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Abstract 

We consider the problem of finding polynomial-time approximations of maximal weighted 
k-matchings in a hypergraph and investigate the relationship between the integral and frac- 
tional maxima of the corresponding 0 1 integer linear program and its LP-relaxation. We 
extend results of Raghavan, who gave a deterministic approximation algorithm for unweighted 
k-matching, to the weighted case and compare the so obtained lower bound for the ratio of the 
integer and fractional maximum with a lower bound of Aharoni et al. (1985) and Alon et al. 
(1992). 

Keywords: Hypergraph matching; Integer and linear programming; Randomized algorithm; 
Derandomization 

O. Introduction 

The weighted k-matching problem in a hypergraph is an interesting generalization 

of the classical matching problem in graphs. It is stated as follows: Let H = (V, E) be 
a hypergraph with [V] = n, I E] = m and k a positive integer. Let wi >1 0 be rational 
weights of the hyperedges, i = 1 . . . . .  m. The objective is to find a subset of hyperedges 
with maximal weight, but with the restriction that no vertex is contained in more than 
k of these hyperedges. While the 1-matching problem in graphs is well-known to be 
solvable in polynomial time, finding a maximal weight k-matching in a hypergraph is 
NP-hard.  Closely related to the k-matching problem is the k-set covering problem, 
where the vertices of V have non-negative rational weights and the goal is to find 
a subset of the vertices with minimal weight, whose intersection with each hyperedge 
has cardinality at least k. We call the problems unweighted if all the weights are 

identical to 1. Let us denote by MR, resp. SR, the fractional and by Mopt, resp. Sopt, the 
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integral k-matching, resp. k-set covering, number. There are two basic questions of 
combinatorial optimization which have been investigated for hypergraph matching 
and set covering in the last years: 
(1) For which instances of hypergraph matching and set covering can a (deterministic) 

polynomial time approximation algorithm be constructed? 
(2) What is the relationship between the integral and fractional matching, resp. set 

covering numbers? 
The investigation of the second question has been initiated by the work of Faber and 
Lovfisz [9], Lov~sz [14] and Ffiredi [10]. Lovfisz proved in [14] for unweighted 1-set 
covering the inequality Sop t ~ (1 + log n)SR. Recently this inequality was generalized 
by Kuzyurin [13] to general integer programming (minimization problem) with 
non-negative integer data. Kuzyurin's result implies in particular for weighted k-set 
covering with non-negative integer weights the inequality Sopt ~< (1 + log kn)S R. In 
the unweighted case of 1-set covering Aharoni et al. [1] improved on the bound of 
Lovfisz and obtained to our knowledge the first tight bound for the ratio of the 
fractional and integral matching number, Mopt/M R ~ MR/n. Recently Ffiredi et al. 
[11] confirmed a conjecture of FiJredi [10] and showed for the weighted 1-matching 
problem with uniform or intersecting hypergraph H, or constant edge weights, the 
existence of a set of matching edges J//obeying the stronger inequality 

(e 
A different direction of research was undertaken by Raghavan and Thompson [20] 

who gave in the unweighted case, assuming that k/> 6 In n, a probabilistic approxima- 
tion algorithm finding a k-matching M such that M/> (1 - 6)MR -- O(,f(1 -- 6)MR), 
with some 6 e (0,½). Later Raghavan introduced th e concept of pessimistic estimators 
extending the derandomization technique of conditional probabilities and trans- 
formed this probabilistic result into a deterministic algorithm with nearly the same 
approximation guarantee as achieved by the probabilistic algorithm [19]. 

But for k-matching with rational weights the problem of finding polynomial-time 
approximation algorithms remained open. The purpose of this paper is to contribute 
to the solution of this approximation problem. 

Since the k-matching problem in hypergraphs is strongly NP-hard, there cannot 
exist an arbitrarily good fully polynomial-time approximation algorithm [18]. Fur- 
thermore, in view of the results of Arora et al. [5] we may raise the conjecture that for 
arbitrary instances of weighted k-matching even a polynomial-time approximation 
scheme is out of reach. Nevertheless, not all instances must be intractable for 
approximation. We will exhibit a large class of instances of the weighted k-matching 
problem for which tight polynomial-time approximation algorithms do exist. Our 
main result is the following theorem. 

Theorem (Corollaries 2.62.8). (i) Let  0 < e < 1 and let the edge weights be rational 
numbers in [0, 1]. Suppose that k >>. 24 In n/e 2 and k edges have total weight at least l 8e-  2. 
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Then with a derandomized algorithm we can find in polynomial time a k-matching 

M such that M >>. (1 - -  e ) M o p  t .  

