JOURNAL OF DIFFERENTIAL EQUATIONS 52, 432–438 (1984)

Generic Bifurcation of Steady-State Solutions

J. SMOLLER* AND A. WASSERMAN

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Received July 6, 1982

Brunovsky and Chow [1] have recently proved that for a generic C^2 function with the Whitney topology, the "time map" $T(\cdot, f)$ (see [4]) associated with the differential equation u'' + f(u) = 0 with homogeneous Dirichlet or Neumann boundary conditions, is a Morse function. In this note we give a simpler proof of this result as well as some new applications. Our method of proof is quite elementary, uses only Sard's theorem and the implicit function theorem for functions in $C^1(\mathbb{R}^2, \mathbb{R})$, and avoids the use of transversality in function spaces.

An annoying difficulty that one has to face is that the domain of T varies with f. We get around this by constructing a continuous function H(f)which, if positive, implies that T is a Morse function. Thus our task is to prove that the set of f with H(f) > 0 is generic. Of course, openness is trivial. To prove the denseness, we take any f, perturb it by a monomial cu^n , and consider the map $\theta: (u, c) \to T'(u, \tilde{f})$, where $\tilde{f}(u) = f(u) + cu^n$. We show that 0 is a regular value of θ by checking explicitly that the relevant derivative has the form an + b, where $a \neq 0$, and b is bounded. Thus for large n, the linear term dominates and this yields the density statement.

One consequence of this result is that if f(u) < 0 for u > M, then there are a finite number of (positive) stationary solutions of the equation $u_t = u_{xx} + f(u)$, with homogeneous Dirichlet boundary conditions and, generically, we can completely describe all solutions of this partial differential equation.

1. ELEMENTARY FACTS

We consider the associated first-order system u' = v, v' = -f(u), and its flow ϕ_t . Let F' = f, F(0) = 0; then $F(u) + v^2/2$ is constant on orbits. If for p > 0, $\phi_t(0, p) = (0, -p)$, for some t > 0, we define the "time map" by $T(p, f) = \inf\{t > 0: \phi_{2t}(0, p) = (0, -p)\}$. We will write T(p, f) = T(p) if there is no chance of confusion. Observe that if p_0 is in the domain of T, and

* Research supported in part by the NSF.

432

0 , then the (positive) orbit through <math>(0, p) enters the region bounded by the v axis and the orbit segment $\phi_t(0, p_0)$, and, hence, must either leave this region in positive time, or approach a rest point. This gives

PROPOSITION 1 [1, Lemma 4.1]. If $f(u)^2 + f'(u)^2 > 0$, $u \in \mathbb{R}_+$ the domain of T is an open interval $(0, \beta(f))$ minus a discrete set, where $\beta(f)^2 = 2 \sup\{F(u): u \in \mathbb{R}_+\}$. Note that this interval may be finite, infinite, or void.

If $p \in \text{domain}(T)$, then by symmetry, $\phi_{T(p)}(0, p) = (\alpha(p), 0)$, where $2F(\alpha(p)) = p^2$. This gives (see [4]) the explicit formulas for T and T',

(i)
$$T(p) = \int_0^{\alpha(p)} (2\Delta F(\xi))^{-1/2} du$$

(ii)
$$T'(p) = p[\alpha(p)f(\alpha(p))]^{-1} \int_0^{\alpha(p)} ((2\Delta F(\xi) - \Delta \xi f(\xi))/(2\Delta F(\xi))^{3/2}) du.$$

In these formulas, we are using the notation $\Delta g(\xi) = g(\alpha(p)) - g(u)$, for any function g.

PROPOSITION 2. [1, Lemma 4.2]. If $0 < p_0 < \beta(f)$, $f(u)^2 + f'(u)^2 > 0$, $u \in \mathbb{R}_+$, and $p_0 \notin \text{domain}(T)$, then $\lim_{p \to p_0} T(p) = \lim_{p \to p_0-} T'(p) = -\lim_{p \to p_0+} T'(p) = \infty$. If $\lim_{p \to \beta(f)-} \alpha(p) < \infty$, then $\lim_{p \to \beta(f)-} T(p) = \lim_{p \to \beta(f)-} T(p) = \infty$.

