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Abstract

We phenomenologically decompose the Weisskopf–Wigner approximation, as applied to the neutral flavoured meson (M0)
complexes, into three pieces and propose tests for these pieces. Our tests hold for general decay amplitudes andM0– �M 0 mixing
parameters. We concentrate on C-oddM0 �M 0 states and stress the importance of such tests in view of the variety of physics
extracted from measurements on such complexes. Studying the feasibility of the tests confines one to theK0 �K 0 system at
present. In particular, we show that the time dependence of the correlated decayφ →K0 �K 0 → 2(π+π−) is determined solely
by the WWA and provides thus a clean test of it.
 2001 Elsevier Science B.V.

PACS: 03.65.-w; 11.30.Er; 13.20.-v; 13.25.-k

The complex formed by a neutral flavoured me-
son M0 (i.e., K0, D0, B0

d , B0
s ) and its antiparti-

cle �M 0 is an important environment for investigating
(i) discrete symmetries CP, T and CPT, (ii) quantum-
mechanical correlations and also (iii) new physics.
The present phenomenology of this complex is com-
monly based on the Weisskopf–Wigner approximation
(WWA) [1]. Since tiny effects are searched for in the
(M0, �M 0) complex, it is desirable to devise experi-
mental tests of the WWA itself, independently of the
physics searched for. One component of the WWA
is the exponential decay law (for theoretical studies
see, e.g., Ref. [2] and papers cited therein), which has
been tested [3] in nuclear physics, and no deviations
have been found, nor in particle physics. Recently,
however, strong non-exponential decay features have

E-mail address: grimus@thp.univie.ac.at (W. Grimus).

been observed in a quantum-mechanical system [4].
Ever since the development of the WWA formalism
for the (K0, �K 0) complex [5,6], many studies have
been performed to search for possible deviations from
the WWA; these would be important in the evalua-
tion of experimental data on the(M0, �M 0) complex
(for recent references see, e.g., [7]). In the present
letter we study the evolution of the correlated C-odd
M0 �M 0 state for testing the WWA. We will phenom-
enologically split the WWA into three basic compo-
nents and investigate separately their consequences.
We want to derive consequences of the WWA alone,
independently of CP, T and CPT invariances (of mix-
ing or of decay amplitudes) and the�Q = �F rule,
whereF means flavour (i.e.,F may be eitherS, C
orB).

We first attempt a phenomenological anatomy of the
WWA. If we denote the general probability amplitudes
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for the transitions|M0〉 → |M0〉, |M0〉 → | �M 0〉,
| �M 0〉 → |M0〉 and | �M 0〉 → | �M 0〉, respectively, as
a(t), b(t), b̄(t) andā(t), wheret is the proper time, the
WWA provides a model for these amplitudes. We shall
propose tests for the pieces of that model. In order to
define these pieces, we recall that the WWA introduces
two independently propagating states
( |MH 〉

|ML〉
)

t−→
(
ΘH(t) 0

0 ΘL(t)

)( |MH 〉
|ML〉

)

(1)with ΘH(0)=ΘL(0)= 1.

The states1 |MH,L〉 are suitable linear combinations
of the two flavour states|M0〉 and| �M 0〉:
|MH 〉 = pH |M0〉 + qH | �M 0〉, |pH |2 + |qH |2 = 1,

(2)

|ML〉 = pL|M0〉 − qL| �M 0〉, |pL|2 + |qL|2 = 1,

wherepH,L andqH,L are complex constants. Because
of the relevant approximation, the[(|M0〉, | �M 0〉) ↔
(|MH 〉, |ML〉)] system is closed, the effect of the

physical channels (likeπ+π−) of
(−)
M0 decay being

taken into account by the details of the propagation
functionsΘH,L(t). Of course, the transformation (2)
is invertible:( |M0〉

| �M 0〉
)

=A−1
( |MH 〉

|ML〉
)

(3)with A=
(
pH qH
pL −qL

)
.