(ii) In the unweighted case the algorithm gives for all instances with k >>. 241nn/e 2 

a k-matching M such that M >~ Mopt(1 - e). 

Furthermore we observe that the arguments of Aharoni et al. [1] give for k- 
matching the inequality Mopt/Mrt >t MR/nk 2 and show that the lower bound for 
Mopt/MR of the randomized approach is better than this "combinatorial" lower 
bound. The interesting open question arising here is whether or not the stronger 
inequality Mopt /M R ~ MR/nk  holds. 

The essential methods we use are randomized rounding and derandomization. 
While randomized rounding can be performed as in [20], derandomization causes the 
main computational difficulties. The problem in the case of rational weights is that the 
basic method of conditional probabilities/pessimistic estimators necessarily requires 
the computation of the exponential function on the RAM model of computation. We 
circumvent this problem constructing a new class of pessimistic estimators for the 
conditional probabilities under consideration which can be derived from McDiar- 
mid's [15] proof of the Angluin-Valiant inequality bounding deviation of weighted 
sums of Bernoulli trials from their mean. In [23] we gave a comprehensive analysis of 
this approach and showed algorithmic counterparts of the classical large deviation 
inequalities for binomial type distributions due to Bernstein, Chernoff, Hoeffding and 
Angluin/Valiant. These algorithmic inequalities can be considered as an implementa- 
tion of the conditional probability method of Spencer [21] on the RAM-model of 
computation. 

The total running time of our algorithm is the sum of the (dominating) time to solve 
the linear programming relaxation of the integer program associated with the 
weighted hypergraph k-matching problem and the time of derandomized rounding. 
A direct application of the results in [23] would imply for weighted k-matching in 
hypergraphs an O(nm21og(mn/e))-time derandomized rounding algorithm. In this 
paper we show that at least for the weighted hypergraph matching problem deran- 
domized rounding only needs O(m 2 logm + mn)-time, so we have a strongly poly- 
nomial-time rounding algorithm. At this moment we do not have an LP-algorithm for 
hypergraph matching which matches the nearly quadratic running time of the round- 
ing procedure. This motivates in further work the search for a fast strongly poly- 
nomial-time LP-algorithm for the hypergraph matching problem. 

The model of computation throughout this paper is the RAM-model (see [16]). It 
can be briefly described as follows. By the size of an input we mean the number of data 
entries in the description of the input, while the encoding length of the input is the 
maximal binary encoding length of numbers in the input. In the RAM-model an 
algorithm runs in polynomial time (resp. strongly polynomial time), if the number of 
elementary arithmetic operations (briefly called running time) is polynomially 
bounded in the size and the encoding length of the input (resp. only in the size of the 
input) and the maximal binary encoding length of a number appearing during the 
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execution of the algorithm (briefly called space) is polynomially bounded in the size 
and encoding length of the input. In the following let L denote the encoding length of 
the edge weights, let log be the binary and In the natural logarithm. 

1. Randomized approximation 

The basic randomized algorithm for k-matching was introduced by Raghavan and 
Thompson [20] and consists of essentially two steps: randomized rounding and 
scaling down the probability of setting the hyperedge assignment variable x~ to 1 by 
a factor of 1 - e/2 for all i = 1,. . . ,m. 

Algorithm P -HYPERMATCH 
Input 
Hypergraph H = (V, E) with I V I = n, I E[ = m, edge weights w: E ~ [0, 13 ~ Q ~, the 
vertex-edge incidence matrix A of H and a positive integer k. 
Algorithm 
(1) (LP-relaxation) Solve the linear program 

max{ ~ wix~;Ax <~ 

with rational solution vector ~ ~ [0, 1] m. 

(2) (Scaling) Choose e ~ [0, 1] and replace £ by (1 - e/2)Y. 
(3) (Randomized rounding) For  i = 1,. . . ,  m set independently xi = 1 with probability 

(1 - e/2)Y~ and x~ = 0 with probability 1 - (1 - e /2)~ 
(4) Output the vector x = (xl,  ... ,xm) E {0, 1} m. 

Let us denote by M o p  t the optimal value of the weighted k-matching problem, by 
r a  

MR the optimal value of its LP-relaxation and by M(x): = ~ i=  1 wixi (x ~ [0, 1]") the 
objective function. Linear programming gives a rational solution vector ~ e [0, 1] 
whose encoding length is a polynomial in L, n and m, so the encoding length of MR is 
also polynomially bounded. Let L' be the maximum of L and the encoding length of 
MR. Since L' will appear only in the encoding length of numbers we have to compute 
in our algorithms, but has no influence on the running time, we may neglect the exact 
degree of the polynomial bounding L'. 

