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The purpose of this paper is to prove a conjectured q-identity. The result is then 
applied to estimating the local density of solutions of certain systems of quadratic 
form identities. 0 1990 Academic Press. Inc. 

1. INTR~DUCI-I~N 

Our object here is to consider the solvability of quadratic form identities. 
In particular, we consider the identity 

S[X] = ‘X%X’= T, (1.1) 

where S and T are integral positive definite matrices of degrees m and n, 
respectively. The goal is to find sufficient conditions for the existence of 
integral solutions. When m 2 2n + 3 we know that the solvability of (1.1) 
over all rings of p-adic integers 27, together with the minimum of T being 
sufficiently large implies the solvability over H, the ring of rational integers 
[S]. However, no such result is known for m < 2n + 2 (n 2 2). 

On the other hand, a famous result of Siegel asserts that the weighted 
average of the numbers of integral solutions of SJX] = T, where Si runs 
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over a complete set of representatives of the classes in the genus of S, is, 
roughly speaking, the infinite product of local densities clP( T, S), where 

~1 P (T,S)= lim(p~‘)““~“‘“+““#{Xmodp’j S[X]-Tmodp’). 
r - lK 

Making this weighted average large is important for global solvability. 
Consequently we wish to bound the local densities away from zero. If 

m 2 2n + 3, then CQ,( T, S) > c(S) holds for some positive constant c(S) 
provided r~& T, S) #O [6]. Unfortunately things become much more 
difficult if m < 2n + 2. By [6, Th. 1, p. 4421, the behavior of local densities 
is ruled by the primitive solutions for m = 2n + 1, 2n + 2. However, this is 
not the case for m 6 2n. Indeed part (a) of [6, Th. 1, p. 4421 gives a bound 
from below for the local densities in terms of primitive solutions. But if, for 
example, II + 1 d m < 2n, m-n - 1 # Witt index over QP of S, then 
a,(p’T, S) + c/3 as t + co, and for large t there are no primitive solutions 
at all. Thus the primitive solutions are too strong and special sufficient 
conditions; so the discussion of primitive solutions is not really relevant in 
this instance. To begin with we consider cr,(p’T, S) as t -+ cc with T and S 
fixed. Except for the case m = 2n, n = r + 2 with r the Witt index over Q,, 
of S, we have for some positive constant c( T, S) (assuming m < 2~2) 

q,(p’T, S) > 4 T, S) 

provided a,(p’T, S) # 0 from [6]. In the remaining case, it is also shown 
in [6] that 

cc,(p’T, S)>c(T, S)p-‘. (1.2) 

In [6], the important question of reversing the inequality in (1.2) is also 
treated for p # 2 which is assumed hereafter. Namely, in the remaining 
case, 

ctp(p’ T, S) < c’( T, S) p’” ’ ” (1.3) 

holds for any E > 0 providing the following is true: 

CONJECTURE [6]. Let 

(l-qk)(l-qqk~‘)...(l-qk~g+‘) 

(l-qg)(l-qg-‘)...(l-q) ’ 
O<g<k 

(1.4) 
otherwise 

H,(x) = i: n xr, [I i-=0 r 
(1.5) 
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and define F(a, k, z) inductively: 

F(0, k,z)= -1+ i (-l)kpRH&-q) qg(g+3)/2--k,g b , (1.6) 
g=a 

F(a+l,k,z)= i F(a,g,z)(-l)k-gHk-g(-q) 
g=a+l 

(1.7) 

- F(a, k z) q (a + l)(a + 2)/2f + 1 

Then (1.3) holds provided F(n - 2, n - 1, q-“) = F(n - 2, n, q-“) = 0 where 
n = rkT. 

The details of how these identities imply (1.3) are given in [6]. This 
conjecture is an immediate consequence of Corollary 1 given in Section 3 
and is, in effect, restated as Corollary 2. 

From the proof of the conjecture we may summarize the behavior of 
cr,(p’T, S). If m = 2n and n = (Witt index of S over Q,) + 2, then 

Q(P’T, S) -+ 0 as t--tcO. (1.8) 

If n + 1~ m < 2n and the above case is excluded, then there exists a positive 
constant c(T, S) such that 

a,(p’T, S) > c(T S) (1.9) 

provided ct,(p’T, S) # 0. 
Our local results should be contrasted with the global observation that 

the smaller m-n is the harder it is to solve S[X] = T. What are the 
implications of our local results for the global situation? 

2. BACKGROUND LEMMAS 

We require four lemmas. We begin with an evaluation of H,( -4). 