The “decoupled” propagation of|MH,L〉 in Eq. (1)
restricts the otherwise general coefficientsa, b, b̄,
ā. Using (i) the closed nature of[(|M0〉, | �M 0〉) ↔
(|MH 〉, |ML〉)], (ii) Eqs. (2) and (3) and (iii) the
definitions for the coefficientsa, b, b̄, ā, one gets

Ω

( |MH 〉
|ML〉

)
=ΩA

( |M0〉
| �M 0〉

)
=AΩ

( |M0〉
| �M 0〉

)

=A

(
a b

b̄ ā

)( |M0〉
| �M 0〉

)

(4)=A

(
a b

b̄ ā

)
A−1

( |MH 〉
|ML〉

)
,

1 In the case of the neutral kaons, the long-lived varietyKL

corresponds to the heavier stateMH , and the short-livedKS

corresponds to the lighter stateML.

whereΩ denotes the time-development operator. Us-
ing Eq. (1), this means

(5)

(
ΘH 0
0 ΘL

)
=A

(
a b

b̄ ā

)
A−1.

Comparing the diagonal elements, one obtains

(6)

ΘH = 1

2
(a + ā)+ γ and ΘL = 1

2
(a + ā)− γ,

with

γ =
{

1

2
(a − ā)(pH qL − qHpL)

+ bpHpL + b̄qHqL

}
/D

(7)and D = pHqL + pLqH .

Computing the off-diagonal elements (12 and 21
elements) of Eq. (5), similarly gives

∆12 = {
(a − ā)pHqH − bp2

H + b̄q2
H

}
/D,

(8)∆21 = {
(a − ā)pLqL + bp2

L − b̄q2
L

}
/D.

The vanishing of the off-diagonal elements∆12 and
∆21 is the lack of “vacuum regeneration” (viz. the
absence of|MH,L〉 → |ML,H 〉 transitions) in the
WWA. This directly gives the first piece of the WWA:

(9)WWA1: ā(t)− a(t)= βb(t), b̄(t)= αb(t),

where

(10)α = pHpL

qHqL
and β = pL

qL
− pH

qH
.

Of course, Eq. (9) holds for allt and anyΘH,L(t). The
second piece of the WWA arises from the diagonal
elements of Eq. (5). Using Eq. (6), one obtains the
t-dependence of the coefficientsa, b, b̄, ā as

(11a)WWA2: a + ā =ΘH +ΘL,

(11b)b= qHqL(ΘH −ΘL)/D,

whereinγ has been simplified with the help of Eq. (9).
While Eq. (11b) is expressed in terms ofb, one
could have equivalently written̄a − a or b̄ in terms
of ΘH − ΘL, because of Eq. (9). Thus all the four
coefficientsa, b, b̄, ā are given in terms of the
functionsΘH,L which are so far not specified. One
may note that Eq. (11a) is expected because it is
merely the invariance of the trace under the similarity
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transformation expressed by Eq. (5). The third piece
of the WWA is the specification ofΘH,L in terms of
the exponential law:

WWA3: ΘH,L(t)= exp(−itλH,L)
(12)with λH,L =mH,L − i

2
ΓH,L,

where, as usual,mH,L are the real masses andΓH,L
the real decay widths ofMH,L. With all the pieces
of the WWA put in, one eventually arrives at (for a
convenient summary, see, e.g., [8,9])

a(t)= g+(t)− θg−(t),

b(t)= q

p

√
1− θ2g−(t),

ā(t)= g+(t)+ θg−(t),

(13)b̄(t)= p

q

√
1− θ2g−(t),

where

(14)g±(t)= 1

2

{
exp(−itλH )± exp(−itλL)

}
,

(15)
q

p
=

√
qHqL

pHpL
, θ = qH/pH − qL/pL

qH/pH + qL/pL
,

(16)α =
(
p

q

)2

, β = 2
p

q

θ√
1− θ2

.

Note thatθ , but notq/p, is rephasing-invariant. Thus
both the real and the imaginary parts ofθ are in
principle measurable, and also|q/p|, but not the
phase ofq/p [8,10]. A non-zeroθ signifies CPT and
CP non-invariance in mixing; similarly, a non-zero
|q/p| − 1 signifies T and CP non-invariance. In the
usual explicit calculations based on the WWA, the full
model of Eq. (13) is used. Our interest, in contrast, is
in the three ingredients (WWA1, WWA2, WWA3) and
testing them; the tests of WWA2 (without WWA3) are
bound to be only qualitative because they can merely
examine the differences between the unknownΘH

andΘL.
We now consider decays of the correlatedM0 �M 0

states

(17)

|ψε〉 = 1√
2

[∣∣M0(�k)〉 ⊗ ∣∣ �M 0(−�k )〉
+ ε

∣∣ �M 0(�k )〉 ⊗ ∣∣M0(−�k )〉],
whereε denotes the charge conjugation value;ε = +1
for the C-even case,ε = −1 for the C-odd case. If

one detects the decay channelf at time t+ and the
channelg at timetr , the decay rate of|ψε〉 is