Raghavan and Thompson 1-20] analysed the algorithm P-HYPERMATCH in the 
unweighted case (w = 1) and showed that for a certain scaling factor 0 < e < 1 the 
algorithm finds a k-matching M with M 1> (1 -- e/2) M o p  t - -  O(~/(1 - -  g / 2 ) M R )  , pro- 
vided that k/> 6 inn. It is easy to check that their proof is also valid in the weighted 
case, so we obtain the same result. But given an e E (0, l) we are interested in an 
approximation M ~> (1 - e)Mop,, because such a statement explicitly shows instances 
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of the problem, where an arbitrary or at least in e measurable approximation is 
possible. This can be proved when k is at least 241n n/e 2. 

Lemma 1.1 (Angluin and Valiant [4]; for a proof see [15]). Let  ~kl . . . .  ,~m be 

independent random variables, with O <~ ~j  <<. 1 and E(~kj) = p j for  all j = 1 . . . .  ,m. Let  

~b = (1/m)~7= 11pj, p = (1/m)~ '= 1 pj and 0 </3 <<. 1. Then: 
(i) Prob(~b > (1 +/3)mp) <<. exp( -/32mp/3).  

(ii) Prob(ff < (1 - /3)mp)  <<. exp( -/32mp/2). 

Theorem 1.2. Let  e ~ (0, 1), k >~ 241n n/e 2 and MR >~ 18/e 2. Then P - H Y P E R M A T C H  

finds a weighted k-matching M such that M >1 (1 - -  g ) M o p  t with probability at least 0.73. 

Proof. Let n >~ 8 (otherwise solve the problem by enumeration) and run P-HYPER- 
MATCH with output vector x ~ {0, 1}". We first show the following two inequalities: 
(a) P r o b ( ~ 7 = l a i j x j  > k) <~ 1/8n for all i = l , . . . ,n .  
(b) Prob(M(x)  < (1 - e / 2 ) M o p t -  2~/(1 - e / 2 ) M R )  <<. e -2. 
With n >~ 8 and the assumption on k we have 

k~ 2 
in 8n ~< (1) 

12(1 -- e/2)" 

Choose /3:= e / ( 2 -  e). Trivially 0 </3 < 1 and the Angluin-Valiant inequality 
(Lemma 1.1(i)) and (1) prove (a): 

( ~  ) ( ~  ( 2 ) )  1 Prob a l j x ~ > k  = P r o b  ai/xj  > ( 1 + / 3 )  1 -  k ~<8nn' 
1= i  \ j = 1  

With/30: = x/4/( 1 - e /2)Ma we may assume that 0 </3o ~< 1, because if/30 > 1, we 
have the zero probability event "M < 0". Finally MR >i 18/e 2 implies 

(1 -- e/2)MR -- x/4(1 -- e/2)MR >>. (1 -- e)MR. [] 

Corollary 1.3. Let  w - 1, e ~ (0, 1) and k >1 241nn/e 2. Then P - H Y P E R M A T C H f i n d s  

a k-matchin9 M such that M >~ (1 - e)Mopt with probability at least 0.73. 

Proof. We may assume that n ~> 4. This implies 18/~ 2 ~< 241nn/e 2 <<. k. But in 
the unweighted case we always have MR >~ Mopt ~> k, hence Theorem 1.2 proves 
Corollary 1.3. [] 

Remark. We assumed that k is at least 241n n / e  2 which differs by the 413 - 2  factor from 
Raghavan and Thompson's assumption on k. Note that Theorem 1.2 can be proved 
under less restrictive assumptions on k, if we accept an only exponentially small 
success probability for the algorithm P-HYPERMATCH.  But even in that case the 
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probabilistic analysis requires k = f~(ln n). Furthermore we assumed in the weighted 
case MR /> 18/e 2. We saw in the unweighted case that this condition is automatically 
satisfied (Corollary 1.3). Again if we allow small success probabilities, we obtain less 
restrictive assumptions, but even then MR must be greater than 4. This is due to the 
probabilistic analysis, in particular to the Angluin-Valiant inequality: The probabilis- 
tic algorithm guarantees M ~> (1 - ~/2)MR -- 2x/(1 -- e/2)MR. The right-hand side 
must be positive, otherwise the algorithm does not give any guarantee. In the best case 
e is zero and the lower bound for M is positive if M R > 4. Let us proceed to the main 
problem, the derandomization of the results above. 

