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The present paper is a sequel to the paper "On a class of error- 
correcting binary group codes",  by R. C. Base and D. K. Ray-  
Chaudhuri,  appearing in Information and Control in which an explicit 
method of constructing a t-error correcting binary group code with 
n = 2 ~ -- 1 places and k = 2 m - 1 - R(m,t) >- 2" -- 1 - m t  informa- 
tion places is given. The present paper generalizes the methods of 
the earlier paper and gives a method of constructing a t-error correct- 
ing code with n places for any arbi t rary n and k = n -- R(m,t) >= 
[(2 "~ - 1)/c] - m t  information places where m is the least integer such 
that  cn = 2 "~ - 1 for some integer c. A second method of constructing 
t-error correcting codes for n places when n is not  of the form 2 "~ - 1 
is also given. 

S E C T I O N  I 

T h i s  p a p e r  is a c o n t i n u a t i o n  of  ou r  p r e v i o u s  p a p e r ,  B o s e  a n d  R a y -  

C h a u d h u r i  (1960) ,  " O n  a class of  e r ro r  c o r r e c t i n g  b i n a r y  g r o u p  c o d e s . "  

T h e  n o t a t i o n  used  t h e r e  wi l l  be  fo l lowed  t h r o u g h o u t ,  w i t h  t h e  m i n i m u m  

of e x p l a n a t i o n .  

I t  was  s h o w n  t h a t  we  can  o b t a i n  a t -e r ror  c o r r e c t i n g  n - p l a c e  b i n a r y  

g r o u p  code  (n , k )  w i t h  k i n f o r m a t i o n  p laces ,  if  n = 2 ~ - 1 a n d  k = n - 

R ( m , t )  w h e r e  R ( m , t )  <-_ m t  is t h e  r a n k  of  a c e r t a i n  m a t r i x  w h o s e  p r o p e r -  

t i e s  h a v e  b e e n  i n v e s t i g a t e d .  P e t e r s o n  (1960)  has  i n v e s t i g a t e d  c e r t a i n  

i n t e r e s t i n g  p r o p e r t i e s  of t h e s e  codes ,  a n d  g i v e n  t h e  e x a c t  v a l u e  of  R ( m , t ) .  

I n  S e c t i o n  I I ,  we  h a v e  g e n e r a l i z e d  ou r  r e su l t s  to  t h e  case  w h e n  n = 

(2  ~ - 1 ) / c  w h e r e  c is t h e  sma l l e s t  i n t e g e r  fo r  w h i c h  cn + 1 is a p o w e r  

of  2. T h i s  g e n e r a l i z a t i o n  enab l e s  us  to  o b t a i n  as a spec ia l  case  c e r t a i n  
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t ract  No. AF(638)-213. Reproduction in whole or in part  is permit ted for any pur- 
pose of the United States Government.  
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codes with the same values of n and ]~ as those investigated by  Prange 
(1958-1959). 

Let  Vr denote the vector  space of r-vectors with coordinates f rom 
GF(2) .  Following the notat ion of Bose and Chaudhuri  (1960) we shall 
denote by  n ~ ( r )  the max imum number  of vectors tha t  it is possible to 
choose in V~ such tha t  no 2t are dependent.  A matrix with elements from 
GF(2)  is said to possess the proper ty  (P~)  if no set of 2t rows are de- 
dependent.  I t  was shown in our earlier paper  tha t  the problem of finding 
a t-error correcting n-place binary group code (n,k) with k information 
places, and the maximum transmission rate k / n  can be completely solved 
if we can determine nat(r) for every value of r and can construct a matr ix  
with r columns and n2~(r) rows, possessing the proper ty  (P2t).  We con- 
s t ructed a matrix with mt columns and 2 m - 1 rows, possessing the 
proper ty  (P2~), which establishes the inequality 

n2t(mt) > 2 ~ -- 1 (1) 

In  Section I I I ,  of the present paper  we shall find lower bounds for 
n2~(r) for values of r which are not multiples of t, and construct the cor~ 
responding matr ix  with the proper ty  (P2t). This enables us in certain 
instances to obtain t-error correcting (n,~) binary group codes for which 
the transmission rate k / n  is bet ter  than  for codes obtainable by using 
corollary 1, Theorem 1 of our earlier paper. 

In  Section IV we have given a table which, for given n _-_ 100 and 
t < 6, enables us to calculate the best corresponding value of k obtain- 
able by  our methods. 

