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Abstract 

Biot’s theory of Poroelasticity is employed to investigate normal static stresses under an excitation in an infinite 
Poroelastic slabs of arbitrary thickness. The radial normal static stress is obtained, and in the neighborhood of the 
center, the same is investigated. It is seen that poroelastic parameters have greater influence over radial normal static 
stress. Numerical data is presented graphically and then discussed.   
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 Introduction:  
            When the body forces act on a solid, the state of solid which is at rest gives static stress and strains. When 

the large static stress acts on a solid, one can neglect the effect of body forces (Mott, 1971). The static stress caused 
by large externally impressed surface forces is assumed to give effects much larger than the effect of gravity. The 
examples of externally impressed forces are ferroelectric, piezoelectric materials which have large static stress 
produced in them by some external agency, such as a battery or a coil (Mott, 1971). Elastic motion of an isotropic 
medium in the presence of body forces and static stresses is investigated (Mott, 1971). In the said paper, Mott 
derived the equations of motion in an elastic medium in the presence of body forces and static stresses. Further, 
elastic waveguide propagation in an infinite isotropic solid cylinder that is subjected to a static axial stress and strain 
is given in the paper (Mott, 1973). In the said paper, the effect of static axial stress and strain upon the velocity of 
the lowest-order flexural mode in solid circular cylinders is discussed and it has been proved that flexural waves in 
cylinders and transverse waves in stretched strings are of the same nature. on the other hand, flat slabs are most 
commonly used in structures such as railway stations, bus stations, exhibition halls, and large structures, like, high 
towers, telecom masts, etc. Such structures when exposed to natural turbulent wind are susceptible to wind induced 
excitation phenomena. In an earlier study (Davids & Kumar 1957),  
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wave propagation in elastic flat slabs under excitation is carried out and even compared with experimental data. As 
these structures are poroelastic in nature,hence they are to be investigated using the theory of poroelasticity. The 
theory of poroelastic media originates from the requirements of particular problems of Geophysics such as the 
problems of seismic waves. Waves of axial symmetry in poroelastic cylindrical structures are studied in cylindrical 
co-ordinate system wherein boundaries go with radial coordinate (Malla Reddy & Tajuddin 2000, Tajuddin & S.A. 
Shah 2007, Tajuddin & S.A. Shah 2006, and Tajuddin & Narayan Reddy 2005) in the frame work (Biot 1956). 
Wave propagation in poroelastic   flat slabs wherein boundaries go with the azimuthally   coordinate is studied in the 
paper (Malla Reddy & Tajuddin 2006). In the said analysis, the frequency   equation is investigated for a pervious 
boundary and an impervious boundary and realized the fact that the nature of boundary and mass coupling 
parameter influence wave propagation.  Flexural vibrations of poroelastic solids in the presence of static stresses are 
studied (Rajitha, et.al). In the said analysis the three dimensional vibrations in a poroelastic solid that is subjected to 
static stresses are investigated. The effects of normal stress under an excitation in poroelastic flat slabs are studied 
(Sandhya Rani, et.al). In the present paper authors investigated the effect of normal static stresses under an 
excitation in poroelastic flat slabs in the framework of Biot theory (1956).  
           The rest of the paper is organized as follows. First, the problem is formulated and the boundary conditions are 
prescribed in section 2. Then in section 3, waves under line source excitation is investigated. The non-
dimensionalisation as well as numerical results are discussed in section 4. Finally, concluding remarks are given in 
section5. 

 
Nomenclature 

( zr ,, )       Cylindrical polar coordinates  
u          Solid displacement  
U         Liquid displacement 
e                    Dilation of solid 

                  Dilation of liquid 
2                Laplace operator in cylindrical polar coordinate 

b                    Dissipation  
ij                 Stresses 

s                    Liquid pressure  
A, N, Q, R     Poroelastic constant  

 
 
2. The Boundary Value Problem 
 
Consider an infinite poroelastic slab of thickness ‘2a’ excited along a line coinciding with the z-axis in cylindrical 
polar coordinate system ),,( zr . Let the slab be homogeneous and isotropic.  The equations of motion of a 
poroelastic solid (Biot 1956) in presence of dissipation (b) which in terms of displacement vectors are: 
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In (1), P (=A+2N), N, Q, R are all poroelastic constants, 2 is the Laplacian operator; and ij  are mass coefficients, 
e  and  are solid dilatation and fluid dilatation, respectively. 