Proof. If $\phi_N(0, p_0) = (u, v)$ with v > 0, then for p near p_0 , $\phi_N(0, p) = (\tilde{u}, \tilde{v})$ with $\tilde{v} > 0$. Hence, T(p) > N/2 and $\lim_{p \to p_0} T(p) = \infty$; similarly $\lim_{p \to \beta(f)^-} T(p) = \infty$. Next, from (ii)

$$T'(p) = \frac{p 2^{-3/2}}{\alpha f(\alpha)} \left[2T(p) + \int_0^{\alpha(p_0) - \varepsilon} \frac{-\Delta \xi f(\xi)}{(\Delta F(\xi))^{3/2}} du + \int_{\alpha(p_0) - \varepsilon}^{\alpha(p)} \frac{-\Delta \xi f(\xi)}{(\Delta F(\xi))^{3/2}} du \right],$$
(1)

where $a(p_0) = \lim_{p \to p_0^-} a(p)$ and $\varepsilon > 0$ is chosen so that f(x) + xf'(x) < 0for $a(p_0) - \varepsilon \le x \le a(p_0)$. (Note that $f(a(p_0)) = 0$, and $f'(a(p_0)) < 0$.) Then $-\Delta \xi f(\xi) = \int_u^a - (f(x) + xf'(x)) dx > 0$, for $a(p_0) - \varepsilon \le u \le a(p) < a(p_0)$. Thus the second integral in (1) is nonnegative, the first is bounded on $[a(p_0) - \varepsilon/2, a(p_0)]$, and since $T(p) \to \infty$ as $p \to p_{0^-}$, we see $T'(p) \to \infty$ as $p \to p_0$. The same argument with $p_0 = \beta(f)$ shows $T'(p) \to \infty$ as $p \to \beta(f)$ -.

Finally, for $p > p_0$, let $\bar{\alpha}(p_0) = \lim \alpha(p)$ as $p \to p_0+$, and write

$$T'(p) = \frac{p}{f(\alpha(p))} \left[\int_0^{\alpha(p_0)-\varepsilon} + \int_{\alpha(p_0)+\varepsilon}^{\alpha(p_0)-\varepsilon} + \int_{\tilde{\alpha}(p_0)-\varepsilon}^{\alpha(p)} + \int_{\alpha(p_0)-\varepsilon}^{\alpha(p_0)+\varepsilon} \right],$$

and note that the first two integrals are bounded for $p > p_0$, as is the third if $f(\bar{\alpha}(p_0)) \neq 0$. If ε is small, we may estimate f by its linear part near $\alpha(p_0)$ in

the last integral $(a(u-\alpha)p_0)) \leq f(u) \leq b(u-\alpha(p_0))$ and explicitly evaluate the integral. This gives $\lim_{p\to p_0+} \int_{\alpha(p_0)-\varepsilon}^{\alpha(p_0)+\varepsilon} = -\infty$, and if $f(\bar{\alpha}(p_0)) = 0$, the same argument works for the third integral.

2. THE WHITNEY TOPOLOGY

Let $C^{k}(\mathbb{R}_{+})$ denote C^{k} functions $f:\mathbb{R}_{+} \to \mathbb{R}$ with the C^{k} -Whitney topology, that is, U is a neighborhood of f if there is a function $\varepsilon:\mathbb{R}_{+} \to \mathbb{R}_{+} \setminus \{0\}$ such that

$$\left\{ g \in C^k : \sum_{i=0}^k |g^{(i)}(u) - f^i(u)| < \varepsilon(u) \right\} \subseteq U.$$

Let $A = \{f \in C^2(\mathbb{R}_+): f(x)^2 + f'(x)^2 > 0, \forall x \in \mathbb{R}_+\}$; then it is easy to see that A is open and dense in $C^2(\mathbb{R}_+)$.

If $f_1, f_2 \in C^2(\mathbb{R}_+)$, and $|f_1(u) - f_2(u)| < (1 + u^2)^{-1}$, then their respective primitives, F_1, F_2 are simultaneously bounded or unbounded from above. Thus $C^2(\mathbb{R}_+) = \mathscr{B} \cup \mathscr{U}$, where \mathscr{B} and \mathscr{U} are open and consist of those f's which have bounded and unbounded primitives, respectively.