SECTION I I  

For a given positive integer n, let c = c(n)  be the smallest integer 
such tha t  I + cn is a power of 2. Let this power be denoted by  m = m ( n ) .  
Thus, 

n = (2 " ~ -  1 ) / c  (2) 

For example, i f n  = 21, t h e n c  = 3, m = 6; i f n  = 31, c - -  1, m = 5. 
Again, i f n  = 73, c = 7, m = 9. 

Let  x be a primitive element of the Galois field GF(2m). Then 

1, x, x:, . . .  , x no-1 

are all the distinct nonzero elements of the field and 

x n. = 1. 
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Each element of GF(2 m) can be expressed as a polynomial of degree 
m - 1 or less with coefficients from GF(2).  Let V,~ be the vector-space 
of m-vectors, with elements from GF(2).  Then, as explained in Bose and 
Ray-Chaudhuri  (1960) we can institute a (1,1) correspondence between 
the vector 0/ = (a0, a l ,  - . .  , a~_l) of Vm, and the element 

ao + alx + . . .  + am-ix m-1 

of GF(2~). Then the null vector a0 of V~ corresponds to the null element 
of GF(2m), and the sum of any two vectors of Vm corresponds to the sum 
of the corresponding elements of GF(2~). We can then identify the vec- 
tor a of V~ and the corresponding element of GF(2'~). This in effect 
defines a multiplication of the vectors of V~ and converts it into a field. 
In  particular, we can speak of the powers of any vector. Let us set 

0/i = X cl -~- alo 2r  a i l x  -{- " ' '  + al ,m--lX m-1 

(3) 
= ( a i o ,  a l l ,  . . .  , a l .m-1 )  

where i = 1, 2, • • • , n. Then ai , 0/2 , " " " , 0/n are all the distinct elements 
of GF(2 m) which are powers of x c, that  is, 0/1 • In particular, 0/~ = x ~" = 1. 
Let 

Oli*  ( 0 / i  ~ 0 / i  3 2 t - - l x  = , " ' ,  0/~ ) ( 4 )  

and 

3 2 t--1 
O~1 , 0/1 , " " " OL1 

M *  = 0 / 2 ,  0 / 2 ,  " ' "  0/2 ( 5 )  
• . °  . . . . . . . .  , 

3 2 t--1 
O~n , 0 /n  , " " " 0 / n  

When the 0/i's are regarded as m-vectors over GF(2),  M* is a matrix of 
order n X mt with elements from GF(2).  We shall now prove 

LEMMA 1. Any 2t row vectors belonging to M* are independent, i.e., 
M* possesses the property (P2~). 

This result was proved in our earlier paper by using the properties of 
power sums. I t  is possible to generalize this proof. However, we shall 
give the following alternative proof based on considerations suggested 
by W. W. Peterson in a private communication. 

Let ~1, ~2, " " ,  #2~ be any 2t elements of GF(2 m) chosen out of 
0/1,0/2, • • • , 0/~ • We then have to show that the matrix 
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D =  92 9 }  "'" 9~ ~-1 
: : 

D2~--I 

has rank 2t. Since x --~ x 2 is an automorphism of GF(2"~), any linear re- 
lation between 91 ~, 92 ~, . . -  , 9~t implies a corresponding linear relation 

2u 2u 2u 
among ~ , 9~ , • • • , fl2t and vice versa. Hence, the rank of 

91 ~12 

DI = ~2 9~ ~ : : 

9~ 9~ --" 

. . .  9~-1  9 ~  

. . .  9~-1  9~ ~ 
: : 

92 "t --1 ;2t 
2t 9 2 t  

is the same as the rank of D. However. 

2t 

det  D1 -- ~192 " "  ~2~ IX (9~ - 9j) ~ 0 
j < i  

since 91,92,  " '" , 92t are all distinct and nonzero. This shows that  rank 
(D1) = 2t and completes the proof of the Lemma. 

Let mt < n. The columns of M* are not always independent as is clear 
from the example for the case n -- 15, c = 1, m = 4, t = 3, discussed 
in Section 5 of Bose and Chaudhuri (1960). As before, we shall denote 
the rank of M* by R(m,t). If  R(m,t) < rot, then we can choose R(m,t) 
independent columns of M* and drop the remaining columns of M* and 
thus get a matrix of order n X R(m,t) with the property (P2t). 