Rε(f, t+;g, tr)

(18)

= 1

2

∣∣∣∣(a+b̄r + εb̄+ar)AfAg + (b+ār + εā+br)Āf Āg

+ (
a+ār + b+b̄r + ε(ā+ar + b̄+br)

)
× 1

2
(Af Āg + Āf Ag)

+ (
a+ār − b+b̄r − ε(ā+ar − b̄+br)

)

× 1

2
(Af Āg − Āf Ag)

∣∣∣∣
2

.

In this expression the transition amplitudes are defined
as

〈f |T |M0〉 =Af , 〈f |T | �M 0〉 = Āf ,

(19)〈g|T |M0〉 =Ag, 〈g|T | �M 0〉 = Āg,

and

(−)
a + ≡ (−)

a (t+),
(−)
a r ≡ (−)

a (tr ),

(20)
(−)
b + ≡ (−)

b (t+),
(−)
b r ≡ (−)

b (tr ).

The form of Eq. (18) assumes only that aspect of
the WWA which was mentioned immediately af-
ter Eq. (2). We shall consider the consequences of
WWA1, WWA2, WWA3, successively, for the coef-
ficientsa, b, b̄, ā. The aim is a comparison with ex-
periment.

For the following we concentrate on the decay of
|ψ−〉, i.e., the C-odd case. Use of WWA1 gives

R−(f, t+;g, tr)

(21)

= 1

2

∣∣∣∣(a+br − b+ar)

×
(
αAfAg − Āf Āg + β

1

2

(
Af Āg + Āf Ag

))

+ (
2a+ar − 2αb+br + β(a+br + b+ar)

)

× 1

2

(
Af Āg − Āf Ag

)∣∣∣∣
2

.

This is the general form of the decay rate where Eq. (9)
has been used.

The case that

(22)Af Āg − Āf Ag = 0
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deserves particular attention, because then the time
dependence is “factored out”:

R−(f, t+;g, tr )
= 1

2
|a+br − b+ar |2

(23)× ∣∣αAfAg − Āf Āg + βAf Āg

∣∣2.
This relation is a powerful test of the property of lack
of vacuum regeneration in the WWA: for all decay
channels satisfying Eq. (22), the(t+ ↔ tr )-symmetric
time dependence must be the same for a given choice
of M0. For Eq. (22) to hold, the decay amplitudes for
the channelsf andg must be completely specified,
using not only the particle content off and g, but
also their configurations of spins and momenta. One is,
therefore, led to consider spinless decay products with
a situation wherein there is no variable Lorentz scalar.
Thus spinless two-body channels (e.g.,π+π−) and
effective two-body channels seem interesting. (One
possibility is the 3π mode where one pion, sayπ1,
moves back-to-back with the remaining two, with
no relative momentum betweenπ2 and π3; another
possibility arises whenπ1 is created at rest.2) With
this in mind one may writef = g in Eq. (23).

For considering WWA2, Eqs. (11a) and (11b), we
use also the first relation of Eq. (9) to obtain, apart
from an overall constant,

a+br − b+ar

−→ (ΘH +ΘL)+(ΘH −ΘL)r

− (ΘH −ΘL)+(ΘH +ΘL)r

(24)= 2
(
ΘL(t+)ΘH (tr)−ΘH(t+)ΘL(tr )

)
.

Due to WWA2, therefore, the unknown time depen-
dence of Eq. (23) is now determined by the character-
isticsΘH,L(t) of the WWA. The greater the difference
betweenΘH(t) andΘL(t), the more pronounced this
time dependence would be becauseΘH −ΘL occurs
linearly in Eq. (24). Unfortunately, this “test” of the
WWA cannot be quantified because theΘH,L are yet
unknown.

2 These configurations have non-zero amplitudes in the standard
theory ofK → 3π ; see, e.g., Ref. [11]. We thank H. Neufeld for
discussions on this point.

