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Abstract 

The logistic regression describes the relationship between a binary (dichotomous) response variable and explanatory variables. If 
there is multi collinearity among the explanatory variables, the estimation of model parameters may lead to invalid statistical 
inference. In this study, we have survey data for 2331 randomly selected customers which consists of highly correlated binary 
explanatory variables to model whether a customer’s housing loan application has been approved or not. For this purpose, we 
present a categorical principal component analysis to deal with the multi collinearity problem among categorical explanatory 
variables while predicting binary response variable with logistic regression.  
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1. Introduction 

Binary response variables frequently arise in many research areas especially for applications in the biomedical and 
social sciences. Logistic regression is a specific type of generalized linear models (GLM), a class of nonlinear 
regression models, which is commonly used when the response variable is binary and the explanatory variables are 
either continuous or discrete. When there is a multi collinearity problem among explanatory variables, the 
estimation of the logistic regression coefficients may lead to invalid statistical inference. Aguilera et.al. (2006) 
Proposed the principal component analysis by using a reduced set of principal components of the continuous 
explanatory variables as covariates of the logistic regression. Then, they checked the performance of the proposed 
model on a simulation study. For further discussion about using principal component analysis in logistic regression 
model, one can see Marx and Smith (1990), Camminatiello and Lucadamo  (2010), among others.   
The purpose of the present paper is to improve the accuracy of the estimation of logistic regression coefficients 
when we have a binary response variable and a large number of highly correlated categorical explanatory variables. 
For this purpose, we first employ a categorical principal component analysis to deal with multi collinearity problem 
among binary explanatory variables, and then use uncorrelated principal components instead of original correlated 
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variables to regress the binary response variable with logistic regression model. For numerical illustration of the 
proposed categorical principal component logistic regression model, we analyse a survey data to investigate the 
factors affecting the housing loan approval of a private bank in Turkey.  

2. Association for Variables Measured at the Nominal Level 

Measure of association quantifies the strength of a relationship between variables and also it helps to analyze an 
evidence of the cause and effect relationship. In bivariate case, the independent and dependent variables are taken as 
the cause and effect, respectively. The measure of association for variables measured at nominal level is a statistics 
based on the value of Chi-square. A few of the most widely used ones are: Lambda ( )λ , is a directional 
(asymmetrical) measure of association which provides us the strength of relationship between independent and 
dependent variables given by the formula ( )1 2E Eλ = − /

1E , where 
1E  is the prediction error made when the 

independent variable is ignored and 
2E is the prediction error made when the independent variable is taken into 

account. This proportion explains the extent to which predictions of the dependent variable are improved by 
considering the independent variable. Since it is asymmetric, the value of the statistic depends on which variable is 
taken as independent.  Phi  ( )φ  is a symmetric measure of association for strength of relationship, which is 

appropriate for nominal-by-nominal data given in 2x2 contingency table. Its formula is expressed as 2 Nφ χ= , 

where 2χ  is Chi-square statistics. [ ]0,1φ∈  As a greater than 0.30 indicates a strong relationship (Healey, 2012).  

3. Categorical Principal Component Analysis 

The goal of traditional principal component analysis (PCA) is to reduce the number of m variables  to a smaller 
number of p uncorrelated variables called principal components which account for the variance in the data as much 
as possible. Since PCA is suitable for continuous variables which are scaled at the numerical level of measurement 
such that interval  or ratio and it also assumes linear relationship among variables, it is not an appropriate method of 
dimension reduction for categorical variables. Alternatively, categorical (also known as nonlinear) principal 
components analysis (CATPCA) has been developed for the data given mixed measurement level such that nominal, 
ordinal or numeric which may not have linear relationship with each other. For categorical variables, CATPCA  uses 
optimal scaling process which transforms the category labels into numerical values while the variance accounted for 
among the quantified variables is maximized (Linting and Van der Kooij, 2012). We refer to Gifi (1990) for an 
historical review of CATPCA using optimal scaling. For continuous numeric variables, the optimal scaling process 
is as the traditional case. Suppose we have measurement of n individuals on m variables given with an n m×  
observed scores matrix H where each variable is denoted by jX , j=1,...,m that is the thj  column of H. If the 
variables jX  are of nominal or ordinal measurement level, then a nonlinear transformation called optimal scaling is 
required where each observed scores transformed into category quantification given by: 