LEMMA 2. The rank R(m,t) is the number of distinct residue classes 
(rood n) among the integers 2Ju(u = 1, 3, . . .  , 2t - 1 ; j  >_- 0). 

This Lemma has been proved by Peterson (1960) for the special 
case c = 1, and his proof can be easily extended to the general case. We 
shall make a few remarks useful for application of the Lemma. 

Denote by (23"u) the residue class corresponding to the integer 2Ju. 
Since 

2"~u-- (2 m -  1 ) u + u  

-~. nCU ~ ~A 

= u(mod n) 

there cannot be more than m distinct residue classes among (2~'u) with 
fixed value of u, and in counting the number of residue classes it is suffi- 
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cient to confine ourselves to values of j in the range 0 _-< j _-< m - 1. 
Hence, 

R ( m , t )  < mr. 

I f  we arrange the integers 2Ju reduced (rood n) in a rectangular 
scheme, each row corresponding to one value of u, then 

(i) I f  k is the least nonzero positive integer such tha t  

u = 2ku(mod n) 

then k =< m. If  k = m the residue classes in the corresponding row are all 
distinct. I f  k < m, then/c is a factor of m, and there are k distinct residue 
classes in the corresponding row. 

(ii) I f  any two rows have one element in common they coincide en- 
tirely. 

(a) To u we can associate the set of m columns of the submatr ix  

O~u 3 

M~* = ~ (6) 

n 
O/u 

of M. The number  of independent columns in M~* is exactly k. 
We can therefore delete m - k suitable columns from My* with- 
out changing the rank of M*, or the proper ty  (P2t). 

(b) When two rows of the scheme corresponding to say ul and 
u2(ul < u2 <~ 2t - 1) are identical we can delete the submatr ix  
M* 2 without  changing the rank of M* or the proper ty  (P2t). 

After the operations (a) and (b) we get from M* a matrix of order 
n X R ( m , t )  with rank R ( m , t )  and possessing the proper ty  (P2t). Let the 
matr ix  so obtained be called A* which is of order n × R(m, t )  and pos- 
sesses the proper ty  (P2t). 

The matr ix  A* can serve as the par i ty  check matrix.  
Using Theorem 1 of Bose and Chaudhuri  (1960) we now get the fol- 

lowing results: 
THEOREM 1. If n is any integer, and c is the least integer such tha t  

1 + cn = 2 m, then there exists a t-error correcting binary group code 
(n,]~) for which the number  of information places is 

]v = n - R ( m , t )  

where R ( m , t )  is given by  Lemma  2. The letters of the code are binary 
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n-vectors orthogonal to the columns of A*, i.e., form the left null-space 
of A*, where A* is the matrix defined in the remarks following Lemma 2. 

Every  n-place binary sequence (a0, a l ,  . . .  , an-l) may be regarded 
as a polynomial ao -t- a l y  ~ . . .  ~ a,~_ly ~-1 in an indeterminate y. Let  
R~ denote the set of all such polynomials of degree less than n with co- 
efficients 0 and 1. The addition of polynomials in R~ can be defined in 
the usual way, i.e., by adding the coefficients mod 2. Let  the multiplica- 
tion be defined mod 2 and rood (y~ - 1). With these operations R~ 
becomes a ring. Let  

b10 b20 • • • br0 
A *  = b n  b2~ • • • brt 

b1,~_1 b 2 , n - 1  . . .  b . . . .  1 

and let 

fit' = (b~0, b~l ,  . . .  , b i ,n -~) ,  i = 1, 2 ,  . . .  , r -= R ( m , t )  

Let V{A*) denote the vector space generated by ill', f12', " '"  , fir', and 
V ( A * )  denote the vector space orthogonal to ~'(A*). If now the vec- 
tors of V ( A * )  are regarded as polynomials, then for the case c --- 1, 
Pe terson  (1960) has proved that  V ( A * )  is an ideal in R~, generated by 
a certain polynomial f (y)  of degree r -~ R ( m , t ) .  Peterson's arguments at 
once extend to the general case and we have the followh~g: 

Let  f~(x) be the minimum polynomial of x ~j over GF(2) ,  where x is a 
primitive element of GF(2~).  Then V ( A * )  is the ideal generated by  

] ( y )  = L.c .u . . . .  
J=L3,...,(2t-1)Jj[y) 

The polynomial f ( y )  can also be expressed in an alternative form. Let  
(p~, p2, • • ' , p~) be a set of r = R ( m , t )  integers containing one integer 
for each of the R ( m , t )  distinct residue classes considered in Lemma 2. 
Then 

f ( y )  = ( y  - x~P~) ( y  - x ~ 2 )  . . .  ( y  - z~ ,~ ) .  