 
The equations of motion in terms of potential functions ‘ ’s and ‘ ’ s are  
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A ‘dot’ over quantity stands for differentiation with respect to time t. 
Consider the displacement decomposition  
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where ru  , zu  and rU , zU  are components of displacements of solid and liquid phases in radial and azimuthally 

directions, respectively Then the solid and liquid dilatations are 1
2e  and 2

2  respectively. The 

solid displacement components ),0( , zr uu  are functions of r, z and t (That is the problem here is plane strain that is 

independent of  ) which can readily be evaluated from the field equations (Biot 1956) representing steady state 
harmonic vibrations presented in the following matrix notation. 
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where p is the frequency of wave,  is the wave number, 111 ,, CBA are all constants. Jn(x) is Bessel function of 
first kind of order n and 
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In equation (4),    )3,2,1(iVi   are dilatational wave velocities of first and second kind, and shear wave velocity, 
respectively. Using these displacements into stress-displacement relations (Biot 1956), the relevant static stresses 

ij'  (Mott 1971) and liquid pressure (s) are obtained as follows: 
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The boundary condition that the front and back surfaces az and  az  for a pervious surface and an 
impervious surface to be stress free are 

0,0',0' ss rzzz                       (Pervious surface) 

0,0',0'
z
ss rzzz

              
 (Impervious surface)                                                                           (10) 

Equations (6) and (10) together give a system of three homogeneous equations for the constants 111 ,, CBA   each for 
a pervious surface and an impervious surface. In order to obtain a nontrivial solution of this system, the coefficient 
matrix must be singular.  This leads to a frequency equation for both pervious and impervious surfaces. 
3. The Excitation  
 This section presents the conditions under which a wave represented by radial and azimuthally displacement 
components can be generated.  Since the boundaries are static stress free, there can be no excitation from the faces 
of slab.  The only remaining source for the wave which must be radially symmetric can be a line corresponding to 
the axis of cylindrical coordinate system. It is interesting to see how these free boundaries are affecting the static 
stress components   rz'   and rr' pertaining to radial coordinate. 
3.1 Pervious surface 

 Because of the boundary conditions, arbitrary constants 111 ,, CBA are no longer independent but are 
connected as follows: 

From, the third boundary condition, we have   
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Substituting (11) in the first boundary condition, we 
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Substituting (12) and (13) in the expression for  srr'   we obtain 
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Similar expressions can be obtained for rz' . The case of axial excitation can be dealt with the case 0r  in the 

expressions for srr'  and rz' . Their values in this case are  

0'rz and  ipt
rr eFBs 11'                                                                                                                 

where  

)]2))sin()cos(/(())}sin()sin()sin(()cos()(

)cos()(
)cos(
)cos({))cos()cos(

)cos(
)cos([

2
9872615242

131
13

24
211110

13

24
1

kNkaDkaDkaDaDaDaDD

aDD
zD
aDaDaD

aD
aDF

 
                                                                                                                                                                                   (14) 
and 

))((2 2
1

2
1

2
10 hrQAND  

))((2 2
2

2
2

2
11 hrQAND  

In the case of a radially symmetric disturbance, continuity of the medium demands that the radial displacements at 
the line of symmetry must be zero. From the equation (4) it is obvious since 0u  when 0r  
 
3.2 Impervious surface 

From the equation (4), we have   iptekrJzDBzDA
z
s )()sin()sin( 022411131 . 

