Generic Bifurcation of Steady-State Solutions

J. Smoller* and A. Wasserman
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Received July 6, 1982

Brunovsky and Chow [1] have recently proved that for a generic C^{2} function with the Whitney topology, the "time map" $T(\cdot, f$) (see [4]) associated with the differential equation $u^{\prime \prime}+f(u)=0$ with homogeneous Dirichlet or Neumann boundary conditions, is a Morse function. In this note we give a simpler proof of this result as well as some new applications. Our method of proof is quite elementary, uses only Sard's theorem and the implicit function theorem for functions in $C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$, and avoids the use of transversality in function spaces.

An annoying difficulty that one has to face is that the domain of T varies with f. We get around this by constructing a continuous function $H(f)$ which, if positive, implies that T is a Morse function. Thus our task is to prove that the set of f with $H(f)>0$ is generic. Of course, openness is trivial. To prove the denseness, we take any f, perturb it by a monomial $c u^{n}$, and consider the map $\theta:(u, c) \rightarrow T^{\prime}(u, \tilde{f})$, where $\tilde{f}(u)=f(u)+c u^{n}$. We show that 0 is a regular value of θ by checking explicitly that the relevant derivative has the form $a n+b$, where $a \neq 0$, and b is bounded. Thus for large n, the linear term dominates and this yields the density statement.

One consequence of this result is that if $f(u)<0$ for $u>M$, then there are a finite number of (positive) stationary solutions of the equation $u_{t}=u_{x x}+f(u)$, with homogeneous Dirichlet boundary conditions and, generically, we can completely describe all solutions of this partial differential equation.

1. Elementary Facts

We consider the associated first-order system $u^{\prime}=v, v^{\prime}=-f(u)$, and its flow ϕ_{t}. Let $F^{\prime}=f, F(0)=0$; then $F(u)+v^{2} / 2$ is constant on orbits. If for $p>0, \phi_{t}(0, p)=(0,-p)$, for some $t>0$, we define the "time map" by $T(p, f)=\inf \left\{t>0: \phi_{2 t}(0, p)=(0,-p)\right\}$. We will write $T(p, f)=T(p)$ if there is no chance of confusion. Observe that if p_{0} is in the domain of T, and

[^0]$0<p<p_{0}$, then the (positive) orbit through $(0, p)$ enters the region bounded by the v axis and the orbit segment $\phi_{t}\left(0, p_{0}\right)$, and, hence, must either leave this region in positive time, or approach a rest point. This gives

Proposition 1 [1, Lemma 4.1]. If $\int(u)^{2}+f^{\prime}(u)^{2}>0, u \in \mathbb{R}_{+}$the domain of T is an open interval $(0, \beta(f))$ minus a discrete set, where $\beta(f)^{2}=2 \sup \left\{F(u): u \in \mathbb{R}_{+}\right\}$. Note that this interval may be finite, infinite, or void.

If $p \in \operatorname{domain}(T)$, then by symmetry, $\phi_{T(p)}(0, p)=(\alpha(p), 0)$, where $2 F(\alpha(p))=p^{2}$. This gives (see [4]) the explicit formulas for T and T^{\prime},
(i) $T(p)=\int_{0}^{\alpha(p)}(2 \Delta F(\xi))^{-1 / 2} d u$,
(ii) $\quad T^{\prime}(p)=p[\alpha(p) f(\alpha(p))]^{-1} \int_{0}^{\alpha(p)}\left((2 \Delta F(\xi)-\Delta \xi(\xi)) /(2 \Delta F(\xi))^{3 / 2}\right) d u$.

In these formulas, we are using the notation $\Delta g(\xi)=g(\alpha(p))-g(u)$, for any function g.

Proposition 2. [1, Lemma 4.2]. If $0<p_{0}<\beta(f), f(u)^{2}+f^{\prime}(u)^{2}>0$, $u \in \mathbb{R}_{+}, \quad$ and $\quad p_{0} \notin \operatorname{domain}(T)$, then $\lim _{p \rightarrow p_{0}} T(p)=\lim _{p \rightarrow p_{0}-} T^{\prime}(p)=$ $-\lim _{p \rightarrow p_{0}+} T^{\prime}(p)=\infty$. If $\lim _{p \rightarrow \beta()_{-}-} \alpha(p)<\infty$, then $\lim _{p \rightarrow \beta(f)-} T(p)=$ $\lim _{p \rightarrow \beta(f)-} T^{\prime}(p)=\infty$.