( ),j j jϕ=q X                                                                                                                                                  (1) 
where Q is the matrix of category quantifications. Let S be the n p×  matrix of object scores, which are the scores of 
the individuals on the principal components, obtained by CATPCA. The object scores are multiplied by a set of 
optimal weights which are called component loadings. Let A be m p×  matrix of the component loadings where the 
thj  column is denoted by ja . Then the loss function for minimization of difference between original data and 

principal components can be given as follows: 
1

1
( , , ) ( ) ( ),

m
T T T

j j j j
j

L n tr−

=

= − −∑Q A S q a S q a S                                                                                                (2) 

where tr is the trace function, i.e. for any matrix A, 2( )T
ij

i j
tr a=∑∑A A . Consequently, the CATPCA is performed 

by minimizing the least-squares loss function given in the equation (2) in which the matrix X is replaced by the 
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matrix Q. The loss function is exposed to some restrictions.  First, T
j j n=q q , that is transformed variables are 

standardized to solve the indeterminancy between jq and ja . This standardization indicates that jq contains z-
scores and yields that the component loadings in ja  are correlations among transformed variables and principal 

components. The object scores are restricted by T n=S S I , where I is the identity matrix, to avoid the trivial 
solution. However, the object scores are centered, i.e. 1 0T =S , where 1 is a vector of ones. These restrictions imply 
that the columns of S are orthonormal z-scores  (Linting et. al., 2007). The minimization of restricted loss function 
given in (2) is obtained by means of an Alternating Least Squares (ALS) algorithm (Gifi, 1990). 

4. Logistic Regression with Binary Response 

Let Y  be a binary response variable, which is coded as 0 or 1, referred to as absence or presence, respectively. Then 
the logistic regression model is given as follows: 

0 1

0 1
( )

1

x

x

ex
e

β β

β βπ
+

+
=

+
,                                                                                                                                                    (3)  

( )xπ Represents the conditional mean of Y given x, i.e. ( )E Y x . The value of response variable given x can be 

expressed as ( )y xπ ε= + , ε  is the error term. If 1y = , then 1 ( )xε π= −  with probability ( )xπ  and if 0y = , 
( )xε π= −  with   probability 1 ( )xπ− . Therefore, ε  follows a binomial distribution with mean 0 and variance 

( )[1 ( )]x xπ π− . A transformation of ( )xπ  which is called logit function is required: 

0 1
( )( ) ln

1 ( )
xg x x
x

π
β β

π
⎡ ⎤

= = +⎢ ⎥−⎣ ⎦
.                                                                                                                (4) 

The unknown parameters are estimated by the method of maximum likelihood estimation with given likelihood 

function for 0 1( , )β β=β given as 1

1
( ) ( ) [1 ( )]i i

n
y y

i i
i

L x xπ π −

=

= −∏β .  

4.1. Fitting Logistic Model with Binary Explanatory Variables 

Let us consider the interpretation of the coefficients for logistic regression model with the case where explanatory 
variables are at the nominal level of measurement. Assume that X is coded either 0 or 1. Then the difference 
between logit function when x=1 and x=0 is given as 1(1) (0)g g β− = . To interpret this result, a measure of 
association called odds ratio (OR) is required: 

    [ ]
[ ]

1
(1) / 1 (1)
(0) / 1 (0)

OR eβ
π π

π π

−
= =

−
.                                                                                                                                         (5) 

Odds ratio provides an approximation how much more likely or unlikely it is for the response variable to occur 
among those with x = 1 than among those with x = 0. For details, one can see Hosmer and Lemeshow (2000). 

5. Numerical Results  

As a case study, a survey data for 2331 randomly selected customers which is collected by a private bank is 
analysed whether a customer’s housing loan application has been approved or not by using categorical principal 
component logistic regression. The dependent variable, housing loan approval, is a binary variable coded 1 for 
approved applicants and 0 for disapproved applicants. The effects of some explanatory  variables on  housing loan 
approval are investigated. The explanatory variables used are: Age(X1; 1 for age<35, 2 for age>35), Education (X2; 1 
for graduate, 2 for others), Marital Status (X3; 1 for single, 2 for married), Gender (X4; 1 for male, 2 for female), 
Turkish Lira Time Deposit Account Ownership (X5; 1 for yes, 2 for no), Turkish Lira Deposit Account Ownership 
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(X6; 1 for yes, 2 for no), Foreign Currency Time Deposit Account Ownership (X7; 1 for yes, 2 for no), Foreign 
Currency Deposit Account Ownership (X8; 1 for yes, 2 for no), Gold Account Ownership (X9; 1 for yes, 2 for no), 
Repo (X10; 1 for yes, 2 for no), Bond (X11; 1 for yes, 2 for no),  Mutual Fund Ownership (X12; 1 for yes, 2 for no), 
Stock (X13; 1 for yes, 2 for no), Treasury Bill (X14; 1 for yes, 2 for no) and Life Insurance (X15; 1 for yes, 2 for no).  
Since all of the explanatory variables are at the nominal level of measurement, Lambda and Phi coefficients are used 
for measure of association. Among others, highly associated pairs of variables are presented in the Table 1. 
 