Invoking the third boundary condition, we obtain 
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Substitution of (15) in the first boundary condition yields  
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Substituting (15) and (16) in the expression for srr' , we obtain  
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    Letting 0r  in   the   expressions for   srr'  and rz' , we obtain 
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4.  Numerical Results and Discussion:  Now we introduce non-dimensional parameters to compute the quantities 

1F   and  2F  for a non-dissipation case (that is, when 0b ), which are approximations for the srr' in the case 
of pervious surface and impervious surface, respectively, the non dimensional parameters are as fallows;  
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where  m is non-dimensional phase velocity, is non-dimensional frequency, and 
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 Using non-dimensional variables defined in (20) into  1F  and  2F  given by (14) and (19), respectively, one obtains 

an explicit relation between non-dimensional quantities 0/ FFi  (i=1,2, 2
0 HkF  ) and az / for given materials, 

keeping non-dimensional frequency  a  fixed. Three sets of material parameters are employed for computational 
work, which are presented in the table I. Of three, first two are given by Biot (Biot 1956) and third set is pertaining 
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to sandstone saturated with kerosene given by Fatt (Fatt 1957). In material-II, mass coupling parameter is present 
while in material-III, elastic parameters (Lame constants) are dominant. For materials I & II Poisson ratio is 0.47, 
whereas for material-III it is 0.25. Quantity 0/ FFi computed against az /  for three given materials, each for 
pervious boundary and impervious boundary.   Computations are performed for various values of  a  (Davids & 
Kumar 1957),  the values a   are 0.83 (Set 1), 1.64 (Set 2) ,  and 2.13 (Set 3). Numerical results are presented 
graphically in figures 1-4. All the curves are symmetric with respect to y-axis. For the material–I and material–II, all 
the values in the case of pervious and impervious surfaces are negative, which correspond to tension, whereas for 
the case of material–III, and pervious surface, all values are positive.  Positive values correspond to stress. It is 
interesting to note, all the values are positive that in the case of material–III and impervious surface. 
 
Table-1 
Material      1a         2a            3a         4a                           1d           2d        3d           x          y         z  

I                 0.61       0.0425     0.305    0.034193             0.5           0         0.5           1.671   0.812   14.623 

II               0.61       0.0425     0.305     0.034193               0.65        -0.15    0.65 2.388   0.909    18.002 

III             0.843      0.065       0.208     0.234                                          0.901     -0.001  0.101 0.999   4.763    3.851 

From the Fig.1, it is clear that tension decreases as ka and a  increase, but in the neighbourhood of 0ka  the 
trend is reversed. When  ka and a  are high,  that is in the case of set 3, the values of material-I  and that of 
material-II are coinciding, which means that mass coupling parameter  does not have any influence when ka and 
a are  relatively higher. From the Fig.2, it is seen that the values of pervious surface and the values of impervious 

surface are closer in the case of material-I which is not the true in the case of material-II which clear from Fig.3 
.Therefore, from Fig.2 and Fig.3, one can infer that the values are affected by the nature of the surface in the case of 
material-I. It is the mass coupling parameter present in material-II making above distinction. Fig.4 corresponds to 
material–III and it is found that impervious values are higher than that of pervious values. In either case the values 
decrease as ka and a  increase. In the case of pervious surface the curves are concave upwards and in the case of 
impervious surface the curves are concave downwards. 
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Figure.1. Variation of 0/ FFi  with az /  in Material-I& Material-II for Pervious Surface. 
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Figure.2. Variation of 0/ FFi  with az /  in Material-I for both Pervious & Impervious Surface. 
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Figure.3. Variation of 0/ FFi  with az /  in Material-II for both Pervious & Impervious Surface. 
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Figure.4.Variation of 0/ FFi  with az /  in Material-III for both Pervious and Impervious Surface. 

4. Conclusion 
 
          The study of static stress waves in a poroelastic flat slab under an excitation is made using Biot’s theory. It is 
seen that how the radial static stress components are affected in view of the traction free boundary conditions on the 
surfaces az and az our analysis is confined to a periodic disturbance, however, because of the Fourier 
integral theorem; it is possible to extend the conclusions to pulse propagation as well. The radial normal static stress 
at the centre is computed against thickness of the slab for three types of materials. Numerical results show the 
following conclusions: All the curves are symmetric with respect to y-axis. The values pertaining to material-I and 
material-II are negative, which correspond to tension whereas the values of material-III in the case of impervious 
surface are positive that correspond to stress. Mass coupling parameter does not affect the values when both wave 
number and frequency are high nature of surface influences the values in presence of mass coupling parameter and 
impervious surface values are greater than that of pervious surface when elastic constants are higher. 
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