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In this paper a method is given for constructing the solution to the exterior 

Dirichlet problem for the Helmholtz equation in three dimensions. This method is 

modeled after the procedure of Colton and Kleinman (Proc. Roy. Sot. Edin. 

86A( 1980), 2942) for solving the corresponding two-dimensional problem. The 

scattering problem is reformulated as an integral equation and it is shown that its 

solution can be represented as a convergent Neumann series for small values of the 

wave number. Comparisons are made between the present method and known 

results. Examples are given which illustrate the method. 

1. INTRODUCTION 

Recently, several methods have been given (see [ 1,4,5,8]) for 
constructing the solution of the exterior Dirichlet problem for the Helmholtz 
equation in both two and three dimensions. In [8], Kleinman obtains the 
solution to the scattering problem explicitly in terms of the Green’s function 
for the corresponding potential problem. In [ 11, by using a subsidiary 
condition obtained from the Helmholtz integral representation, Ahner refor- 
mulates the problem as a boundary integral equation and shows that it can 
be solved by iteration. In this approach it is necessary to compute the first 
eigenfunction of the integral equation associated with the problem. In 141, 
Colton and Kleinman consider both the direct and inverse scattering problem 
in two dimensions. Their results are based on the use of conformal mapping 
techniques (for the case of the inverse scattering problem) and the fact that 
the integral, over the boundary of the obstacle, of the normal derivative of 
the solution to Laplace’s equation satisfying a boundedness condition at 
infinity, vanishes. Instead of using the free space Green’s function as the 
kernel function, Colton and Kress [5] choose a kernel which in the limiting 
case k = 0 becomes the Green’s function for Laplace’s equation in three 
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dimensions in the exterior of some ball which is contained in the interior of 
the scatterer. Their work also has applications to both the direct and inverse 
scattering problem. 

In this paper another method is given for solving the exterior Dirichlet 
scattering problem in three dimensions. The method here is based on the 
work of Colton and Kleinman [4]. Their method, as indicated earlier, makes 
excellent use of a certain property of the solution to the potential problem in 
the plane. Unfortunately, there is no result analogous to this in three 
dimensions. Nonetheless, motivated by their work, a direct extension is made 
here of their results to the three-dimensional case. The resulting integral 
equation, however, involves the same eigenfunction which appeared in [I]; 
consequently, the present method is domain dependent. 

Besides introducing to the literature another constructive method for 
solving the Dirichlet scattering problem in three dimensions, it is hoped that 
the present note will serve to demonstrate a connection between the work in 
[ I] and that in [4] which otherwise might go unnoticed. 

In the next section the solution to the exterior Dirichlet problem for 
Laplace’s equation in three dimensions is considered. There the problem is 
reformulated as an integral equation, which parallels a similar integral 
equation in [4] for the corresponding two-dimensional case. It is shown that 
this integral equation can be solved by iteration. In Section 3, the exterior 
Dirichlet scattering problem is considered and it is shown that the solution 
can also be found by iteration, provided the wave number k is sufficiently 
small. In both Sections 2 and 3 comparisons are made between the present 
method and the results in [ 1,4]. In the last section one potential and one 
scattering problem are solved by using the results in Sections 2 and 3, 
respectively. 

2. CONSTRUCTING THE SOLUTION TO THE 
EXTERIOR DIRICHLET PROBLEM FOR LAPLACE'S EQUATION 

Let Vi be a bounded domain in R3 containing the origin, with a closed, 
simply connected C2 boundary S and let V, denote the region exterior to vi. 
Let e denote the outward unit normal to S; let x denote a typical point in R3 
and let r = 1x1. Consider the exterior Dirichlet problem for Laplace’s 
equation 

q-)(x) = u;(x) + u;(x) in R3\Vi, (2. la) 

Au;,=0 in V,, (2. lb) 

l&(x) = 0 for x E S, (2. Ic) 

lim 
r-m 

= 0. (2. Id) 
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It is to be noted that the more familiar condition at infinity, namely that u), 
is regular there (see [7, p. 217]), is automatically guaranteed by (2.lb) and 
(2. Id) (see 16, p. 179)). It is assumed that ud is a given solution to Laplace’s 
equation in all of R3, except possibly in some set of measure zero contained 
in V,. In any event, IA; is assumed to be twice continuously differentiable 
on S. Under these conditions, a unique solution u’,(x) to (2.1) exists and 
u:, E C2(R3\vi)n C’(R3\Vi) (cf. [6]). 

