INTRODUCTION

In this note, we point out a generalization of the results of [5], which will answer the following question. Let G be a finite group, p be a prime, Z a central p'-subgroup of G, and λ a linear character of Z. How many p-blocks of defect 0 of G "lie over" λ? Although the groundwork for this result is really contained in [5], we feel that this strengthened version is worth remarking on.

As usual, we let R denote a complete discrete valuation ring of characteristic 0 whose residue field, k say, is algebraically closed of characteristic p. We let π denote the unique maximal ideal of R, and let \ast denote images $(\text{mod } \pi)$. We assume for technical convenience that R contains a primitive $\left(\frac{|G|}{p}\right)^{\text{th}}$ root of unity (R will contain all roots of unity of order prime to p under the hypothesis that k is algebraically closed).

One motivation for our work here is that in [4] Külshammer and the present author described a procedure for determining the number of irreducible characters of G which can be afforded by N-projective RG-modules, when N is a normal subgroup of G (equivalently, this is the number of irreducible characters of G which can be afforded by (R-free) RG-modules with vertex contained in N).

For an irreducible character, χ, of N, the number of irreducible characters of G which can be afforded by (R-free) RG-modules with vertex contained in N and which lie over χ is shown in [4] to be the number of p-blocks of defect zero lying over a certain linear character of a cyclic central p'-subgroup of a fixed p'-central extension of $I(\chi)/N$ (see [4] for a more precise statement). For this purpose, it is no real loss of generality to assume that $O_{p'}(I(\chi)/N)$ is trivial, in which case the cyclic central p'-subgroup of the p'-central extension of $I(\chi)/N$ is just its centre.

The results here, together with those of [4], could be used to determine...
the number of irreducible characters of G which can be afforded by $(R$-free) RG-modules with vertex contained in N. We remark that (as far as we can see) this number could not be determined from the character table of G alone (except in the degenerate cases where the order or index of N is prime to p).

If χ above is in a p-block of defect zero of N, then all irreducible characters of G which can be afforded by an N-projective RG-module and which lie over χ lie themselves in p-blocks of defect zero of G. Conversely, of course, every irreducible character of G in a p-block of defect 0 lies over a p-block of defect 0 of N, and can be afforded by an N-projective RG-module.

These remarks and the results of [4] can be used to reduce the determination of the number of blocks of defect zero of the group G (assuming all relevant inertial groups can be determined) to determining the number of p-blocks of defect 0 (lying over the right linear characters of the centres) of p'-central extensions of certain simple sections of G. (Note that if $I(\chi)/N$ is a non-trivial p-group, then no p'-central extension of $I(\chi)/N$ can have a p-block of defect 0.)

The procedure is as follows: suppose that we can find a p-block of defect 0 of M, a maximal normal subgroup of G. Let μ be the unique irreducible character in this block. Assume for convenience (and with no real loss of generality) that $G = I(\mu)$, and that G/M is non-Abelian of order divisible by p. Then G has a p-block of defect zero lying over μ if and only if the p'-central extension of G/M constructed in [4] has a p-block of defect zero lying over the correct linear character of its centre. The central extension of G/M is of course a central product of a quasi-simple group and a cyclic p'-group, so the real question concerns the existence of a p-block of defect 0 of the quasi-simple group (over the right linear character of its centre).

For a p-block B of Alperin type (see [3] for the definition of Alperin type (see also [1])), this reduces the problem of determining the number of simple B-modules (assuming all relevant inertial groups can be determined) to questions about the number of p-blocks of defect 0 (lying over the right linear characters of the centres) of p'-central extensions of certain simple sections of G.

We also remark that although it is the case that with very few exceptions the (known) simple groups have p-blocks of defect 0 for every prime divisor p of their orders, the question of whether a quasi-simple group has a p-block of defect 0 lying over a prescribed linear character of its centre appears to be more delicate.

As in [5], we answer a more general question about blocks with normal defect group D (which can be combined with Brauer’s First Main Theorem in the usual fashion).

We remark that (as is well known) those irreducible characters χ such
that \(\langle \text{Res}_G^G(\chi), \lambda \rangle \neq 0 \) form a union of \(p \)-blocks of ordinary irreducible characters of \(G \). Also, it is no loss of generality to assume that \(\lambda \) is faithful, so we do.

We recall that to say that the irreducible character, \(\chi \), of \(G \) lies over \(\lambda \) means that \(\langle \text{Res}_G^G(\chi), \lambda \rangle \neq 0 \), and to say that the \(p \)-block, \(B \), of \(G \) lies over \(\lambda \) means that one (and hence each) ordinary irreducible character of \(B \) lies over \(\lambda \).