Proof. If $\phi_{N}\left(0, p_{0}\right)=(u, v)$ with $v>0$, then for p near p_{0}, $\phi_{N}(0, p)=(\tilde{u}, \tilde{v})$ with $\tilde{v}>0$. Hence, $T(p)>N / 2$ and $\lim _{p \rightarrow p_{0}} T(p)=\infty$; similarly $\lim _{p \rightarrow \beta(f)^{-}} T(p)=\infty$. Next, from (ii)

$$
\begin{equation*}
T^{\prime}(p)=\frac{p 2^{-3 / 2}}{\alpha f(\alpha)}\left[2 T(p)+\int_{0}^{\alpha\left(p_{0}\right)-\varepsilon} \frac{-\Delta \xi f(\xi)}{(\Delta F(\xi))^{3 / 2}} d u+\int_{\alpha\left(p_{0}\right)-\varepsilon}^{\alpha(p)} \frac{-\Delta \xi f(\xi)}{(\Delta F(\xi))^{3 / 2}} d u\right] \tag{1}
\end{equation*}
$$

where $\alpha\left(p_{0}\right)=\lim _{p \rightarrow p_{0-}} \alpha(p)$ and $\varepsilon>0$ is chosen so that $f(x)+x f^{\prime}(x)<0$ for $\alpha\left(p_{0}\right)-\varepsilon \leqslant x \leqslant \alpha\left(p_{0}\right)$. (Note that $f\left(\alpha\left(p_{0}\right)\right)=0$, and $f^{\prime}\left(\alpha\left(p_{0}\right)\right)<0$.) Then $-\Delta \xi f(\xi)=\int_{u}^{\alpha}-\left(f(x)+x f^{\prime}(x)\right) d x>0$, for $\alpha\left(p_{0}\right)-\varepsilon \leqslant u \leqslant \alpha(p)<\alpha\left(p_{0}\right)$. Thus the second integral in (1) is nonnegative, the first is bounded on $\left[\alpha\left(p_{0}\right)-\varepsilon / 2, \alpha\left(p_{0}\right)\right]$, and since $T(p) \rightarrow \infty$ as $p \rightarrow p_{0^{-}}$, we see $T^{\prime}(p) \rightarrow \infty$ as $p \rightarrow p_{0}$. The same argument with $p_{0}=\beta(f)$ shows $T^{\prime}(p) \rightarrow \infty$ as $p \rightarrow \beta(f)-$.

Finally, for $p>p_{0}$, let $\bar{\alpha}\left(p_{0}\right)=\lim \alpha(p)$ as $p \rightarrow p_{0}+$, and write

$$
T^{\prime}(p)=\frac{p}{f(\alpha(p))}\left[\int_{0}^{\alpha\left(p_{0}\right)-\varepsilon}+\int_{\alpha\left(p_{0}\right)+\varepsilon}^{\alpha\left(p_{0}\right)-\varepsilon}+\int_{\bar{\alpha}\left(p_{0}\right)-\varepsilon}^{\alpha(p)}+\int_{\alpha\left(p_{0}\right)-\varepsilon}^{\alpha\left(p_{0}\right)+\varepsilon}\right],
$$

and note that the first two integrals are bounded for $p>p_{0}$, as is the third if $f\left(\bar{\alpha}\left(p_{0}\right)\right) \neq 0$. If ε is small, we may estimate f by its linear part near $\alpha\left(p_{0}\right)$ in
the last integral $\left.\left.\left(a(u-\alpha) p_{0}\right)\right) \leqslant f(u) \leqslant b\left(u-\alpha\left(p_{0}\right)\right)\right)$ and explicitly evaluate the integral. This gives $\lim _{p \rightarrow p_{0}+} \int_{\alpha\left(p_{0}\right)-\varepsilon}^{\alpha\left(p_{0}\right)+\varepsilon}=-\infty$, and if $f\left(\bar{\alpha}\left(p_{0}\right)\right)=0$, the same argument works for the third integral.