From Green’s identities we have 

(2.2) 

Similarly, since ui satisfies Laplace’s equation in Vi we have 

= -L&x), XE vi, 

= -#)(x), x E s, (2.3) 

= 0, x E v,. 

Using boundary condition (2.lb), it follows from (2.2) and (2.3) that 

XE vi, 
(2.4) 

= UJX), XE v,. 

Taking the normal derivative as the field point x approaches S from the 
exterior region we obtain 

co(x) = 2u;(x) - K,* u,Jx). (2.5 ) 

where vO(x) = &,(x)/an, u;(x) = au:(x)/&, p = i, s; and where 

(2.6) 
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(4, w> = j; 4(v) W(Y) ds,. (2.7) 

Let the constant p be defined by 

P= (u,, I>= (u;, l), (2.8) 

where the last equality can be established by using Green’s second identity to 
verify that (~6, 1) = 0. (In fact this last result is essential in order that a 
solution to (2.5) exist.) Motivated by the work of Colton and Kleinman [4] 
we obtain from (2.5) and (2.8) the following integral equation for vO(x): 

u 0 (x) = 2r$(x) - p 2-- -!- 
471 an, 1x1 

1. 

-- 1 I 

a 1 1 a l( 
2n .s ----ya,,m\ goods,. 

34 Ix--Y1 
(2.9) 

.It should be noted that integral equation (2.9) is analogous to integral 
equations (2.6) and (2.9) in [4]. Letting C(S) denote the Banach space of 
continuous complex valued functions defined on S and equipped with the sup 
norm, the following result may be proven: 

THEOREM 2.1. Let L,yl=K,*ly-(1/4n)(3/lan,)(l/]x]) (w, 1). Then Lo is 
a compact operator from C(S) into C(S) and a(L,) c (-1, I), where o(Lo) 
denotes the spectrum of Lo. 

That L, is a compact operator from C(S) into C(S) follows from the 
analogous property for the operator Kz (see [ 12]), and since the argument 
used to show u(L,) c (-1, 1) is the same here as used in [4, Theorem I], we 
shall omit the proof. It follows that integral equation (2.9) may be solved 
iteratively. Thus we need only determine the constant /I. 

In two dimensions it is known (e.g., see [ 14, p. 6091) that the integral over 
the boundary of the normal derivative of the solution to Laplace’s equation 
in the exterior region must vanish. This observation was crucial in the work 
of Colton and Kleinman [4]. There is no analogous condition for the 
solvability of the exterior Neumann problem in three-dimensional space. For 
this reason, it is perhaps not surprising that, unlike the two-dimensional case. 
.fs Wv)Pn ds, is domain dependent and as we shall show it also depends 
upon the nature of U: on the surface as well. 

Let &(x) be the solution to 

to(x) = --K*&,(x). (2.10) 
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It can be shown (e.g., see [3; 10, p. 2293) that the eigenfunction &, can be 
obtained, up to a multiplicative constant, by iteration. Furthermore. it can be 
shown (e.g., see [ 12, pp. 376-3771) that 

-LA& r,(y) dS, = const. (2.1 1) 

Assume that <,, has been normalized so that the constant appearing on the 
right-hand side of (2.11) is one. From (2.4) for x E S we have 

l- 1 
2ne s Ix--y( q,(v) 6 = 2ub(x)- 

I 
(2.12) 

Multiplying (2.12) by &,(x) and integrating, we have from (2.8) 

p = (u,, 1) = 2(ub, r,i. (2.13) 

A result similar to (2.13) was established by the author in [ 1, Eq. (3.14) 1. 
(In [ 1, Eq. (3.14)], the term y0 is later shown to be a constant and there the 
normalization for r(x) is slightly different from the one for t,(x) here.) 