2. Derandomized algorithms 

We briefly sketch the derandomization idea of Spencer 1-21]. Let e ~ (0, 1) and let 
k >~ 241nn/e 2. Denote by E~ the event 

"3i(Ax)i  > k or M ( x )  < (1 - g ) M o p t " .  

I f  M R  /> 1 8 / e  2 Theorem 1.2 gives Prob(E~) ~< 0.27. The method of conditional 
probabilities seeks a vector for which the event E~ holds, sequentially selecting the 
values of the xi's from {0, 1} by minimizing the conditional probability that E~ ¢ will 
occur, if xl is chosen to be 0 (resp. 1). 

Algorithm WALK (E~) 
(a) Initial step (I = 1). Set xl = zl, where zl minimizes the function z ~ Prob(E~ ]z), 

z e  {0,1}. 
(b) Induction step (l + 1). If Xl . . . .  ,x~ have been selected, set x~+l = Z~+l, where 

c z), z e {0,1}. zt+ 1 minimizes the function z Prob(E~ ] Xa,.. . ,  xl, 
(c) Stop, when l = m. 

The striking observation is that the output vector x satisfies the event E~, because 
the inequalities 1 > Prob(E~) /> Prob(E~lxl )  /> ... ~> Prob(E~]Xl, ...,xm) and the 
fact that Prob(E~ Ix1 . . . . .  xm) is either zero or one imply Prob(E~lxl ,  ..., xm) = 0. The 
WALK procedure is a deterministic algorithm, but to run the algorithm on the usual 
finite machine models of computation, like the RAM-model or the Turing machine 
model, we must be able to compute the conditional probabilities Prob(E~ Ix1 . . . .  , xt). 
The complexity of the computation of these conditional probabilities determines the 
time complexity of the algorithm. Unfortunately, there is no general way of computing 
the conditional probabilities. Raghavan circumvented this obstacle in some examples 
constructing easier computable upper bounds for the conditional probabilities, the 
so-called pessimistic estimators which mimic the role of the conditional probabilities. 
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Definition 2.1 (Pessimistic estimator [20]). Let U(E~) denote a family  o f  functions 

U 1 (x 1 ), U2 (x 1, x2 ) . . . .  , Um (X 1 , . . . ,  Xm) satisfying the following properties: 
(i) Prob(E~lx l ,  ... ,xl) ~< Ul(x l ,  ... ,xt) for all x l ,  ... ,xz ~ {0, 1}, l ~< m. 

(ii) UI+I (X l , . . . ,X l ,  XI+I)<<, Ul (x l  . . . . .  xl) given any xl . . . .  ,x l~{0,1  for some 

Xl+ 1 ~ {0, 1}. 
(iii) Ul(x~)  < 1 for some xl ~ {0,1}. 
(iv) Ut(x l  . . . .  ,xt)  can be computed on the RAM-model of computation in time 

bounded by a polynomial in n, m and log 1/e for each I. 
Then U(E~) is called a pessimistic estimator for the event E~. 

If we replace the conditional probabilities in the WALK procedure by the functions 
of the pessimistic estimator, we get indeed a polynomial-time algorithm finding the 

desired vector x. 

Remark. Raghavan [19] constructed for unweighted k-matching a family of functions 
which satisfies conditions (i)-(iii) of Definition 2.1. But his approach raises two 
computational problems: The computation of the pessimistic estimator requires the 
computation of exponential terms of the form s w j, where s is a real number, s ~> 1. 

(a) In case of rational edge weights wj the term s wJ cannot be computed on the 
RAM-model in polynomial time. 

(b) In the unweighted case wj is 0 or 1 and s wj is computable iff s is computable. 
In [19] (see Theorem 7) s was defined as s :=  D ( ( 1 -  e/2)MR, 1 / n ) - - 1 ,  where 
D((1 -- e/2)MR,  i /n)  is a positive root of the equation 

z - ( 1 - z ) l n ( l + z ) +  
Inn 

(1 - e / 2 )  Mr¢ 
- 0 .  

Unfortunately, it is not known how to find a root of such an analytic equation in 
polynomial time. 