If one introduces the exponential law, viz. WWA3,
the above feature comes to the surface:3

|a+br − b+ar |2
(25)−→ e−Γ t+{

cosh
(1

2�Γ t−
) − cos(�m t−)

}
,

where we have used the definitionsΓ = (ΓH +ΓL)/2,
�Γ = ΓH − ΓL, �m = mH − mL and t± = t+ ± tr .
It is worth remarking that the time dependences (23),
(24) and (25) forR−(f, t+;f, tr) do not depend on

any assumptions about the decay amplitudes
(−)
Af –

in particular, their behaviour under CP, T and CPT
transformations and the�Q = �F rule; similarly,
the constantspH,L, qH,L have been kept general; CP,
T and CPT non-invariances (β �= 0, |α| �= 1) have
been allowed throughout. The time dependence (25)
of R−(f, t+;f, tr) is, therefore, the test of the full
WWA; it is a specific version of the general(t+ ↔ tr )-
symmetric form in Eq. (23). Note that so far the WWA
has been used in its general form, the exact values
of the constantsα andβ appearing in Eq. (10) have
not been exploited. A side remark: the vanishing of
Eqs. (23), (24) and (25) fort+ = tr is merely the
quantum-mechanical expectation thatR−(f, t;f, t)
vanishes (see, e.g., Ref. [13]). This feature is already
present in Eq. (18) withf = g, t+ = tr andε = −1; it
does not require WWA1, WWA2 and WWA3.

Another test of the general WWA framework of
Eq. (18) arises by choosingε = −1 andt+ = tr for any
f �= g. Now, in complete contrast to Eq. (22), only the
amplitude combinationAf Āg − Āf Ag contributes to
the rate. Once again, one has a factorization of the time
dependence:

R−(f, t+;g, t+)
(26)= 1

2

∣∣a+ā+ − b+b̄+
∣∣2∣∣Af Āg − Āf Ag

∣∣2,
leading to channel independence of the time depen-
dence ofR−. If one now uses WWA1+WWA2, along
with the values ofα andβ from Eq. (10), the time de-
pendence becomes

R−(f, t+;g, t+)

3 This result can be shown to be contained in the explicit
calculation of Ref. [12], wherein the relevant result, Eq. (4), was
obtained by making the assumption of CPT invariance, viz.β = 0.
Our derivation is based on simpler and more general considerations.
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−→ ∣∣ΘH(t+)ΘL(t+)
∣∣2

(27)

= 1

16

[(|ΘH(t+)| + |ΘL(t+)|
)2

− (|ΘH(t+)| − |ΘL(t+)|
)2]2

.

Here, the difference betweenΘH andΘL makes only
an additive contribution; its role is therefore not as
important as in Eq. (24). With WWA3, one gets4

(28)R−(f, t+;g, t+)→ e−2Γ t+

as the channel-independent time dependence for a
given choice ofM0, which tests the full WWA.

We now consider the feasibility of our WWA tests.
For the tests in Eqs. (23), (24), (25), one needs
spinless two-body (or, effectively two-body) channels.
ForM0 = B0

d,s , the relevant branching ratios are very

small. ForM0 =D0, the relevant|ψ−〉 states have not
yet been well-studied. This leads toM0 = K0. The
obvious choice would then be to compareπ+π− with
π0π0 for f = g as a test of the channel independence
of the correlated decay rate as a function oft+ andtr .

In this case, the decay amplitudes
(−)
Af,g are reasonably

well studied. However, even without the WWA1, viz.
already in Eq. (18), the time dependence is expected
to be very nearly the same for these final states, as will
be shown in the next paragraph. One is, therefore, led
to compare the two choicesππ and special cases of
πππ for f = g andM0 = K0. For further choices,
one has to wait for future data.

We now give the detailed reason why the choices
π+π− and π0π0 for f = g andM0 = K0 are not
practically useful for testing the channel independence
of the time dependence of the rate (23). Considering
the rate (18), where WWA1 hasnot yet been used,
we observe that the ratiosAfAf : Āf Āf : Af Āf

for f = g determine its time dependence. We will
show that these ratios are the same forf = π+π−
andf = π0π0, except for quantities of second order
of smallness, i.e., of the order of the CP-violating
quantity ε′ which denotes CP violation in the decay
amplitudes [8]. In detail, let us write [14]