2. The Whitney Topology

Let $C^{k}\left(\mathbb{R}_{+}\right)$denote C^{k} functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ with the C^{k}-Whitney topology, that is, U is a neighborhood of f if there is a function $\varepsilon: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \backslash\{0\}$ such that

$$
\left\{g \in C^{k}: \sum_{i=0}^{k}\left|g^{(i)}(u)-f^{i}(u)\right|<\varepsilon(u)\right\} \subseteq U
$$

Let $A=\left\{f \in C^{2}\left(\mathbb{R}_{+}\right): f(x)^{2}+f^{\prime}(x)^{2}>0, \forall x \in \mathbb{R}_{+}\right\} ;$then it is easy to see that A is open and dense in $C^{2}\left(\mathbb{R}_{+}\right)$.

If $f_{1}, f_{2} \in C^{2}\left(\mathbb{R}_{+}\right)$, and $\left|f_{1}(u)-f_{2}(u)\right|<\left(1+u^{2}\right)^{-1}$, then their respective primitives, F_{1}, F_{2} are simultaneously bounded or unbounded from above. Thus $C^{2}\left(\mathbb{R}_{+}\right)=\mathscr{B} \cup \mathscr{Y}$, where \mathscr{B} and \mathscr{U} are open and consist of those $f^{\prime} s$ which have bounded and unbounded primitives, respectively.

For $f \in \mathscr{Z} \cap A$, we define $H(f): \mathbb{R}_{+} \backslash\{0\} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
H(f)(p) & =\min \left(1, T^{\prime}(p)^{2}+T^{\prime \prime}(p)^{2}\right) & & \text { if } p \in \text { domain } T, \\
& =1 & & \text { otherwise },
\end{aligned}
$$

where T is the associated time map. Proposition 2 implies that $H(f)$ is continuous. Similarly, if $f \in \mathscr{B} \cap A$, we define the continuous function $H(f):(0,1) \rightarrow \mathbb{R}$, by

$$
\begin{array}{rlrl}
H(f)(t) & =\min \left[1, T^{\prime}(t \beta(f))^{2}+T^{\prime \prime}(t \beta(f))^{2}\right] \quad \text { if } \quad t \beta(f) \in \operatorname{domain} T \\
& =1 & & \text { otherwise } .
\end{array}
$$

For any compact C in $\mathbb{R}_{+} \backslash\{0\}, H(f) \mid C$ is a continuous function of f in \mathscr{K}; that is, given $f \in A$, a compact C in the domain of $H(f)$ and $\varepsilon>0$, there is an open set 0 such that if $\vec{f} \in 0,|H f(x)-H \widetilde{f}(x)|<\varepsilon$ for all x in C. This holds since T^{\prime} and $T^{\prime \prime}$ as well as $\beta(f)$ depend continuously on $f \in C^{2}\left(\mathbb{R}_{+}\right)$. Similarly, if C is a compact set in $(0,1)$, and $f \in \mathscr{B}$, then $H(f) \mid C$ is continuous in $f \in B$.

Now let

$$
\mathscr{G}=\{f \in A: H(f)>0\}
$$

and note that \mathscr{G} consists of Morse functions. We can write

$$
\begin{aligned}
\mathscr{G} & =(\mathscr{G} \cap \mathscr{H}) \cup(\mathscr{G} \cap \mathscr{B}) \equiv \mathscr{G}^{\mathscr{K}} \cup \mathscr{G}, \\
\mathscr{G}_{k}^{\mathbb{X}} & \left.=\left\{f \in \mathscr{K}: H(f)| | k^{-1}, k\right]>0\right\},
\end{aligned}
$$

and

$$
\left.\mathscr{C}_{k}:=\left\{f \in \mathscr{B}: H(f)| | k^{-1}, 1-k^{-1}\right]>0\right\} .
$$

Then we note that $\mathscr{G}^{\mathbb{K}}=\bigcap_{k \in \mathbb{I}_{+}} \mathscr{G}_{k}^{\mathcal{K}}, \mathscr{G}^{\mathbb{Z}}=\bigcap_{k \in \mathbb{Z}_{+}} \mathscr{S}_{k}^{\mathbb{E}}$. Also by the above remark, \mathscr{G}_{k}^{Z} is open since $\left[k^{-1}, k\right]$ is compact; similarly, $\mathscr{G}_{k}^{\mathscr{Z}}$ is open. We will show that for all k, \mathscr{G}_{k}^{k} is dense in \mathscr{U} and $\mathscr{S}_{k}^{\mathscr{B}}$ is dense in \mathscr{B}. Then by the Baire category theorem, \mathscr{G} is residual in $C^{2}\left(\mathbb{R}_{+}\right)$.