While the second problem is only a minor technical obstacle, as we will show using 
parameters defined in McDiarmid's proof of the Angluin-Valiant inequality, the 
presence of rational edge weights wj cause the more serious problem which requires 
some work: We follow the proof of the Angluin-Valiant inequality of McDiarmid 
[15] and derive upper bounds on the conditional probabilities. Then we show that 
these upper bounds can be replaced by O (m z log m)-degree polynomials evaluated at 
a rational number depending on the edge weights. 

The following "conditional probability" formulation of the Angluin-Valiant in- 
equality can be extracted from the proof of Corollaries 5.1 and 5.2 in [15]. 

Lemma 2.2. Let  al . . . . .  a,, be real numbers with 0 ~ aj <~ 1 for  each j and let ~k 1 . . . . .  ~,, 
be independent 0-1 valued random variables. Let  ~j = E(~bj), ~j = 

1 - - ~ j ,  ~ = Z ~ = l a j ~ O j ,  p=(1 /m)E(~9) ,  q =  1 - p  and 0 < f l ~ <  1. Define 



262 A. Srivastav, P. Stangier / Discrete Applied Mathematics 57 (1995) 255-269 

s + = q(1 + fl)/(q -- pfl), s -  = (q + pf l) /q(1 -- fi) 
xl ,  ... ,xl e {0, 1}. Then  we have 

(i) Prob(~k > (1 + [ l )mp lOl  = x1 . . . . .  ~ll = Xl) 

and f o r  1 <<. 1 <<. m let 

(ii) 

~< e - ( l+# )pm lns+  e E}='ajxjlns+ fi  [pje aJlns+ + 1 -- fij], 
j=l+ l 

Prob(~k < (1 - f l ) m p ] ~ l  = x l  . . . . .  qJz = xt)  

~ e t l - ~ ) p m l n s - e  - y'~='ajxjlns- f i  [ ~ j e  -aj lns  +l-/~j]. 
j = / + l  

Lemma 2.2 motivates the definition of  the basic functions for the construct ion of the 

pessimistic est imator U(E~).  In the following let Yl . . . .  , y,, denote the scaled variables 

y j: = (1 - U2)Yj. (Recall that  (2~) is the solution of the LP-relaxat ion (see Algori thm 
P - H Y P E R M A T C H ) . )  Before we define the events of  interest, we choose the deviation 

factors fl so that  s always will be a rational number.  With binary search in the interval 

[0 ,x /8 / (2  - / ? ) M R ]  we can find a rational number  flo with 0 ~< flo - x /8/(2  - / ? )MR 
<~ 2 / m  in O( logm)  steps. Since MR ~< m ~< m 2, we get 

8 9 
2 - / ? ) M  R ~< flO ~< 2 - / ? ) M  R" 

(2) 

(a) T h e  event  "M < ( 1 - f l o ) ( 1 - - ~ / 2 ) M R " :  Let flo be as in (2), po = 

(1 - ~?/2)MR~m, qo = 1 - Po and So = (qo + poflo)/qo(1 - rio). Fo r  l = 0 define 

V~o °) = e"-~o)pomlnso f i  [y je - -WjlnSo  + 1 - -  y j ] .  
j = l  

For  1/> 1 and zl ,  ... , z t  ~ {0, 1} define 

(3) 

VI O) = e (1-p°)vo'ln~°e-Z}=lw~zjlns° fi  [ y j e  -wjlns° + 1 -- y j ] .  (4)  
j = / + l  

(b) T h e  event  "3i (Ax) i  > k": Let 1 ~<i~< n be arbitrary. Let p = (1 - e / 2 ) k / m ,  

q = 1 - p, fl =/?/(2 - e) and s = q(1 + f l ) /(q - pfl). For  1 = 0 define 

V~ ) = e -<l+a)p"l"s f i  [y je  "'Jl"s + 1 - y j ] .  
j = l  

For  l >/ 1 and zl ,  ... , z t  ~ {0, 1} define 

(5) 

V~i)(Zl . . . . .  zl) = e -(l+fl)prnlns e ~='aqzjlns f i  [ y j e  aOIns + 1 - - y j ] .  (6) 
j = / + 1  
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T h e  event  " M  < (1 - /3o ) (1  - ~/2)MR or 3i (Ax)i  > k": Let us denote  by E~ the 

and for 1 = 0 

Let 

Vo:= V~o °~ + ~ vg). (8) 
i = 1  

We first show that  the functions V~ satisfy condit ions (i)-(iii) of Definition 2.1. 