 
Table 1. The Measure of Association Coefficients for Some Explanatory Variables 

 
 

 

 

 

 

 
                                                                                                                                                                                                     
       
                             

a Dependent and Independent variables are considered for calculation of Lambda. 
                             
One possible way to check of multicollinearity for nominal measured variables would be use to Lambda and Phi 
coeffients. As seen in Table 1, these coefficients indicate a strong relationship between some explanatory variables. 
When multicollinearity occurs among variables, the estimated logistic regression coefficients  may be inaccurate, in 
other words it reduces the predictive power of the model. Therefore, the categorical principal component analysis is 
performed to reduce the observed variables to a number of uncorrelated principal components. The CATPCA model 
is summarized in Table 2: 

Table 2. Model Summary of CATPCA 
 

Dimension 
 Variance Accounted For 

Cronbach's Alpha Total 
(Eigenvalue) % of Variance 

1 0.691 2.813 18.754 
2 0.543 2.028 13.517 
3 0.482 1.818 12.118 
4 0.306 1.401 9.338 
5 0.246 1.298 8.651 

Total     0.957(a) 9.357      62.377 
 

a Total Cronbach's Alpha is based on the total Eigenvalue. 
 

In CATPCA, the eigenvalues are obtained from the correlation matrix between the quantified variables and the 
variance account for of the first p components is maximized simultaneously over nonlinear transformed variables. 
The eigenvalues are complete summary measure which provide the variance accounted for by each principal 
component. If the original correlated variables form two or more sets, then more than one principal component is 
required to summarize the variables. The eigenvalues shows that how accomplished this summary is.  
 

In this analysis, the reason why we ignore the dimensions higher than five is that their contribution is very little to 
the total variance accounted for. Also, another reason is to prefer principal components correspondig eigenvalues are 
greater than 1. But this criterion mat not be always optimal. The-five dimensional CATPCA on the housing loan 
approval data ensures the largest eigenvalue of 2.813, providing that 18.754% of the variance in the transformed 
variables is explained by the first component. The eigenvalue of the second component is 2.028, providing that its 
percentage of variance accounted for is 13.517%, and other components account for as much as possible of the 
remaining variance, respectively. Thus, all of the components account for a substantial percentage 62.377% of the 
total variance in the transformed variables.  

Variables Directional Measure Symmetric Measure 
Nominal by Nominal Lambda  Approx. Sig. Phi  Approx. Sig. 

Dependent*İndependent (a) λ   p φ   p 

5 7*X X  0.982  0.000 0.987  0.000 

6 8*X X  0.663  0.000 0.809  0.000 

10 12*X X  0.339  0.000 0.566  0.000 

11 14*X X  0.861  0.000 0.927  0.000 

13 15*X X  0.360  0.000 0.576  0.000 
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In Table 3, the component loading matrix is given. Component loadings are equal to Pearson correlation coefficient 
among principal components and quantified variables. The principal components in CATPCA are weighted sums of 
the quantified variables. The object scores corresponding to each  individuals on the components are obtained.  

 
Table 3. The Matrix of Component Loadings  

 
Variable Dimension 

1 2 3 4 5 
X1 -0.038 -0.075   0.160 -0.281   0.562 
X2  0.188   0.135 -0.093   0.270 -0.174 
X3 -0.032   0.024   0.003 -0.189   0.762 
X4 -0.097   0.067 -0.244 -0.045   0.487 
X5   0.422   0.826 -0.038 -0.329 -0.060 
X6   0.278 -0.136   0.875 -0.109 -0.032 
X7   0.420   0.830 -0.037 -0.326 -0.061 
X8   0.301 -0.090   0.870 -0.123 -0.019 
X9   0.357   0.252 -0.053   0.250  0.108 
X10   0.611 -0.300 -0.156 -0.112 -0.052 
X11   0.698 -0.452 -0.268 -0.254 -0.009 
X12   0.576 -0.091 -0.124 -0.009 -0.045 
X13   0.496   0.157   0.047   0.615   0.220 
X14   0.677 -0.451 -0.262 -0.245 -0.010 
X15   0.469   0.076   0.113   0.626   0.243 

 
Therefore, we reduce the dimension of the logistic regression model to avoid multicollinearity by using five number 
of principal components as explanatory variables. In Table 4, we present some goodness of fit measures for logistic 
regression model. 