Theorem 3. $\left[1\right.$, Theorem 3.1]. Gis residual in $C^{2}\left(\mathbb{R}_{+}\right)$.
Proof. We will show that $\mathscr{E}_{k}^{\mathbb{Z}} \cap \varnothing \neq \phi$ for any nonvoid open set $C \subset \mathbb{Z}$; the proof for $D^{\prime \prime}$ is virtually identical. Choose $f_{0} \in \cap \cap A$, and let $M=\mid k^{-1}, k \backslash \backslash\left\{p: H\left(f_{0}\right)(p) \geqslant \frac{1}{2}\right\}$. Consider the map $\theta: M \times(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}$, defined by $\theta(p, x)=T^{\prime}(p, \tilde{f})$, where $\tilde{f}(u)=f(u)+x b_{n}(u)$, and

$$
\begin{aligned}
b_{n}(u)=u^{n} & & \text { if } & 0 \leqslant u \leqslant k+1, \\
& =0 & & \text { if }
\end{aligned} \quad u \geqslant k+2,
$$

is a C^{2} function; b_{n} has compact support, but for computational purposes, it is just u^{n}. Note that θ is C^{1}. (If $\mathscr{C} \subset \mathscr{B}$, replace k in the definition of b_{n} by $\beta\left(f_{0}\right)$.)

We claim that 0 is a regular value of θ if ε is sufficiently small and n is sufficiently large. By differentiating under the integral, we have

$$
\frac{\partial T^{\prime}(p, \tilde{f})}{\partial x}=\frac{p}{\alpha f(\alpha)} \int_{0}^{\alpha} \frac{\Delta \xi^{n+1}}{(n+1)(2 \Delta F(\xi))^{3 / 2}}\left\{\frac{3}{2} \frac{\Delta \xi f(\xi)}{\Delta F(\xi)}-(n+2)\right\} d u
$$

when $x=0$ and $T^{\prime}=0$. Note that for $p \in \bar{M}, f(\alpha(p))>0$ so $\Delta \xi f(\xi) / \Delta F(\xi)$ is bounded if $0 \leqslant u \leqslant \alpha(p)$, by L'Hospital's rule. Thus for large $n, \partial T^{\prime} / \partial x<0$ if $p \in \bar{M}, T^{\prime}(p, \tilde{f})=0$, and $x=0$. Thus $\partial T^{\prime} / \partial x<0$ for $p \in \bar{M}, T^{\prime}(p, \tilde{f})=0$, and $|x|<\varepsilon$ for some $\varepsilon>0$. Thus 0 is a regular value of θ, and so $\theta^{-1}(0)$ is a C^{1} curve C in $M \times(-\varepsilon, \varepsilon)$. Note that if x_{0} is a regular value of the projection map $\pi: C \rightarrow(-\varepsilon, \varepsilon)$, then the map $p \rightarrow T^{\prime}(p, \tilde{f})$ has 0 as a regular value for $p \in M$. But by Sard's theorem, the regular values of π are dense in $(-\varepsilon, \varepsilon)$ so we may choose x_{0}, a regular value of π sufficiently small so that $\tilde{f} \in \mathcal{O}$ and $H(\tilde{f})(p)>0$ if $H(f)(p) \geqslant \frac{1}{2}$. Then $H(\tilde{f})(p)>0$ for $p \in M$ and for $H\left(f_{0}(p)>\frac{1}{2}\right.$; that is, for any $p \in\left[k^{-1}, k\right]$ and, hence, $\tilde{f} \in \mathscr{G}_{k}^{K} \cap \mathcal{O}$. This completes the proof.

Corollary 4. Suppose that $T\left(p_{i}\right)=L$ for $i=1,2,3, \ldots$ Then $\alpha\left(p_{i}\right) \rightarrow \infty$ as $i \rightarrow \infty$ if either: (a) $f \in \mathscr{G}$ or (b) L is a regular value of T.