Lemma 2.3. W e  have for  each integer l with 1 <<. l <<. m: 

(i) P r o b ( E ~ l x l ,  . . . , x t )  <~ V l ( x l  . . . . .  xt) for  all x l  . . . . .  xt E {0, 1}. 
(ii) Vl+l  (x l  . . . . .  x t , x z+l )  <~ Vl(xx ,  ... , x l )  given any x l ,  ... , x l f o r  some xt+l ~ {0, 1}. 

(iii) V l ( x l )  <<. 0 .27 for  some x l  E {0, 1}. 

Proof. (i) The inequality P rob (E~ lx l  . . . . .  xl) ~ Vl(Xl  . . . . .  Xl) follows from Lemma 
2.2. 

(ii) Let l >~ 0 and let z e {0, 1 }. Fo r  i = 0 define 

ft°)(z): = Vt° ) (x l  . . . . .  x t ) [ y t + x e  . . . . .  lnSo + 1 - y l + l ] - l e  -zwt+,lnso 

and for i ~> 1 

f l  ° ( z ) :=  v t i ) ( x 1  . . . . .  Xl) [Yt+ 1 e a'''+' Ins .q._ 1 - Yt+ 1 ] - 1 ezai.~+t Ins. 

f t ( z ) :=  ~ ftO(z). 
i = 0  

Then we have with x~ + 1 being the minimizer of z ~ J~ (z) 

V , ( x , , . . . ,  x , )  = Y,+ I ft(1) + (1 - yt+ l)J~(O) 

~>f~(xl+l) 

: V I + I ( X I , . . . , X I + I ) .  

(iii) Vl(Xl) = y~fo(1) + (1 - yl)fo(0) = ~ V~ ). 
i = 0  

From  Theorem 1.2 and x /8 / (2  - e)MR <<. flo (see (2)) it follows that  

V~o °) ~ e x p ( -  ½/3~pom) <~ e -2. 

Vt(z l  . . . . .  zl ) :=  ~ vt i ) (z l  . . . . .  zt) (7) 
i = 0  
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For i ~> 1 we observe 

y.e + 1 - yj = 1 + yj(e a'jlns - 1) 

<<. 1 + Yiaij(e t " s -  1). 

Since Z}"=I aljyj <~ (1 - e/2)k = mp we have 

1 
V~ ) ~< exp( - ~fl2pm) <~ ~ .  

The last inequality follows from our assumption k >>. 241nn/e 2. Hence for some 
X 1 E: {0,  1} 

Va(xl )  = ~ V~ ) <~ 1 +  e -2  <~ 0.27. [] 
i = 0  

Let us consider the lth step (l/> 1) of the algorithm WALK(E~). We wish to 
compute the function Vl ( x l , . . . , x t ) .  Now V ~ ( x l , . . . , x t ) = ~ 7 = o V t i ) ( x l , . . . , x l ) .  If 
i ~> 1, then 

v} i ) ( x1 ,  . . . , X l )  : S k + E}=laijx) f i  [ y j s  aij -~- 1 --  y j ] .  
j = l + l  

Since xj,aij ~ {0, 1} and s = q(1 + fl)/(q - pfl) is a rational number by definition of 
p and fl, V}~(xl . . . . .  xt) is efficiently computable on the RAM-model of computation. 
So the only problem is the computation of V}°)(xl . . . . .  xz), in particular the handling 
of the terms s~J for rational edge weights wj. We show how to approximate 
V}°~(xl . . . . .  x~) by a polynomial of degree O(m21ogm). We need a technical lemma 
which is a special case of Lemma 2.9 in [23]. 

Lemma 2.4. Let  A1, ... ,Am, B, V be rational numbers with encoding length at most L, 
B >~ 1 andO < 7 <~ 1. LetO < e <~ 1 andsupposethat~,i~=l [Ai[ <-% ~ l m a n d b  <~ ~2m/g, 

for some non-negative integer constants 0~1,0~ 2 . Let N =  10F~lmlFlog[-~2mll 
+ m + Flog[-(m + 1)/7-]] and let TN be the Nth degree Taylor polynomial of  the 

exponential function. 

(i) Then a rational number b approximating In B and for each i = 1 . . . .  , m the number 
TN(Aib) can be computed in O(mlog(m/7e))-t ime such that the inequality 

l-I eA~lnB-- rN(Aib)  <% 7 
i=1  i=1  

holds uniformly for all Ai as above. 
(ii) The encoding length of  rN(Aib)  is O ( L  [mlog(m/eT)]2). 