For $f \in \mathcal{U} \cap A$, we define $H(f): \mathbb{R}_+ \setminus \{0\} \to \mathbb{R}$ by

where T is the associated time map. Proposition 2 implies that H(f) is continuous. Similarly, if $f \in \mathscr{B} \cap A$, we define the continuous function $H(f): (0, 1) \to \mathbb{R}$, by

$$H(f)(t) = \min[1, T'(t\beta(f))^2 + T''(t\beta(f))^2] \quad \text{if} \quad t\beta(f) \in \text{domain } T$$
$$= 1 \quad \text{otherwise.}$$

For any compact C in $\mathbb{R}_+ \setminus \{0\}$, H(f)|C is a continuous function of f in \mathscr{U} ; that is, given $f \in A$, a compact C in the domain of H(f) and $\varepsilon > 0$, there is an open set 0 such that if $\tilde{f} \in 0$, $|Hf(x) - H\tilde{f}(x)| < \varepsilon$ for all x in C. This holds since T' and T'' as well as $\beta(f)$ depend continuously on $f \in C^2(\mathbb{R}_+)$. Similarly, if C is a compact set in (0, 1), and $f \in \mathscr{R}$, then H(f)|C is continuous in $f \in B$.

Now let

$$\mathscr{G} = \{f \in A : H(f) > 0\},\$$

and note that \mathcal{G} consists of Morse functions. We can write

$$\mathscr{G} = (\mathscr{G} \cap \mathscr{U}) \cup (\mathscr{G} \cap \mathscr{B}) \equiv \mathscr{G}^{\mathscr{U}} \cup \mathscr{G}^{\mathscr{G}},$$
$$\mathscr{G}_{k}^{\mathscr{U}} = \{ f \in \mathscr{U} \colon H(f) | |k^{-1}, k| > 0 \},$$

and

$$\mathscr{G}_k^{\mathscr{B}} = \{ f \in \mathscr{B} : H(f) | [k^{-1}, 1 - k^{-1}] > 0 \}.$$

Then we note that $\mathscr{G}^{\mathscr{U}} = \bigcap_{k \in \mathbb{Z}_+} \mathscr{G}^{\mathscr{U}}_k, \mathscr{G}^{\mathscr{D}} = \bigcap_{k \in \mathbb{Z}_+} \mathscr{G}^{\mathscr{D}}_k$. Also by the above remark, $\mathscr{G}^{\mathscr{U}}_k$ is open since $[k^{-1}, k]$ is compact; similarly, $\mathscr{G}^{\mathscr{D}}_k$ is open. We will show that for all $k, \mathscr{G}^{\mathscr{U}}_k$ is dense in \mathscr{U} and $\mathscr{G}^{\mathscr{D}}_k$ is dense in \mathscr{D} . Then by the Baire category theorem, \mathscr{G} is residual in $C^2(\mathbb{R}_+)$.

THEOREM 3. [1, Theorem 3.1]. \mathscr{G} is residual in $C^2(\mathbb{R}_+)$.

Proof. We will show that $\mathscr{G}_{k}^{\mathscr{U}} \cap \mathscr{O} \neq \phi$ for any nonvoid open set $\mathscr{O} \subset \mathscr{U}$; the proof for \mathscr{B} is virtually identical. Choose $f_{0} \in \mathscr{O} \cap A$, and let $M = [k^{-1}, k] \setminus \{p: H(f_{0})(p) \ge \frac{1}{2}\}$. Consider the map $\theta: M \times (-\varepsilon, \varepsilon) \to \mathbb{R}$, defined by $\theta(p, x) = T'(p, \tilde{f})$, where $\tilde{f}(u) = f(u) + xb_{n}(u)$, and

$$b_n(u) = u^n$$
 if $0 \le u \le k+1$,
= 0 if $u \ge k+2$,

is a C^2 function; b_n has compact support, but for computational purposes, it is just u^n . Note that θ is C^1 . (If $\mathcal{O} \subset \mathcal{B}$, replace k in the definition of b_n by $\beta(f_0)$.)

We claim that 0 is a regular value of θ if ε is sufficiently small and *n* is sufficiently large. By differentiating under the integral, we have

$$\frac{\partial T'(p,\tilde{f})}{\partial x} = \frac{p}{\alpha f(\alpha)} \int_0^\alpha \frac{\Delta \xi^{n+1}}{(n+1)(2\Delta F(\xi))^{3/2}} \left\{ \frac{3}{2} \frac{\Delta \xi f(\xi)}{\Delta F(\xi)} - (n+2) \right\} du,$$

