.88 7.89
1/Kee (5) Apple 438.6 295.8 294.9 289.8 263.8
Banana 4545.4 1136.3 I111.1 1041.6 1030.9
Carrot 250.0 130.3 128.5 126.9 126.7

Table 2  Effect of the Re number on the coefficients of the convection stage of OD kinetics model (Eq. (2)) as well as the equilibrium

water loss for the PEF pretreated apple and carrot.

Parameters Samples 0 Re 42 Re 84 Re 168 Re 252 Re
SG.. (%) Apple 3.98 5.26 5.46 6.28 7.34
Carrot 11.43 11.78 11.98 12.79 13.40
Ce Apple 0.20 0.24 0.42 0.43 0.46
Carrot 0.14 0.18 0.19 0.20 0.21
K. (10°s7h Apple 0.25 0.3 0.45 0.49 0.5
Carrot 1.07 1.81 1.83 1.84 1.85
1/K,s (5) Apple 4000.0 3333.3 2222.2 2040.8 2000.0
Carrot 934.5 552.48 546.4 543.5 540.5

C.. and C,,. It displays first that the kinetics of convective mass
transfer were accelerated. It means also that the electropermea-
bilization of cell membranes and a higher Re number increase
the quantities of water and solute rapidly transferred by
convection.

The values of 1/K_ represent the time needed for the solid
gain SG| to reach 63.2% of SG... (Table 2). This time did not
change much for all sets of experimental conditions. Mean-
while the time corresponding to water loss (1/K..) varied sig-
nificantly and remained small for high agitation speeds
(Table 1). For example, with banana samples, the duration
to reach 63.2% of WL, at Re = 252 is only 18.60% of that
needed in static conditions.

Figs. 6 and 7 show the effects on apples and carrots of the
PEF pre-treatment and the agitation speed on Ky (rate
constant for water loss) and K¢ (rate constant for solid gain),
respectively. Both parameters Kj; and Kgs increase when
PEF was applied and with subsequent agitation during osmo-
tic dehydration.

Results of color measurement on osmotically dehydrated
carrot and banana are shown in Fig. 8a and b. Fresh samples
were taken as reference. It is observed that as far as the agita-
tion speed progresses, the carrot became darker. It involved
lower L" values at a higher Re number. Generally, it is well
known as browning increases, L values decrease, therefore
L’ is negative and (a) values increase therefore a” is positive.
The color changes in fruit tissues (darkening) due to enzymatic

browning (Mastrocola and Lerici, 1991). Compared to fresh
sample, the increase in redness (@" > 0) and yellowness
(b" > 0) is clear for osmotic dehydrated carrot. £~ of carrot
decreases with the agitation speed.

As shown in Fig. 8b, although the L parameter of the
osmotically treated banana samples was less than that of fresh
tissues (L" < 0), it showed an increase over the whole speed of
agitation. This occurred to the solute uptake, which resulted in
lower O, being transferred to the surface. This resulted in less
discoloration of the osmosed samples by enzymatic browning
(Kim, 1990). The chroma parameter (b*) behaved similar to
the redness parameter during the OD process. Osmotically ba-
nana samples showed the smallest increments of yellowness.

The L*, " and " values for carrot, banana and apple ob-
tained after PEF pre-treatment and osmotic dehydration are
presented in Fig. 9a—. PEF increased brightness of carrot
samples (as reflected by positive L™ values with a higher Re
number Fig. 9a) while the color of static sample darkened
(as reflected by negative L” values). This agrees with Moreno
et al. (2000) who observed that OD increased the illuminance
of pre-treated strawberry compared with the fresh fruit. The
carrot after PEF treatment and osmotic dehydration had color
characteristics close to those of the fresh natural color.

PEF pre-treated banana had the highest L" values com-
pared to untreated one (which increased with Re number),
implying greater product brightness which might be the result
of greater pigment leaching.
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Apple with PEF treatment had a darker color than those
untreated with PEF. It is a direct result of browning effects
due to the oxidative reaction. Taiwo et al. (2001) indicating
that the activation energies for colorless browning intermedi-
ate formation increased as glucose concentration and temper-
ature increased, and the higher the activation energy, the
higher the degradation of the brown pigments to the colorless
compounds. Ade-Omowaye et al. (2001) reported that a pro-
longed pulse application induced reactions leading to darker
products showing lower L values (L* < 0). However, the rela-
tive increase in redness displayed by a value for all osmotically
PEF pretreated samples was small compared to the significant
increase for untreated samples. The yellowness is higher in the
PEF pre-treated samples (b° > 0). Eventually, the color char-
acteristics are improved by the PEF treatment.

4. Conclusion

Osmotic treatment of apple, banana and carrot was studied in
the present work in sucrose solution under static and non-
static conditions. A model for mass transfer (water removal
and solid acquisition) in osmotic treatment is presented with
satisfactory agreement (R* up to 0.996). In all cases, a PEF
treatment gives higher water removal and solid acquisition.
An agitation in the osmotic treating solution provides a lami-
nar flow regime which is accompanied by an increase of the
kinetics of water loss and solid gain.

The effect of the PEF treatment and the agitation speed on
color of apple, carrot and banana was investigated in osmotic
dehydration. color characteristics were studied measuring the
lightness L, redness @ and yellowness b at the process end.
The results were compared to those obtained for fresh prod-
ucts. The PEF treatment and the speed of agitation affect
the three color parameters. PEF treated materials caused
extensive browning in the apple fruit. This was manifested
by a significant drop of L parameter and an increase of a
and b parameters. Osmotically pre-treated carrot did not
brown as much as the untreated samples where the lightness
L decreased only slightly while ¢ and b increased slightly.
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