It should be pointed out that there is a similarily between the derivation of 
integral equation (2.9) with p given in (2.13) here and integral equation 
(3.16) in [ 1 ] for the exterior Dirichlet potential problem. Both are based on 
integral equation (2.5) and in both use is made of the subsidiary condition 
(2.12) and the eigenfunction in (2.10). 

3. CONSTRUCTING THE SOLUTION TO THE EXTERIOR DIRICHLET PROBLEM 

FORTHE HELMHOLTZ EQUATION 

We now consider the exterior Dirichlet problem for the Helmholtz 
equation. This problem is to determine the scattered field 
us E C2(R’\vi) f~ C’(R3\Vi) such that 

u(x) = ui(x) + u”(x), x E R”\V,, (3.la) 

(A + k2) US(X) = 0 in V,,, (3.lb) 

u(x) = 0 on S, (3.1c) 

lim r 
( 
‘g - iku” 

) 
= 0, 

i- - cc (3.ld) 

where the incident field ui(x) is known and satisfies the Helmholtz equation 
in all of R3; where k is real; where u(x) denotes the total field; and where the 
radiation condition is assumed to hold uniformly in all directions. Using the 
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same argument as used in Section 2 for obtaining (2.4) and using the 
boundary condition (3.lc), the following representation may be obtained 

1 _ eiklx-YI 
ui(x)-~js~~(Y)~~I=oy XE vi, 

(3.2) 
= u(x), XE v,, 

where u(y) = au(y)/&. Taking the normal derivative of (3.2) as the field 
point approaches the surface from V,, we obtain 

2!+(x) -’ j 
8 eiklx-vl 

272 
- - u(y) dS, = u(x), 

s an, IX-Y1 
x E s. (3.3) 

From (3.2) for x E S we get 

2(#‘, To) = 1. y,(y; k) U(Y) dS, = (b Yl>9 (3.4) 
-S 

where c,,(x) is the same function as in Section 2 and, where 

Y,(YG k) =& j’ 
eiklr-vl 

t;,(z) ___ 
s /z-y\ dsza (3.5) 

Furthermore from (2.11) and the normalization for &,, it can be shown 

2(u’, (0) = (u, y, > = (UT 1) + (4 Yh (3.6) 

where 

(3.7) 

Pv&ti~;ing (3.4) by (1/4n)(~/&,)(l/~x~) (we could also have used (1/47r) 
n, erklr’/)x() b u we have opted for using the simpler kernel) we get t 

-~--+Lai(y,,L’)=o. (ui, to> a 1 
211 an, (xl 47-c an, 1x1 

Substituting (3.8) into (3.6) we obtain 

where 
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and, where 

(3.11) 

We next show that for sufficiently small k, integral equation (3.9) can be 
solved by iteration. From the definitions of L, and L, and using (3.6) and 
(3.7) it can be shown that 

IIL, -Loll = O(k). (3.12) 

where 11. I( denotes the operator norm taken with respect to our Banach space 
C(S). Using the result in (3.12) we now show that the spectral radius of L, 
is less than one. The proof we have chosen to use here follows the argument 
used in [9, Theorem 2.21 and in [4, Theorem 21. 

THEOREM 3.1. There exists a positive constant k, such that for / k( < k,,. 
the spectral radius of L, is less than unity. 

ProoJ From (3.12) we have 

IIW + LA - (AI+ Wll = (IL, - Loll = O(k). (3.13) 

From Theorem 2.1 we have that (AZ + L,) ’ exists for 1 I ) > ,I,, , where ,I, < 1 
and as a consequence of the bounded inverse theorem (see [ 13, p. 63 1) it is a 
bounded linear operator. Let 

From (3.13) and (3.14) it follows that there is a positive number k, such that 
for Jkl <k,, 

II(x4.Z + LJ - (Al + LJl < Mm’ < !](A1 + LJ’JJ -’ (3.15) 

for all (A 1 > 1,. Thus from [ 16, p. 164 ] it follows that (AI + L,) - ’ exists for 
all (A ( > A,, and (k( < k,. Hence the spectral radius of L, is less than one. 