when x = 0 and T' = 0. Note that for $p \in \overline{M}$, $f(\alpha(p)) > 0$ so $\Delta\xi f(\xi)/\Delta F(\xi)$ is bounded if $0 \le u \le \alpha(p)$, by L'Hospital's rule. Thus for large n, $\partial T'/\partial x < 0$ if $p \in \overline{M}$, $T'(p, \tilde{f}) = 0$, and x = 0. Thus $\partial T'/\partial x < 0$ for $p \in \overline{M}$, $T'(p, \tilde{f}) = 0$, and $|x| < \varepsilon$ for some $\varepsilon > 0$. Thus 0 is a regular value of θ , and so $\theta^{-1}(0)$ is a C^1 curve C in $M \times (-\varepsilon, \varepsilon)$. Note that if x_0 is a regular value of the projection map $\pi: C \to (-\varepsilon, \varepsilon)$, then the map $p \to T'(p, \tilde{f})$ has 0 as a regular value for $p \in M$. But by Sard's theorem, the regular values of π are dense in $(-\varepsilon, \varepsilon)$ so we may choose x_0 , a regular value of π sufficiently small so that $\tilde{f} \in \mathcal{O}$ and $H(\tilde{f})(p) > 0$ if $H(f)(p) \ge \frac{1}{2}$. Then $H(\tilde{f})(p) > 0$ for $p \in M$ and for $H(f_0(p) > \frac{1}{2}$; that is, for any $p \in [k^{-1}, k]$ and, hence, $\tilde{f} \in \mathcal{G}_k^{\mathcal{H}} \cap \mathcal{O}$. This completes the proof.

435

COROLLARY 4. Suppose that $T(p_i) = L$ for i = 1, 2, 3, ... Then $\alpha(p_i) \to \infty$ as $i \to \infty$ if either: (a) $f \in \mathcal{G}$ or (b) L is a regular value of T.

Proof. Suppose that $\alpha(p_i) \leq N$ for all *i*; then $p_i^2 \leq \sup\{2|F(u)|: u \leq N\}$. Suppose hypothesis (a) holds. Then by Rolle's theorem, there exist \bar{p}_i , $p_i < \bar{p}_i < p_{i+1}$ with $T'(\bar{p}_i) = 0$, or *T* is not defined for \bar{p}_i . Since *f* has only a finite number of zeros on $0 \leq u \leq N$, it follows that there are only a finite number of \bar{p}_i in the latter class. Let *U* be a neighborhood of $P = \{p_i : i \in \mathbb{Z}_+\}$ with $T' \neq 0$ on $U \setminus P$, and let $c = \lim p_i$. Then $T|(C \setminus U)$ is a Morse function and has only finitely many points where T' = 0; thus *P* is finite. In case (b), we approximate *f* by \tilde{f} such that *L* is a regular value for $T(\cdot, \tilde{f})$, and $\tilde{f} \in \mathcal{S}$, and then use part (a). This is possible since *P* is a compact subset of domain (*T*). Thus we may say that $\alpha(p_i) \to \infty$ as $i \to \infty$ for generic *f* and generic *L*.

3. REMARKS AND APPLICATIONS

(1) If we consider the Neumann problem, we may write (cf. [4]), $T(p) = T_1(p) + T_2(p)$, where T_2 is the time map we have just considered, and $T_1(p) = \inf\{t: \phi_{-2t}(p) = (0, -p)\}$. Defining the map θ as in the proof of the theorem, (and setting $b_n(u) = 0$ for $u \leq 0$) we see that T_1 is independent of x so that $\partial T/\partial x = \partial T_2/\partial x$, 0 is again a regular value, and thus our result also holds for Neumann boundary conditions.

(2) When T is a Morse function, the critical points of T can accumulate, a priori, only at 0 or at $\beta(f)$. In fact, if f(0) > 0, one can define T(0) = 0and then T is differentiable from the right with $T'(0) \neq 0$. If f(0) < 0, one again has $T'(0) \neq 0$. If f(0) = 0 and f'(0) > 0, then generically, in the C^2 topology, $T'(0) \neq 0$ by the results in [3]. If f(0) = 0 and f'(0) < 0 then, barring a saddle to saddle connection, $T'(0) \neq 0$ and, hence, generically for the Dirichlet problem, T is a Morse function on $[0, \beta(f))$ minus a discrete set. Note however, if $\beta(f) < \infty$, and $\alpha(\beta(f)) < \infty$ this discrete set is finite since f can have only a finite number of critical points on $[0, \alpha(\beta(f))]$ for $f \in A$. If, however, $\beta(f) < \infty$ and $\alpha(\beta(f)) = \infty$, then the critical points of T

FIGURE 1

can accumulate at β . For example, if $F(u) = (1 - e^{-u}) \cos u$, we find $\beta = \sqrt{2}$ and $\alpha(\sqrt{2}) = \infty$, see Fig. 1. Thus $T'(p) \neq \infty$ as $p \rightarrow \beta$. This example contradicts Lemma 4.2(ii) of [1].