LEMMA 1. H,(-q)=(l-q)(l-q3)...(1-qv) where v is the largest 
odd number <n. 

Prooj This is proved in quite disguised form in [2, p. 201. Here is a 
simple generating function proof. We shall use the standard notation: 
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(A),=(A;q),=(l-A)(l-Aq)...(l-Aq”- I), (2.1) 

r 

1 

n,r>O (4)r (4)n = (t)m (-GIL 

(by Euler’s sum, [l, p. 19, Eq. (2.2.5)]) 

l+t 
= u*; q2L = (1+ 2) f, (q2:;) A. 3 ?r 

Hence comparing coefficients of t” on both sides, we get 

HA-q)= 
(l-q)(l-qZ)...(l-q”) 

(l-q2)(1-q4)...(1-q2”) 

(2.2) 

(2.3) 

where 2m is the largest even number <n. This is equivalent to the assertion 
of Lemma 1. 1 

We must now define polynomials in two variables which specialize to the 
F(a, k; z) given in the Introduction: 

F(O,k;y,z)= -l+ t (-l)k-gHk-g(-q) > (2.4) 
g=o 

and for a>0 

F(a + 1, k; y, z) = -z”+ lq tg: ‘1 Qa, k Y, z) 
k 

+ 1 mg;y,z)(-l)k-g 
g=a+l 

[I k (g;l)-(k-a)Zg 
xHk-g(-d g 4 (2.5) 

We note in passing that F(0, k; y, z) is actually independent of z and that 

F(a, k, z) = F(a, k; z, z). (2.6) 

LEMMA 2. For a > 0, 

F(a, a; y, z) = 0. (2.7) 

Prooj By (2.4), F(0, 0; y, z) = 0, and by (2.5) for a > 0 
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F(a+l,a+l;y,z)= -fflq C’) F(a, a+ 1; J’, z) 

+F(a,a+l;y,2)q(“:‘)z”+’ 

=o. 1 

LEMMA 3. For a>O, k>O 

F(a, k; q -2, z) = 0. 

ProoJ: Clearly by (2.5) we need only prove that for k 2 0 

(2.8) 

Now by reversing the 

F(0, k; q-2, z) 
k 

F(O,k;q-*,z)=O. (2.9) 

sum 

= -I+ 1 (-l)“H,(-q) [i] q(k-;+1)-“q-2(k-g) 
g=o 

k - = - I+ c (4; q2), 
PIdO 

[ 2”, 1 2m+')-2mq-2(k-2m) 2 

4 -2(k-22m-1) 

(by Lemma 1) 

= - 1 + 1 (4; q2L (q-k)2m (4) q(k;1)-2”q-2(k-2m) 

ma0 2m 

+ c (q;q2)m+l ‘:a;“-+1 q(k;1)-2m-1q-2(k-2m-lj 

m>O 2m+l 

-k 

=-l+q -*k+(k;l) 241 q 94 -k+ l; 4*, 4* 
0 

-2(k-l)+(ky-l 

+4 

-k+l 

(in standard q-hypergeometric series notation [7, p. 901) 

= _ 1 +q(k~‘)-2k-(:)+q--Zk+2+(k:‘)-‘(l Fq-k)q-(k;‘) 

(by q-Vandermonde summation, [7, p. 97, (3.3.2.7)]) 

= - 1 +q-k+ 1 -q-k 

= 0, (2.10) 

as desired. 1 
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LEMMA 4. For a> 0 

59 

F(a, k; y, =I = F(a, k yq, z) 

+yz”qu+‘(l -qk){F(a, k- l;yq,zq) 

+F(a-l,k-l;zq,zq) 

_ (1 -zaq(“;2)-1 )F(a-l,k-l;yq,zq)}, 

(2.11 ) 

where we take F( - 1, k; y, z) = 1 identically. 