We are ready to prove the main results. 
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Theorem 2.5. Let  ee(0,1) ,  k >~ 241nn/e 2 and M R ~ 18/e 2. Given an optimal LP-  

solution £c ~ [0, l]  m, derandomization f inds a k-matching M such that M >1 (1 - e) MR in 

O ( m Z l o g m  + mn)-time. 

Proof. We approximate the function Vl°~(xl . . . . .  xt) in order to define the pessimistic 
estimator. Given xl . . . . .  xt ~ {0, 1} set Zj  = - w j X j  fo r j  >/ 1 + 1, Zo = (1 - flo)pom 
and Zj = - wjxj  for j = 1 . . . . .  I. Then 

V t ° ) ( X l  . . . .  ,X l )=  f i  ~-(eZjlns°). 
j = o  

We will use Lemma 2.4. Since MR ~> 18/e 2, we have flo <<. ( m -  1)/m which implies 
So <<. 4m/e. Set ~1 = 2, ~2 = 4 and 7 = 1/8(4m - 1) and let N be as in Lemma 2.4. Let 
TN be the Taylor polynomial of the exp function with degree N. By Lemma 2.4 the 
approximation of ln so by a rational number  b as well as the approximation of 
I-I~'=t e zjlns° can be done uniformly for all x~ . . . .  ,x t .  Hence we have 

f i e  z~lns°- f i  TN(Zjb)  o0 <~ 7. 
j = 0  j = 0  

This implies taking expectation and using the independence of the random variables 

Z j f o r j  >~ l + l: 

Vl°)(xl  . . . . .  x l ) -  f i  E(TN(Zjb))  <~ 7. 
j=O 

Set 

Tt°)(x l  . . . .  , x l ) : =  f i  Y_(TN(Zjb)) 
j=O  

and let U~(xl, ... ,x~) be the functions defined by 

Ut(Xl, ... , x l ) :  = T~°)(xl, ... ,xl) + ~ Vli)(Xl . . . . .  Xl) + 2(2m -- 1)7. 
i = 1  

(9) 

But 

Prob(E~lx l  . . . . .  xl) <~ ~, V l ° ( x l  . . . . .  xl) + Vt°)(xl  . . . .  ,xl).  
i = 1  

Vl°)(xl ,  ... ,x~) ~< Tt°) (x l ,  ... ,xl) + 7. 

Hence Prob(E~lxl  . . . .  ,x l )  <<, Ul(xl  . . . . .  xl) for all X 1 . . . .  , X  l .  

We show that this family of functions defines a pessimistic estimator for the event E~. 
Condition (i): With Lemma 2.3(i) 
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Condition (ii): With Lemma 2.3(ii) and the fact that 

I VJ°)(xl . . . . .  x t ) -  Tt°) (x l  . . . . .  xt)l <~ 7, 

it is straightforward to prove the inequality 

U I + I ( X 1 , . . . , X I + I )  ~ UI(X1 . . . . .  Xl) 

for some Xl+l given any Xl, ... ,xt. 
Condition (iii): We show Ux(xl) ~< 12 for some xl e {0, 1}. Using Lemma 2.3(ii) we 

have for some x~ equals either 0 or 1 

Ux(xl) = ~ V~i)(xl) + T~°)(xl) + 2(2m- 1)7 
i=1 

~< V~°(Xx) + 8 ( 4 m -  1) + 7 + 2(2m-- 1)7 
i=0  

1/2. 

The computation of the running time goes as follows: Let us first consider the 
approximation of Vt°)(Xx . . . .  , x~). Note that 

1 
V t ° ) ( X l  . . . . .  Xl) ~- Vt°-)l (x1 . . . . .  Xl -  1 ) [E ( "e Z'lns° ) e - w,xllnso. (10) 

By Lemma 2.4 we can compute each ~_(TN(Zjb)) in O(m log(m/Te))-time. In the first 
step (l = 1) of the WALK procedure we have to compute I]~'=~ E(eZjlns°) for some 
Z~ = x~ e {0, 1}, and this requires the computation of m polynomials, therefore 
O(m 2 log(m/Te))-time. But according to the recursion (10) in the forthcoming steps 
(l/> 2) we have to do only one update computing two polynomials, which can be done 
in O(mlog(m/7e))- t ime per step, hence summing up over all the m steps we need 
O(m21og(m/7e))-time. Now for each i>~l the total computation time for 
Vt i ) (x l , . . . ,  xt) over all m steps is O(m), using a recursion argument as above and the 
fact that we can do exact computations. As i runs from 1 to n we need for the 
computation of all the nm numbers Vt°(x~ . . . . .  x~) a total time of O(nm), hence the 
total time of the rounding algorithm is O(m21og(m/Te) + nm). We can assume that 
e >>. 1/m. Otherwise we would get k ~> 24m 2 In m, and the hypergraph k-matching 
problem would become trivial. This gives us together with 7 = 1/8(4m - 1) the total 
time of O(m 21Ogm +nm) .  [] 

Corollary 2.6. Let  e ~ (0, 1) and k >~ 241nn/e 2. Let  wl >t ... >>. wm be the edge weights 

with Wx + ... + Wk >~ 18/e 2. Then with linear programming and derandomization we 

can f ind in polynomial time a k-matching M with M >1 (1 - e) Mopt. 