Proof. Suppose that $\alpha\left(p_{i}\right) \leqslant N$ for all i; then $p_{i}^{2} \leqslant \sup \{2|F(u)|: u \leqslant N\}$. Suppose hypothesis (a) holds. Then by Rolle's theorem, there exist \bar{p}_{i}, $p_{i}<\bar{p}_{i}<p_{i+1}$ with $T^{\prime}\left(\bar{p}_{i}\right)=0$, or T is not defined for \bar{p}_{i}. Since f has only a finite number of zeros on $0 \leqslant u \leqslant N$, it follows that there are only a finite number of \bar{p}_{i} in the latter class. Let U be a neighborhood of $P=\left\{p_{i}: i \in \mathbb{Z}_{+}\right\}$ with $T^{\prime} \neq 0$ on $U \backslash P$, and let $c=\lim p_{i}$. Then $T \mid(C \backslash U)$ is a Morse function and has only finitely many points where $T^{\prime}=0$; thus P is finite. In case (b), we approximate f by \tilde{f} such that L is a regular value for $T(\cdot, \tilde{f})$, and $\tilde{f} \in \mathscr{F}$, and then use part (a). This is possible since P is a compact subset of domain (T). Thus we may say that $\alpha\left(p_{i}\right) \rightarrow \infty$ as $i \rightarrow \infty$ for generic f and generic L.

3. Remarks and Applications

(1) If we consider the Neumann problem, we may write (cf. [4]), $T(p)=T_{1}(p)+T_{2}(p)$, where T_{2} is the time map we have just considered, and $T_{1}(p)=\inf \left\{t: \phi_{-2 t}(p)=(0,-p)\right\}$. Defining the map θ as in the proof of the theorem, (and setting $b_{n}(u)=0$ for $u \leqslant 0$) we see that T_{1} is independent of x so that $\partial T / \partial x=\partial T_{2} / \partial x, 0$ is again a regular value, and thus our result also holds for Neumann boundary conditions.
(2) When T is a Morse function, the critical points of T can accumulate, a priori, only at 0 or at $\beta(f)$. In fact, if $f(0)>0$, one can define $T(0)=0$ and then T is differentiable from the right with $T^{\prime}(0) \neq 0$. If $f(0)<0$, one again has $T^{\prime}(0) \neq 0$. If $f(0)=0$ and $f^{\prime}(0)>0$, then generically, in the C^{2} topology, $T^{\prime}(0) \neq 0$ by the results in [3]. If $f(0)=0$ and $f^{\prime}(0)<0$ then, barring a saddle to saddle connection, $T^{\prime}(0) \neq 0$ and, hence, generically for the Dirichlet problem, T is a Morse function on $[0, \beta(f))$ minus a discrete set. Note however, if $\beta(f)<\infty$, and $\alpha(\beta(f))<\infty$ this discrete set is finite since f can have only a finite number of critical points on $[0, \alpha(\beta(f))]$ for $f \in A$. If, however, $\beta(f)<\infty$ and $\alpha(\beta(f))=\infty$, then the critical points of T

Figure 1
can accumulate at β. For example, if $F(u)=\left(1-e^{-u}\right) \cos u$, we find $\beta=\sqrt{2}$ and $\alpha(\sqrt{2})=\infty$, see Fig. 1. Thus $T^{\prime}(p) \nrightarrow \infty$ as $p \rightarrow \beta$-. This example contradicts Lemma 4.2(ii) of [1].

Note also that the perturbation which we have defined in the proof of the theorem does not affect $f(0)$.
(3) For the Neumann problem, critical points of T may accumulate at 0 if $f(0)=0$, but, using the results in [4], these can be generically eliminated in the C^{3} topology (cf. [2]), by using a cubic approximation of f near 0.
(4) We turn now to some new applications.

Proposition 5. Suppose that $\overline{\lim } F(u) / u^{2} \leqslant 0$ or $\lim |F(u)| / u^{2}=0$ as $u \rightarrow \infty$, where $F^{\prime}=f$. Then the equation $T(p)=L$ has at most a finite number of solutions p for generic L or generic f.