For a polynomial f ( y )  = ao -t- a l y  + . . .  a~_~y ~-1 we shall 
call (a~_~, an-2, " -  , a0) the reversed vector corresponding to f ( y ) .  Let  

] ( y )  = ( y "  - 1 ) I f ( y )  

and let I [ ] ( y ) ]  denote the set of 2 r reversed vectors corresponding to the 
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2 r polynomials of the ideal generated by ] ( y ) .  Peterson's arguments then 
show tha t  

f ' (A*)  = I [ ] (y) ]  

I t  follows that  we can take 

A* = [31,3~, " '"  , 3~] 

where 3~' is the reversed vector corresponding to the polynomial 

y i -1] (y ) ,  ( i  = 1, 2, . . .  , r ) ,  

and 3i is the transpose 3i'. 
E x a m p l e  1. L e t  n = 21. Then c = 3, m = 6. Let  t = 2. To determine 

R ( m , t ) ,  we write the integers 2Ju(u  = 1, 3; j = 0,1,2,3,4,5) in the fol- 
lowing scheme, each row corresponding to one value of u: 

1, 2, 4, 8, 16, 11 
3, 6, 12, 3, 6, 12 

We thus get nine distinct residue classes and R ( m , t )  -- 9. The number 
of information places is k = 21 -- 9 = 12 and we get a 2 error-correcting 
binary group code (21, 12). To actually construct the code, we have to 
compute 

f ( y )  = (y  -- xS ) ( y  -- x 6 ) (y  - x l s ) ( y _  x 24) 

(y -- x 4s)(y -- x33)(y -- 2 ) ( y  -- x~S)(y -- x ~6) 

where x is a primitive element of GF(26) .  A minimum function of GF(26)  
is x 6 ~- x + 1. Hence, using the relation x 6 -t- x ~- 1 = 0, the coefficients 
of the polynomial f ( y )  will be all reduced to 0 and 1. The 212 message 
sequences will be the 21-place binary vectors corresponding to the ele- 
ments of the ideal generated b y f ( y )  in R21. V(M*) is the ideal generated 
by 

?(y) = ( y 2 1  1 ) / ] ( y )  

= y 1 2 +  yU + y g + y ~ _ p  y3 + y 2 . . b y  ~- 1. 

Hence the pari ty check matrix A* can be taken as 

A* = II3  i..- 0II 

where 3i ~ is the (1 X 21) reversed vector corresponding to y i -1] (y ) ,  
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i = 1, 2, • • • , 9. A 2 error-correcting (21, 12) code has also been studied 
by  Prange (1958). 

Example 2. Let n = 73. Then c = 7, m = 9. Let  t = 4. The residue 
classes corresponding to the integer 2Ju(u = 1,3,5,7; 0 = j < 8) can be 
exhibited as 

1, 2, 4, 8, 16, 32, 64, 55, 37 
3, 6, 12, 24, 48, 23, 46, 19, 38 
5, 10, 20, 40, 7, 14, 28, 56, 39 
7, 14, 28, 56, 39, 5, 10, 20, 40. 

The third and the fourth rows in this scheme are identical. Hence 
R(m,t) = 27 and k = 46. We thus get a 4 error-correcting binary group 
code (73, 46). This 4 error-correcting (73, 46) group code has also been 
obtained by  Prange (1959). 

Example 3. Let n = 85. Then c = 3, m = 8. Let  t = 6. The residue 
classes corresponding to the integers 2Ju(u = 1,3,5,7,9,11; 0 = j ==_ 7) 

1 2 4 8 16 32 64 43 
3 6 12 24 48 11 22 44 
5 10 20 40 80 75 65 45 
7 14 28 56 27 54 23 46 
9 18 36 72 59 33 66 47 

11 22 44 3 6 12 24 48 

can be exhibited as 

The rows corresponding to u = 3 and 11 coincide. Hence R(m,t) = 40 
and k = 45. We thus get a 6 error-correcting binary group code (85, 45). 