Proof. wl + ... ~-w k ~ 18/e 2 implies M R ~> 18/e 2 and Theorem 2.5 gives 

M~>(1- -e )Mop t. []  
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In the unweighted case we have the following corollary. 

Corollary 2.7. Let w =-- 1, e e (0, 1) and k >~ 241nn/e 2. Then with linear programming 

and derandomization we can find in polynomial time a k-matching with 

M >~ (1 -e)Mopt.  

Proof. k ~> 241n n/e 2 implies M R >/ 18/e 2 and Theorem 2.5 proves Corollary 2.7. [] 

For arbitrary weighted k-matching Theorem 2.5 implies Corollary 2.8. 

Corollary 2.8. Let eE(0,1) and k ~>241nn/e 2. Let Wx >>.... >~wm be the edye 
weights with Wl > 1 and wx + ... + Wk >~ 18Wl/e 2. Then with linear proyrammin9 

and derandomization we can find in polynomial time a k-matchin9 M with M >1 

(1 - g)Mop t. 

Remark. In [1] Aharoni et al. proved for unweighted 1-matching in hypergraphs the 
i n equa l i t y  Mop t >/ M2/n. An examination of their proof shows that a similar inequal- 
ity holds for k-matching: 

M~ 
M°pt >/k'~n" (11) 

This can be seen as follows. Let d:=min{Lei[;  i = l , . . . , m ;  e i~E}  be the 
minimal edge cardinality. The proof of Theorem 2 in [1] shows for every vector 
x e ~",  x >~ O, 

( 11 xT A T Ax  >~ ~ X~ m + ' 
i = 1 • ' ~  o p t  / 

(12) 

where ,1~1) is the maximal unweighted 1-matching number. Taking the fractional IVI o p t  

unweighted k-matching vector associated with MR, inequality (12) implies 
Mop t /> M2/kZn. A comparison of the "randomized" lower bound for Mopt/M R and 
the bound in (11) shows that the randomized result is much better. By the proof of 
Theorem 2.1 we have 

M o p t > > ' ( 1 - - 2 ) M R - N / 4 ( 1 - - 2 ) M R .  (13) 

Let Rc :=  MR/nk 2 and Rp:= (1 - e/2) - 2x/(1 -- e/2)/MR. Using the trivial estimate 
MR <~ kn and the assumption MR /> k ~> 241nn/e 2, it is straightforward to show that 
Rp/Rc >>. k/4. In other words, the bound in (11) is (k/4)-times worse than the random- 
ized bound. This is not very surprising, since in (11) we divide MR by k 2. 
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A major improvement on the inequality (11) would be the proof of an inequality of 
the form 

Mopt ~> ck---n 

with some positive constant c not depending on k or n, m. 

3. Concluding remarks 

(a) In Section 2 we assumed k >~ 241nn/e 2. We saw in the discussion at the end of 
Section 1 that our type of probabilistic analysis always requires k = f~(ln n). It would 
be interesting to exhibit the best approximation factor, when k is small, i.e. k = O (ln n) 
and to show that even under the condition k = ~(ln n) the k-matching problem is 
NP-hard or MAX-SNP-hard. 

(b) Is it true that for k-matching in hypergraphs the inequality 

Mop, ~> ck~-n 

holds with a positive constant c independent of k, n, m? 
(c) A challenging problem in the context of derandomization is the problem of 

finding parallel derandomized algorithms (see [7, 17, 2]). For the hypergraph match- 
ing problem such an algorithm is not known. 

(d) The probabilistic analysis presented in this paper is based on the fact that the 
objective function is linear. But many combinatorial optimization problems can be 
formulated in a direct and natural way as 0-1 quadratic optimization problems. In 
1-22] it is shown that a theory of randomized rounding and derandomization can be 
developed for the graph partitioning problem. More examples of derandomization in 
integer programming can be found in [23, 24]. 
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