Table 4. Goodness of Fit Statistics for Logistic Regression   
 

Model Summary Hosmer and Lemeshow Test 

Step -2 Log 
Likelihood 

Cox &Snell 
R Square 

Nagelkerke 
R Square Chi-square df Sig. 

1 839.632 0.484 0.756 9.175 8.000 0.328 
 
One of these measures is Hosmer-Lemeshow test shows that the model ensures better fit than a null model with no 
explanatory variables. If the test statistic is not significant, then it means that the model adequately fits the data. 
According to Table 4, Hosmer-Lemeshow goodness of fit test statistics is not significant (p-value is 0.328) which 
implies that the estimated model fit the data at a convenient level.  
 
To summarize the logistic regression model, there are some approximations for coefficient of determination R2, 
called pseudo R2. However these are not goodness-of-fit tests but rather measure srength of association. One of them 
is Cox & Snell R2, indicates 48.4% of the variation in the response variable is explained by the model. However, 
there is more reliable measure, Nagelkerke R2 indicates a strong relationship of 75.6% between explanatory 
variables and the prediction. Both pseudo measures tends to be lower than the traditional R2. In addition to goodness 
of fit statistics, the classification results presented in Table 5 tell us how many of the cases where the observed 
values of the response variable have been correctly predicted.  
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Table 5. Classification Table (a), (b) 

 

Observed 
Predicted 

Housing Loan Approval Percentage 
Correct No Yes 

Step 1 Housing Loan 
Approval 

No 613 112 84.6 
Yes 95 1511 94.1 

Overall Percentage    91.1 
a Constant is included in the model, b The Cut Value is 0.500. 

 
The results presented in Table 5 show that how accurate the model is at predicting whether a customer’s application 
for housing loan has been approved or not. Then, 84.6% of applicants to housing loan and  94.1% of the non-
applicants are correctly classified. The overall percantage is 91.1% considerably high percentage of customers are 
classified for housing loan approval.  
In the following table, we present the estimation results for logistic regression in the case where principal 
components are used as explanatory variables.  
 

Table 6. Estimation Results for Logistic Regression 
 

 
 
 
 
 
 
 
 
The B column is the parameter estimation of the logistic regression model. The Wald statistic is a common way to 
test the significance of estimation for each explanatory variables. If this statistics is significant, then we reject the 
null hypothesis in logistic regression as the variable contributes significantly to the estimation. It is seen that all 
principal components has significant contribution to the estimation. Then, the logistic regression model for this 
study can be expressed as follows: 
 

( )

( )

2.496 3.495 1 2.849 2 0.193 3 0.828 4 1.395 5

2.496 3.495 1 2.849 2 0.193 3 0.828 4 1.395 5 
1

Comp Comp Comp Comp Comp

Comp Comp Comp Comp Comp

e
e

− − − − +

− − − − ++
 .   (6) 

                                                                                                  
However, Exp (B) column provides odds ratio, which provides the relative importance of the explanatory variables 
on the response variable’s odds. For example, EXP(B) value corresponding to the Comp5 is 4.037 which means that 
Comp5 is approximately 4 times as important as  in determining the decision for approval of the housing loan 
application. 

6. Conclusions 

CATPCA can be used as an  alternative to the widely known linear methods of dimension reduction for the data 
given mixed measurement level such that nominal, ordinal or numeric which may not have linear relationship with 
each other. As clear from the classification table, using principal components as the explanatory variables provides 
rather high correct classification rate of housing loan approval, indicating that an appropriate strategy to model this 
type of variables is selected. 84.6% of applicants to housing loan,  94.1% of the non-applicants are correctly 

 B S.E. Wald df Sig. Exp(B) 95,0% C.I.for  EXP(B) 
 Lower Upper Lower Upper Lower Upper Lower Upper 

COMP1 -3.495 0.191 336.335 1.000 0.000 0.030 0.021 0.044 
COMP2 -2.849 0.195 213.992 1.000 0.000 0.058 0.040 0.085 
COMP3 -0.193 0.076 6.500 1.000 0.011 0.824 0.711 0.956 
COMP4 -0.828 0.095 75.559 1.000 0.000 0.437 0.362 0.527 
COMP5 1.395 0.090 239.288 1.000 0.000 4.037 3.383 4.818 
Constant 2.496 0.158 249.709 1.000 0.000 12.128   
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classified using our logistics regression model with 91.1% overall correct classification rate. Consequently, the 
presented categorical principal component logistic regression is a convenient method to improve the accuracy of 
logistic regression estimation under multicollinearity among categorigal explanatory variables while predicting 
binary response variable. 
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