We let \(u^G \) denote the conjugacy class of \(u \) and \(\hat{u}^G \) denote the corresponding class sum. We say that a conjugacy class \(xc \) of \(G \) is \(Z \)-good if \(x \) is not \(G \)-conjugate to \(xz \) for any \(z \) in \(Z^* \). Then it is easy to see that every irreducible character of \(G \) which lies over \(\lambda \) vanishes identically outside the \(Z \)-good conjugacy classes. We note also that \(Z \) permutes the conjugacy classes of \(G \) via \(u^G \rightarrow zu^G \) for \(u \) in \(G \), \(z \) in \(Z \), and that the \(Z \)-good conjugacy classes fall into orbits of length \(|Z| \).

We let \(D = O_p(G) \) (the possibility that \(D \) is trivial is not excluded). We let \(P \) denote a fixed Sylow \(p \)-subgroup of \(G \), \(X \) denote a full set of representatives for those \((P, P) \)-double cosets \(PxP \) for which it is possible to choose \(x \) so that:

(i) \(x \) is \(p \)-regular, and \(x^G \) is \(Z \)-good.

(ii) \(D \) is a Sylow \(p \)-subgroup of \(C_G(x) \).

(iii) \(P \cap x^{-1}Px = D \).

Our main result is:

Theorem 1. The number of blocks of \(G \) which have defect group \(D \) and lie over the linear character \(\lambda \) of \(Z \) is zero if \(X \) is empty and if \(X \) is non-empty it is the rank of the matrix \(M \) whose rows and columns are indexed by representatives of the \(Z \)-orbits of \(Z \)-good \(p \)-regular conjugacy classes with defect group \(D \), and whose \((u^G, v^G) \)-entry is

\[
\sum_{x \in X} \sum_{(z, w) \in Z \times Z} (\lambda(z^{-1}) \lambda(w) |u^G \cap wxP| |v^G \cap zxP|)^*.
\]

Proof. Let \(s: Z(kG) \rightarrow Z(kG) \) be the map defined as in the proof of the main theorem of [5].

Let \(e_z = |Z|^{-1} \sum_{z \in Z} \lambda(z^{-1})z \) in \(Z(RG) \) (a central idempotent of \(RG \)).

We note that (as is well known) an irreducible character \(\chi \) of \(G \) lies over \(\lambda \) if and only if \(\chi(e_z) \neq 0 \).

As in the proof of the main theorem of [5], we see that the \(k \)-subspace of \(Z(kG) \) spanned by the block idempotents of blocks with defect group \(D \) is spanned by

\[
\{(u^G) \hat{s} : u \text{ is p-regular and } D \in \text{Syl}_p(C_G(u))\}.
\]
Also from the proof of that theorem, we see that for such \(u \), we have

\[
\hat{(u^G)} = \sum_v \sum_{x \in P \setminus G/P} \left([G : C_G(v)]_{p^-1}^{-1} |u^G \cap xP| \right) * \hat{v^G}
\]

(where \(v \) runs over a set of representatives for the \(G \)-conjugacy classes of \(p \)-regular elements \(v \) such that \(D \in \text{Syl}_p(C_G(v)) \); in fact, we may restrict attention to those double cosets containing a \(p \)-regular element \(x \) with \(D \in \text{Syl}_p(C_G(x)) \) such that \(P \cap x^{-1}Px = D \)). Then, for such \(u \), we have

\[
(e \hat{u^G} \hat{v^G}) = \sum_v \sum_{x \in P \setminus G/P} \left([G : C_G(v)]_{p^-1}^{-1} |u^G \cap xP| \right) * \hat{v^G}.
\]

Now if the conjugacy class of \(v \) is not \(Z \)-good, then every irreducible character of \(G \) which lies over \(\lambda \) vanishes on \(v \), so we have \(e \hat{u^G} = 0 \) in \(Z(RG) \), and the inner sum may be taken over the set \(X \) defined above. Also, we need only concern ourselves with elements \(u \) such that the conjugacy class \(u^G \) is \(Z \)-good.

Now the number of blocks of \(RG \) with defect group \(D \) which lie over \(\lambda \) is the dimension of the \(k \)-span of

\[
\{ e \hat{u^G} : u \text{ is } p \text{-regular, } D \in \text{Syl}_p(C_G(u)), \hat{u^G} \text{ is } Z \text{-good} \}.
\]

However, we note that \(\lambda \) vanishes on \(v \), so that for any \(Z \)-good conjugacy class \(u^G \), \(e \hat{u^G} \hat{(wu)^G} \) is a scalar multiple of \(e \hat{u^G} \), and in the above spanning set, we only need to take one representative from each \(Z \)-orbit of \(Z \)-good conjugacy classes.