Proof: We proceed by induction on a. For a = 0, 

F(0, k; y, 2) - F(0, k; yq, z) 

k -- 1 

= C (-l)k-l~RHk--g~,(-q)(l vqk) k-1 q(a+‘)(s+4),‘-k\,g+’ 

R = 0 [ 1 g 
k-l 

zyq(lvqk) C (-l)k-‘-gHk--l-g(-q) “,’ qg’1:+3),‘-(k-‘)(yq)g 

g=O [ 1 

which is (2.11) with a = 0. 
Assume the result is true now up to and including a given a. Then we 

see that by (2.5) and the induction hypothesis 

F(a+ 1, k; y, z) 

= -f+‘q(“:2){F(a, k; yq, z) 

+ yz”q”+‘(l - qk)[F(a, k - 1; yq, zq) 

+F(a-l,k-l;zq,zq) 

_ (1 -z.q(“:2)-l )F(a-L-l;yq,zq)l) 
k 

+ c (-l)k-gHk-g(-q) 

g=a+1 

{F(a,g;yq,z)+yz”ffl(l-qg) 

x[F(a,g-l;yq,zq)+F(a-l,g-l;zq,zq) 

_ (1 ~zuqr:2)-~ )F(a-1,g-1;Yq9zq)l) 
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= I;(a + 1, k yq, z) 

+ yz”q” + l 
i 

-,a+1,K2)(, -qk) 

x[F(a,k-l;yq,zq)+F(u-l,k-l;zq,zq) 

- (1 -z~q(“:2)-l ) F(a- 1, k- 1; yq, zq)l 
k-l 

+ 1 (-I)“-‘-“&+(-q) 

g=0 

x k-l [ 1 (~-qk)g(g:2)-(k--g-1)Z~+1 

g 

x CF(a, g; yq, zq) + flu - 1, g; zq> zq) 

_ (1 -z.qr:2)-1 )F(a-l,g;Yq,rq)l} 

= F(u + 1, k; yq, z) 

+YZ a+‘q=+2(l-qk)(F(u+1,k-1;yq,zq) 

+F(u,k-1;zq,zq)-(1-z”q(a~2)-1)F(a,k-1;yq,zq) 

- zaqU’(u + 3)‘2F(u, k - 1; yq, zq) 

+hY+% (“;‘)F(u, k- 1; yq, zq)} 

(where we have applied Lemma 2) 

= F(u + 1, k; yq, z) 

+ YZ ~+iqa+2(1-qqk)(F(u+1,k-1;yq,zq) 

+F(u,k-l;zq,zq)-(l-z”+‘q (a:3)-‘) F(u, k - 1; yq, zq)]. (2.12) 

Hence the truth at a implies the truth at a + 1; therefore, Lemma 4 is true 
for all a 2 0. 1 

3. THE MAIN RESULT 

We are now prepared to prove the conjecture described in the Intro- 
duction. 

THEOREM 1. For 2<j<s<u+2, 

F(u, k; q -j, q -“) = 0. (3.1) 
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Proof. We proceed by a double induction first on a and then on j. 
Initially a = 0. Therefore j = s = 2, and Lemma 3 tells us that (3.1) is true 

in this case. 
Now let us assume (3.1) is true up to but not including a particular a. 

Clearly by Lemma 3 

F(a,k;qe2,q-“)=O; (3.2) 

so we now assume that (3.1) also is true at a up to but not including a 
particular j( > 2). Hence by (2.11) 

F(a, k; q-l, q-‘) = F(a, k; q-“- “, q-‘) 

+Psu+u+l (l-qk){F(a,k-l;q-” -“,q-” -“) 

+F(a-l,k-l;q-‘“-“,q~‘“~“) 

-(l-q 
-.w+(~;‘)-I,F(~- 1, k- 1; q-(/-I’, q-f”-“)} 

= 0, (3.3) 

since the first two Fs on the right of (3.3) are zero by the hypothesis on 
j and the remainder are zero by the hypothesis on a. (Note that since 
2~jds6a+2,therefore2dj-1ds-1~(a-1)+2.)Thus(3.1)follows 
by our double induction. 1 

COROLLARY 1. For all a >, 0, k > 0, 

(3.4) 

Proof: This is just Theorem 1 with j = s = a + 2. m 

The conjecture stated in the Introduction is just Corollary 1 with 
k=a+ 1 and k=a+2. 

Now let MX N be regular quadratic lattices over Z, with rkM= m, 
rkN= n, r = Witt index of M, and suppose n + 1 < m < 2n. From [6] we 
know O$rQn, O<m-2rd4, and for t>,O 

cqpw, M) > c(M, N)p’(n-r)‘n+r+‘-m). (3.5) 

The only instance in which the exponent on p is negative occurs for m = 2n, 
n=r+2. 

COROLLARY 2. I f  m = 2n, n = r + 2, p # 2, then for E > 0 

a,(p’N, M) < C(E) p’“-- ?)l. (3.6) 
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Proof: This assertion was proved in [6] subject to the conjecture stated 
in Section 1 which is a special case of Corollary 1. 1 
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