From this result we have 

THEOREM 3.2. There exists a k, > 0 such that for (k( < k,, the solution 
to integral equation (3.9) is given by 

v(x) = f (-LJ g(x). (3.16) 
II=0 



52 .fOHNF.AHNER 

There is a difference between the derivation of integral equation (3.9) and 
analogous integral equation (2.23) in [4] for the corresponding scattering 
problem in two-dimensional space. To illustrate this point, let us proceed as 
in [4]. In (3.2) set x = 0 E Vi and then multiply the resulting equation by 
a(a/~n,)(eik’“‘/lxl), where a is at the moment an arbitrary constant; we 
obtain 

a eiklxl 

2au’(O) - - 
3% 1x1 

From (3.3) and (3.17) we obtain for x E S 

u(x) = g(x; a) - M;: u(x), 

where 
c 

g(x; a) = 2u’(x) - 2au’(O) $ + 
I 

(3.18) 

(3.19) 

and where 

M;u(x) =$ . 
J I 

a &klx-vl eiklvl , j  eiklM 

- u(y)dS,. (3.20) 
s -- -aly/an, 1x1 8% IX-VI I 

It is crucial for our purposes here that the difference ]]Mt - &,(I be small for 
]k] sufftciently small. Taking k = 0, we obtain 

(3.21) 

Unfortunately, there is no proper choice for the parameter a, for which the 
operator A4: - L, will vanish for all u E C(S). 

4. EXAMPLES 

We now provide some explicit examples of the iteration procedures 
developed in the previous sections. Consider the problem in (2.1), where S is 
a sphere of radius a and 

z&x) = l/lx - xe(, x, E v,. (4.1) 

From [ 15, p. 851 we have 

(4.2) 
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where cos a = i(0, x) l (i(0, x,), where i(0, x) denotes a unit vector from 0 to 
x. For a sphere, <= const. satisfies (2.10) and normalizing < we find t,,(x) = 
(2a)-‘. From (2.13) and using the orthogonality of the Legendre 
polynomials we obtain 

For x E S, 

r 

g,(x) E 2&(x) - J- 2- -!- 
477 an, (XI 

z&+2 2 
a “- I 

n n+l P,(cos a). 
e n-1 re 

For x. y E S, it can be shown 

2 1 1 ill 11 1 - ___--- 
an, IX-VI 2 I4 i 

=----- 
2a Ix-y1 +Za?. 

(4.3) 

(4.4) 

(4.5) 

Since /x(= (y( = a, we employ an average of two expansions of l/j x - y 1, 
similar to (4.2) with /xl= a, > jy( = a in one and 1x1 =a, < (yj =a in the 
other. We find 

L.l g(x) = - & 1 

I! I ST 

7: am 
mfl P,(cos 1’) - -’ 

mio a, I 

l G -s,(cos 7) l 
+1,, a*+’ I 

i 
L+2 F na n-1 

X 
ar, n=l 

T P,,(cos 6) 1 dS, 
- rr (4.6) 

where cos y = 3(0, x) . i(0, y) and cos S = i(0, xe) . i(0, y). Using the 
orthogonality of the Legendre polynomials and subsequently letting u . . = 
a, = a. it follows that 

From an induction argument it can be shown 

L;:g,(<u)=(-l)m2 c 
n- I 

,:, pn : 1)” ;;+ I Pn(cos a) (4.8) 
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for m = 1, 2,.... It follows that 

vo(x) = 5 (-L,ygO(x) = ? (2n + 1) ‘: 
n-1 

n+l P,(cos a), (4.9) 
m=0 zo e 

where the geometric series in powers of 1/(2n + 1) has been summed. 
Substituting (4.9) into (2.4) we get 

(4. IO) 

where r> = max {r, r,} and r< = min(r, T@}. This agrees with the standard 
result using separation of variables. 