If \(v \) above lies in a \(Z \)-good conjugacy class, then so does \(zv \) for any \(z \) in \(Z \), and all the elements of \(\{ zv : z \in Z \} \) lie in different \((Z \)-good) conjugacy classes of \(G \).

Hence for \(Z \)-good \(p \)-regular conjugacy classes with defect group \(D \), say \(u^G \) and \(v^G \), we see easily that the coefficient of \(v^G \) in \(e \hat{u^G} \) is

\[
\sum_{x \in P \setminus G/P} \sum_{z \in Z} (\lambda(z^{-1}) |Z|^{-1} [G : C_G(v)]_{p^-1}^{-1} |u^G \cap xP| \right) \cdot \hat{v^G}.
\]

On the other hand, for any \(w \) in \(Z \), this is also the coefficient of \(wv^G \) in \(e \hat{u^G} \) \(= \lambda(w) \hat{u^G} \) as remarked above), so for any such \(u \) and \(v \), the coefficient of \(wv^G \) in \(e \hat{u^G} \) is just \(\lambda(w^{-1}) \) times the coefficient of \(v^G \) in \(e \hat{u^G} \).

In fact, we could leave the entries of \(M \) in an apparently simpler form at
this point, but we prefer to illustrate that M is the image \(\text{(mod } \pi) \text{) of an Hermitian matrix. For this we note that } e_x^* u^G = (|Z|^{-1})^* \sum_{w \in W} \lambda(w^{-1})^* e_x^* w^G \text{ and for any } v \text{ as above, the coefficient of } v \text{ in } e_x^*(w^G s) \text{ is given by }

\[
\sum_{x \in P \setminus G/P} \sum_{z \in Z} (\lambda(z^{-1})(|Z| [G : C_G(v)] \rho^-)^{-1} |w^G \cap xP| |v^G \cap zxP|)^*.
\]

It easily follows that the coefficient of \hat{v}^G in $\hat{u}^G s$ may be written as

\[
\left(|Z|^{-2} \sum_{x \in X} \sum_{(z,w) \in Z \times Z} \lambda(z^{-1}) \lambda(w) [G : C_G(v)] \rho^- |u^G \cap wxP| |v^G \cap zxP| \right)^*.
\]

The result now follows by elementary linear algebra.

We give an application generalizing results of Brauer and Fowler [2] and Wada [6].

Corollary 2. Suppose that p is odd. Let u_1, \ldots, u_r be p-regular elements of $C_G(D)$ in distinct Z-good conjugacy classes of G such that u_iZ and u_jZ are not conjugate in G/Z for any $i \neq j$ and such that for each i, we have:

(i) u_i inverts no non-trivial p-element of $C_G(D)$.

(ii) D is a Sylow p-subgroup of $C_G(u_i)$.

(iii) u_iZ is an involution of G/Z.

Then there are at least r p-blocks of G with defect group D which lie over the linear character λ of Z.

Proof. Let \bar{G} denote G/Z, etc. If t is an element of G conjugate to one of the u_i's, we claim that $P \cap t^{-1}Pt = D$. For if not, t would invert some element of $P \cap t^{-1}Pt$, and this would be an element of $C_p(D)$. Now PtP is a union of $[P : D]$ right cosets of P in G, and each such coset contains exactly one conjugate of t (there are $[P : D]$ conjugates of t in PtP as $D \in \text{Syl}_p(C_G(t))$, and if any coset contained two conjugates of t, then t would invert an element of P^*). It follows that a (P, P)-double coset representative of a double coset which contains a conjugate of any of the u_i's is in X. Also, the number of (P, P)-double coset representatives of double cosets which contain a conjugate of t is $[G : C_G(t)]/[P : D]$.

Furthermore, if $t \in wxP$, $t^g \in zxP$ for some z, w in Z, then $t^{-1}t^g = w^{-1}zs$ for some s in P, so that t and t^g both invert s, forcing $s = 1_G$, $w = z$, as t^G is a Z-good conjugacy class. The (t^G, t^G)-entry of the matrix M is given by

\[
\sum_{x \in X} \sum_{(z,w) \in Z \times Z} (\lambda(z^{-1}) \lambda(w) |t^G \cap wxP| |t^G \cap zxP|)^*.
\]

By the remarks above, this is just $([G : C_G(t)]/[P : D])^*$.

84

GEOFFREY R. ROBINSON
On the other hand, if t is conjugate to u_i and v is conjugate to u_j for some $j \neq i$, and $t \in wxP$, $v \in zxP$ for some z, w in Z, then $t^{-1}v = w^{-1}zs$ for some s in P, so that t and v both invert s, forcing $s = 1_G$, contrary to the fact that the distinct \bar{u}_i's are not conjugate in \bar{G}. Hence the (t^G, v^G)-entry of M is 0. Thus the matrix M has rank at least r, and the result follows.

REFERENCES