(29a)AI = 〈I |T |K0〉 = aI e
iδI (1+ iϕI + βI + iαI ),

(29b)ĀI = 〈I |T | �K 0〉 = aI e
iδI (1− iϕI − βI + iαI ),

4 Here, footnote 3 applies as well.

for the decay amplitudes to the two isospin states
I = 0, 2 of theππ system;ϕI , βI , αI are (supposedly
small) real parameters expressing CP and T non-
invariance, CP and CPT non-invariance, T and CPT
non-invariance, respectively; theaI are real; theδI are
theππ scattering phase shifts at the c.m. energy which
equals the kaon mass. The isospin valueI appears
as subscript on various quantities. Then, with obvious
meaning of the subscripts+− and 00, one obtains

A+−A+− : Ā+−Ā+− :A+−Ā+−

(30a)

= 1 : [1− 2
√

2ωζ − 4σ + 4σ(2σ + iα0)
]

: [1− √
2ωζ − 2σ + 2σ(σ + iα0)

]
,

A00A00 : Ā00Ā00 :A00Ā00

(30b)

= 1 : [1+ 4
√

2ωζ − 4σ + 4σ(2σ + iα0)
]

: [1+ 2
√

2ωζ − 2σ + 2σ(σ + iα0)
]
,

where we have used the notation

ω= a2

a0
ei(δ2−δ0), σ = β0 + iϕ0,

(31)ζ = i(ϕ2 − ϕ0)+ (β2 − β0)+ i(α2 − α0).

Here, ω is small because of the�I = 1/2 rule;
we have retained small quantities up to only second
order. Note that the only differences in the ratios in
Eqs. (30a) and (30b) are due to theωζ terms which
are of theε′ type: they are proportional toa2 and to
a combination ofϕI , βI andαI . Usually, one takes
βI = αI = 0; then,ωζ is directly seen to be

√
2ε′. In

the ratios in Eqs. (30a) and (30b), quantities of first
(viz. σ ) and zeroth (viz. 1) order of smallness are also
present, apart from other quantities of second order
(viz. σ 2, σα0). Thus the ratios (30a) and (30b) are the
same to a very good approximation. The observability
of a difference in the time distributions for the+− and
00 channels would require, therefore, very accurate
data, in general, even without the WWA1.

Let us consider the feasibility of the test of WWA3
with M0 = K0 and f = g = π+π−, for which the
corresponding rate is being measured at DA7NE [15].
To get an estimate of the magnitude of the rate (23),
we neglect the CPT-violation parameterβ and the
parameterε′. Also, we retain small quantities to only
the lowest contributing order. In this way we obtain

R−(f, t+;f, tr)
� (

Γ (KS → π+π−)
)2|η+−|2e−Γ t+
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(32)×
{

cosh
1

2
�Γ t− − cos�mt−

}
,

whereη+− denotes the ratio of the decay amplitudes
of KL andKS into π+π−. DA7NE will produce an
adequate number ofK0 �K 0 pairs so as to overcome
the CP suppression in the rate (32) [15]; itstime
dependence is a clear consequence of the full WWA,
irrespective of any T, CP and CPT violations or the
validity of the�S = �Q rule, as noted immediately
following Eq. (25).

Now we come to the feasibility of the tests (26),
(27), (28). The relevant time variable is onlyt+
becauset− = t+ − tr vanishes now. But the variable
t+ is difficult to measure at the present asymmetric B
factories [16] (see, e.g., also Ref. [17]). One is thus led
to the choiceM0 = K0 again. Since nowf �= g, one
can consider many possible choices forf andg.

In summary, we have defined/derived the three
pieces of the WWA from the point of view of phenom-
enological applications. We have then proposed tests
for these pieces in a general way, without making any

assumptions about the decay amplitudes
(−)
Af,g of

(−)
M0

decay and about the constantspH,L, qH,L of Eq. (2).
Our overall framework of Eq. (18) assumes the WWA
property of the closed nature of theM0 �M 0 system;
our purpose was to see the successive consequences
of the three pieces of the WWA. The tests (23), (24),
(25) involve checking the channel independence of the
observed rates, successively for WWA1, WWA2 and
WWA3. The last of these, Eq. (25), tests also the ex-
ponential decay law for any choice off = g andM0.
The same holds for the three tests (26), (27), (28). All
these, at present, are feasible for the choiceM0 =K0.
The first set, viz. (23), (24), (25), is further restricted
to the comparison of the choicesππ and special cases
of πππ for f = g. Hopefully, such tests can be per-
formed soon. For the other choices ofM0, one has to
wait for the future.
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