Proof. Let $T\left(p_{i}\right)=L, \alpha_{i}=\alpha\left(p_{i}\right)$; then $\lim \alpha_{i}=\infty$ by Corollary 4. But

$$
\begin{aligned}
\sqrt{2} T\left(p_{i}\right) & =\int_{0}^{\alpha_{i}} \frac{d u}{\left(F\left(\alpha_{i}\right)-F(u)\right)^{1 / 2}} \\
& =\int_{0}^{\alpha_{i}} \frac{1}{\sqrt{\left(F\left(\alpha_{i}\right)-F(u)\right) / \alpha_{i}-u}} \frac{d u}{\sqrt{\alpha_{i}-u}}=\frac{2 \sqrt{\alpha_{i}}}{\sqrt{f\left(\xi_{i}\right)}}
\end{aligned}
$$

for $0<\xi_{i}<\alpha$, by the mean-value theorem. In case (a),

$$
\frac{\alpha_{i}}{f\left(\xi_{i}\right)}=\frac{\alpha_{i}}{\xi_{i}} \frac{\xi_{i}}{f\left(\xi_{i}\right)} \rightarrow \infty \quad \text { as } \quad i \rightarrow \infty
$$

In case (b), we have, for $0<\xi_{i}<\alpha_{i}$,

$$
\sqrt{2} T\left(p_{i}\right)=\int_{0}^{\alpha_{i}} \frac{d u}{\alpha_{i} \sqrt{F\left(\alpha_{i}\right)-F(u)}}=1 / \sqrt{F\left(\alpha_{i}\right)-F\left(\xi_{i}\right)} \rightarrow \infty
$$

as $i \rightarrow \infty$.
Corollary 6. If f is any polyonomial then (a) for generic $L, T(p)=L$ has only a finite number of solutions; and (b) if $f \neq \lambda^{2} u$, then f may be approximated arbitrarily close in C^{2} by an \tilde{f} with $T(p, \tilde{f})=L$ having only a finite number of solutions for any L.

Proof. (a) If f is not linear, then $2 F(u)-u f(u)$ is monotone for large u and so from (2) $T^{\prime} \neq 0$ for large α. Also, $f(\alpha) \neq 0$ for large α so we cannot have $T\left(\alpha_{i}\right)=T\left(\alpha_{j}\right)$ for $\alpha_{i}, \alpha_{j} \geqslant N$. Thus the result follows from Corollary 4. If f is linear, then $T(\cdot, f) \equiv c$, and so $T(p)=L$ has no solutions if $L \neq c$.
(b) Choose $\tilde{f} \in \mathscr{G}$ near f. Then for large u we still have $\tilde{f}(u) \neq 0$, and $2 \widetilde{F}(u)-u \tilde{f}(u)$ is monotone. The conclusion again follows from Corollary 4.

Note that $\lambda^{2} u$ can be approximated by, say $\lambda^{2} u+\varepsilon\left(1+u^{2}\right)^{-1}$ which has a monotone time map T; thus $T(p)=L$ has at most one solution. But this approximation is not small in the C^{2} Whitney topology. We do not know if $\lambda^{2} u$ can be approximated arbitrarily close in $C^{2}\left(\mathbb{R}_{+}\right)$with $T(p)=L$ having only a finite number of solutions for all L.

Finally, we remark that these last results enable us to generically give a complete qualitative description of all the solutions of the associated parabolic equation $u_{t}=u_{x x}+f(u)$, having homogeneous Dirichlet boundary conditions. This follows from Theorem 24.15 of [5].

References

1. P. Brunovsky and S.-N. Chow, Generic properties of stationary state solutions of reac-tion-diffusion equations, preprint.
2. S.-N. Chow and J. Mallet-Paret, Integral averaging and bifurcation, J. Differential Equations 26 (1977), 112-159.
3. J. Smoller, A. Tromba, and A. Wasserman, Nondegenerate solutions of boundary-value problems, Nonlinear Anal. 7 (1980), 207-215.
4. J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations 39 (1981), 269-290.
5. J. Smoller, "Shock Waves and Reaction Diffusion Equations," Springer-Verlag, New York/Berlin, (1983).

[^0]: * Research supported in part by the NSF.