Next consider problem (3.1) for a plane wave incident on a sphere of 
radius LI. Let the coordinate system be oriented so that the origin 0 coincides 
with the center and the z axis is aligned with the direction i; of the plane 
wave (so that i = &). Let the point x have spherical coordinates (r, ~$4). 
From [ 11, pp. 107-1081 for r > a we have 

d(x)=e - ikrcos 9 _ KwA 
- imp77 + l)j,(kr) P,(cos O), 

Pll=O 
(4.11) 

&klr-yl 

___ = ik 2 (2m + I)j,(ka) hi’ P,(cos y). 
IX--Y1 m=O 

(4.12) 

From Eqs. (3.11) and (4.1 l), keeping to(x) = (2a)-‘, and using the 
orthogonality of the Legendre polynomials we obtain 

g(x) .ioW) = a + 2k 5 i”(2m + l)j,(ka)’ P,,,(cos 8), x E s, (4.13) 
m=O 

where the prime denotes differentiation with respect to the argument. From 
(3.5) and (4.12) we have 

y,(y; k) = ikaj,(ku) /$‘(ka). (4.14) 

From (4.13), (4.14), and (3.10) we have 

x P,(cos e,> 
I 

IL 
I 2a 

j,(ka) h;“(ku) 
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+ q y (2n + l)[jlt(ka)’ h;“(ka .,.) 
co 

+jJka.) h’,“(ka)‘] P,(cos )‘j 1 a,. (4.15) 

From the orthogonality of the Legendre polynomials and subsequently 
letting a , = a, = a, it follows that 

+ 2k f im(2m + 1) j,,,(ka)’ b,(ku) P,(cos 0). (4.16 j 
m=l 

where 

b,(ka) = ikuj,(ku) hf,“(ku) + ik’a’[ jo(ku)’ hb”(ku) 

+ j,,(ku) hk”(ku)‘], (4.17a) 

b,(ku) = ik2u2[jm(ku)’ hz’(ku) + jm(ku) hc’(ku)‘]. 

m> 1. (4.17b) 

From an induction argument it can be shown that 

I 
[b,,(ku)]” 

+ 2k f i”(2m + l)jm(ku)’ [b,(ka)]” P,,,(cos 0). (4.18) 
m=l 

From (3.16) it follows that 

v(x) = + 2kjJku)’ f [-b,(ku)]” 
I n=O 

+ 2k f F i”(2m + 1) j,(ku)’ [--b,(ku)]” P,(cos /3). (4.19) 
m=l n=O 

It will presently be shown that \b,(ku)l < 1 for m > 0 for suffkiently small 
values of the wave number k; consequently, the geometric series in (4.19) 
may be summed 



56 JOHN F.AHNER 

v(x) = joW 
I - + 2kj,(ka)’ 

1 

a 1 1 + 4dka) 

+ 2k G i”(2m + 1) jdka)’ P,(cos 8). 
EI 1 + b,(ka) 

(4.20) 

Making use of the Wronskian identity (see [ 11, p. 681) 

W(j,,,? hc’} = i/k’s’ 

it can be shown 

-ik cc, 

v(x)= (ka)’ meo 
v i”(2m + 1) 1 

hE’(ka) P,(cos 81, x E S. (4.21) 

Substituting (4.21) into (3.2) the following result is obtained 

u(x) = F i”(2m + 1) j&r)- hJ$q?)) m h”‘(kr) P 
ZO 

nl= 3 ( OS 8) XE v, 
m 

(4.22) 

which agrees with the classical result (e.g., see [2, p. 358)). 
Now let us demonstrate that (b,(ka)( < 1 for m >, 0 for sufficiently small 

values of k. From the series representations for the Bessel and Hankel 
functions [ 111 it can be shown 

b,(ka) = - eik”/(2m + 1) + O(ka), m>l (4.23) 

and from 111, p. 731 we get 

b,(ka) = eiko (cos ka - (sin ka/ka) + i sin ka }. (4.24) 

Hence, for k sufficiently small, it is seen that the desired inequality is valid. 
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