SECTION I I I  

We shall now discuss a method which enables us to get matrices pos- 
sessing the proper ty  (P2~) by  adjoining other matrices. For the purpose 
of this section the subscripts carried by  a matr ix  will denote the number  
of rows and columns of the matrix. Thus,  A~.r denotes a matr ix  with n 
rows and r columns. 0n.~ will denote a matr ix  with n rows and r columns, 
each of whose elements is zero. Also On.1 will denote a column vector  
with n zero elements, and O1,~ a row vector  with r zero elements. Finally, 
j ra  will denote a column vector  with r unities as elements. The elements 
of all the matrices considered belong to GF(2) .  

LEMMA 3. If  An,r possesses the proper ty  (P2t) then the matrix 

It A,~,~, B,~,~ II (7) 



ERROR CORRECTING BINARY GROUP CODES 287 

obtained from it by adjoining s new columns (s > 0) also possesses the 
proper ty  (P2t). 

Proof is obvious. 
LEMMA 4. If  the matrix F,,,, possesses the property (P~t),  then the 

matrix 

e n + l  , r + l  

possesses the property (P~ t). 

F .... i £ , ~  [{ 

H 01.~ i 1 
(s) 

Denote the matrix {{F,~,r ! jn,l{{ formed by the first n rows of G~+~,r+l by 
-P~,r+l. From Lemma 3, no 2t rows of ;O.,.+l can be dependent. Again, 
consider the 2t rows obtained by choosing 2t - 1 rows from fin,~+~ and 
adjoining the last row of Gn+~,r+l • These cannot be dependent. Other- 
wise the corresponding 2t - 1 rows of Fn,r which possess the property 
(P2,) would be dependent. This completes the proof of the Lemma. 

THEOREM 2. If the matrix A.,~_~o, r > ro, possesses the property 
(P~t-2) and the matrices 

I[ A . . . . .  o ] T~,~o 1{ and F~,,~o+e_~ (9) 

d _-__ 1, possess the property (P2t), then the matrix 

A . . . . .  0 : T~,~o i O~,a-1 ! 0,,1 
. . , .  . . . . . . . . .  , . . . .  . . . . . o  . o °  . . . . . . . . . . . .  

~/~n+n'-[-1,r-l-d = On' .... O : Y~,,~0+e_l i j.,,1 ( 1 0  

• o .  * .  . . . . . . .  . .  . . . . . . . . . . .  * .  * . .  . . . .  * *  . . *  

01,~-~0 : Oi,r0+a-1 : 1 

also possesses the property (P2~). 
Clearly the matrix .4,,,+~ consisting of the first n rows of M~+n,+~.~+d 

has the property (P2,). Also from Lemma 4, the matrix Gn'+~,,+a formed 
by  the last n '  -/- 1 rows of M~+~,+~,~+d has the property (P2t). To prove 
the theorem we have to show that  the 2t rows obtained by choosing any 
c rows of A,.~+e and any 2t - c rows of G~,+l,,+d, 0 < c < 2t, cannot 
be dependent. From what has been said this is true for c = 2t or 0. If 
c = 2t - 1, then the last coordinate of the chosen rows adds up to unity. 
Hence they cannot be dependent beeat/se the matrix A . . . . .  0 has the 
property (P~t-2). This completes the proof of the theorem. 

As in Section II,  let c = c (n)  be the smallest integer such that  1 + cn 
is a power of 2, this power being m = m ( n ) .  Let R ( m , t )  be defined as 
in Lemma 2. We then have 

THEOREM 3. 
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n2t[R(m,t)  + d] >= 1 --~ n -4- n2t[R(m,t)  - R ( m , t  - 1) -~- d - 1] 

where n2t(r) has been defined in the introduction, and 

1 "< d < R ( m  + 1,t) - R ( m , t ) .  

Let M* be the matr ix  given by  (2.3). We can then write 

M* = II MI*, . . - , M : =  . . ,  M ,_I II 

where M,*  is defined by  (2.4). 
Using the operations (a) and (b) described under Lemma  2, we can 

drop redundant  columns from M* and arrive at  a matr ix  with n rows 
and R ( m , t )  columns. Let  the number  of columns in the block coming 

, 
f rom M2,-~ be ro and the submatr ix  of these columns be Tn,~o. Let  the 
number  of columns coming f rom the par t  ilMI*, Ms*, , . . ,  M*t-3n be 
r - ro and the submatr ix of these columns be A..~-ro • Then r = R ( m , t ) ,  
r -- re = R ( m , t  - 1), and the matricesllA . . . . .  o ! Tn,~oll and [[A . . . . .  o[I 
possess the properties (P2t) and (P~t-2) respectively. Let  

r o +  d -  1 = R ( m , t )  - R ( m , t -  1) - t - d -  1 

and let 

n '  = n2~(r0 -t- d - 1) 