Note also that the perturbation which we have defined in the proof of the theorem does not affect f(0).

(3) For the Neumann problem, critical points of T may accumulate at 0 if f(0) = 0, but, using the results in [4], these can be generically eliminated in the C³ topology (cf. [2]), by using a cubic approximation of f near 0.

(4) We turn now to some new applications.

PROPOSITION 5. Suppose that $\overline{\lim} F(u)/u^2 \leq 0$ or $\lim |F(u)|/u^2 = 0$ as $u \to \infty$, where F' = f. Then the equation T(p) = L has at most a finite number of solutions p for generic L or generic f.

Proof. Let $T(p_i) = L$, $\alpha_i = \alpha(p_i)$; then $\lim \alpha_i = \infty$ by Corollary 4. But

$$\sqrt{2} T(p_i) = \int_0^{\alpha_i} \frac{du}{(F(\alpha_i) - F(u))^{1/2}}$$
$$= \int_0^{\alpha_i} \frac{1}{\sqrt{(F(\alpha_i) - F(u))/\alpha_i - u}} \frac{du}{\sqrt{\alpha_i - u}} = \frac{2\sqrt{\alpha_i}}{\sqrt{f(\xi_i)}}$$

for $0 < \xi_i < \alpha$, by the mean-value theorem. In case (a),

$$\frac{\alpha_i}{f(\xi_i)} = \frac{\alpha_i}{\xi_i} \frac{\xi_i}{f(\xi_i)} \to \infty \qquad \text{as} \quad i \to \infty.$$

In case (b), we have, for $0 < \xi_i < \alpha_i$,

$$\sqrt{2} T(p_i) = \int_0^{\alpha_i} \frac{du}{\alpha_i \sqrt{F(\alpha_i) - F(u)}} = 1/\sqrt{F(\alpha_i) - F(\xi_i)} \to \infty$$

as $i \to \infty$.

COROLLARY 6. If f is any polynomial then (a) for generic L, T(p) = L has only a finite number of solutions; and (b) if $f \neq \lambda^2 u$, then f may be approximated arbitrarily close in C^2 by an \tilde{f} with $T(p, \tilde{f}) = L$ having only a finite number of solutions for any L.

Proof. (a) If f is not linear, then 2F(u) - uf(u) is monotone for large u and so from (2) $T' \neq 0$ for large a. Also, $f(a) \neq 0$ for large a so we cannot have $T(\alpha_i) = T(\alpha_j)$ for $\alpha_i, \alpha_j \ge N$. Thus the result follows from Corollary 4. If f is linear, then $T(\cdot, f) \equiv c$, and so T(p) = L has no solutions if $L \neq c$.

(b) Choose $\tilde{f} \in \mathscr{G}$ near f. Then for large u we still have $\tilde{f}(u) \neq 0$, and $2\tilde{F}(u) - u\tilde{f}(u)$ is monotone. The conclusion again follows from Corollary 4.

Note that $\lambda^2 u$ can be approximated by, say $\lambda^2 u + \varepsilon (1 + u^2)^{-1}$ which has a monotone time map T; thus T(p) = L has at most one solution. But this approximation is not small in the C^2 Whitney topology. We do not know if $\lambda^2 u$ can be approximated arbitrarily close in $C^2(\mathbb{R}_+)$ with T(p) = L having only a finite number of solutions for all L.

Finally, we remark that these last results enable us to generically give a complete qualitative description of all the solutions of the associated parabolic equation $u_t = u_{xx} + f(u)$, having homogeneous Dirichlet boundary conditions. This follows from Theorem 24.15 of [5].

REFERENCES

- 1. P. BRUNOVSKY AND S.-N. CHOW, Generic properties of stationary state solutions of reaction-diffusion equations, preprint.
- 2. S.-N. CHOW AND J. MALLET-PARET, Integral averaging and bifurcation, J. Differential Equations 26 (1977), 112-159.
- 3. J. SMOLLER, A. TROMBA, AND A. WASSERMAN, Nondegenerate solutions of boundary-value problems, *Nonlinear Anal.* 7 (1980), 207–215.
- 4. J. SMOLLER AND A. WASSERMAN, Global bifurcation of steady-state solutions, J. Differential Equations 39 (1981), 269-290.
- 5. J. SMOLLER, "Shock Waves and Reaction Diffusion Equations," Springer-Verlag, New York/Berlin, (1983).