Then there exists a matr ix  F,~,,,o+~_l with elements from GF(2)  and 
possessing the proper ty  (P2t).  We can now construct the matr ix  

Mn+n,+l ,r+d 

given by (3.4). The required result then follows from Theorem 2. 
The most useful ease of Theorem 3 is when c = 1, n = 2 ~ - 1. For  

this case we h a v e  
COROLLARY (1). n~t[R(m,t)  --~ d] >= 2 m --~ n~t[R(m,t) - R ( m , t  - 1) ~- 

d - 1] A less powerful but  simpler result is 
COROLLARY (2). n2t(mt ~- d) >= 2 "~ --~ n2t (m "~- d -- 1) 

This follows by  applying our reasoning to M* without  dropping any  
redundant  column. 

Example  4. Le tus  consider the case t = 2, c = 1, so tha t  n = 2 ~ - 1. 
Then R(m,2)  = 2m and corollary (2) gives the same result as corollary 
(1).  We know tha t  m(2m)  >__ 2 ~ - 1. But  one may  want  to get a bound 
on n4(2m -4- 1). From corollary (2) we have 

n4(2m -}- 1) >- 2 "~ + r e ( m )  
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For  example, 

(i) 

(ii) 

m ( 2 1 )  => 21° + m ( 1 0 )  

> 2 l° + 2 5 - -  1 

n4(15) >= 2 7 + m ( 7 )  

> 27 + 23 + n4(3) 

> 27 + 23 + 3 

SECTION IV 

I t  is easy to see by  exhaust ive  trial  t ha t  r e ( m )  = m for m = 1,2,3; 
n4(4) = 5, n~(5) = 6, and m ( 6 )  = 8. Similarly, we can easily see tha t  
n ~ t ( m )  = m for m = 1, 2, . - .  2t; n6(7) = 8 and  n12(13) = 14. Us ing  
these facts and  the  results  we have  obta ined ,  we can cons t ruc t  the  fol- 

lowing table  where L 2 t ( r )  denotes  the n u m b e r  of vectors  in V~ t h a t  we 
can ac tua l ly  ob ta in  such tha t  no 2t are dependent .  T h u s  L2 t(r)  is a lower 

b o u n d  for n 2 t ( r ) .  

The  three asterisks in Table  I indica te  those cases corresponding to 

TABLE I 

t = l  

r L2(r) 

2 3 
3 7 
4 15 
5 31 
6 63 
7 127 

t = 2  

r Ldr) 

6 7 
7 11 
8 15 
9 21" 

1 0  31 
11 36 
12 63 
13 71 
14 127 

t = 3  

r L6(r) 

6 7 
7 8 
8 9 
9 10 

10 15 
11 18 
12 19 
13 20 
14 21 
15 31 
16 37 
17 38 
18 63 
19 70 
20 72 
21 127 

t - - 4  

r Ls(r) 

14 15 
15 20 
16 21 
17 22 
18 23 
19 24 
20 31 
21 37 
22 38 
23 39 
24 63 
25 7O 
26 71 
27 73* 
28 127 

t = 5  

r Llo(l r) 

25 31 
26 37 
27 63 
28 67 
29 68 
30 69 
31 70 
32 71 
33 72 
34 73 
35 127 

t = 6  

r L12(r) 

30 31 
31 37 
32 38 
33 63 
34 70 
35 71 
36 72 
37 73 
38 74 
39 75 
40 85* 
41 86 
42 127 
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the  three examples given after  Theorem 1. Given n and t, n =< 100, 
t _< 6, we can find out  f rom Table  I the m a x i m u m  possible k for which 
we can obtain  by  our  methods  a t-error correcting (n,k) group code. For  
this purpose we need to use the fact  t ha t  if n 2 t ( r )  = n ,  then for any  posi- 
t ive integer c we have  a t-error correcting (n  - c, n - r - c) group 
code. Thus ,  for instance, if we are seeking the largest value of k for 
n = 90, t = 4, we shall note  t ha t  Ls(27) < 90 < Ls(28) and decide 
tha t  the required value of k is 90 - 28 = 62. 

RECEIVED: Feb rua ry  23, 1960. 
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