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We study moduli of holomorphic vector bundles on non-compact varieties. We discuss
filtrability and algebraicity of bundles and calculate dimensions of local moduli. As
particularly interesting examples, we describe numerical invariants of bundles on some
local Calabi–Yau threefolds.
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1. Introduction

This paper is the second part of a long-term project to study bundles on threefolds, their moduli and how they change
under birational transformations of the base. An essential component within this plan is the study of the local situation, that
is, holomorphic bundles over open threefolds such as a neighbourhood of a reduced local complete intersection Z inside a
smooth threefoldW . The case when Z is a ruled surface was studied in [4]. In this paper we focus on the case when Z is a
curve.
For the local situation, one has to make some delicate choices: algebraic versus holomorphic bundles; a small analytic

neighbourhood versus a Zariski neighbourhood versus a formal neighbourhood of Z in W . Our choice for this paper is
the nicest possible situation, namely when the conormal bundle of Z inside W is ample. By ‘‘nice’’ we mean that in this
case the aforementioned choices all amount to the same results (Theorem 3.2 together with the formal principle 4.3);
moreover, filtrability implies that we can studymoduli in a very concrete fashion: by considering Ext-spacesmodulo bundle
isomorphisms, which immediately produce quotient stacks, but a priori no moduli spaces. In fact, given the absence of a
notion of stability for bundles on non-compact manifolds, there is no preferred way to obtain moduli spaces out of these
quotients, and we are led to study stratifications via dimensions and numerical invariants.
Here we discuss dimension of local deformation spaces and provide concrete examples of bundles on some Calabi–Yau

threefolds. The threefold situation contrasts totally with the two-dimensional situation, where the components of the local
holomorphic Euler characteristic provided the required stratifications of the local moduli (cf. [3, Theorem 4.1] and [5,
Theorem 4.15]). Our examples in this paper show that the local holomorphic Euler characteristic is not a satisfactory
invariant for the case of a curve inside a threefold. In particular, the invariant w(E) = h0

(
(π∗E)∨∨/π∗E

)
, which provided

meaningful geometric information in the case of an exceptional curve Z in a surface (where π is the contraction of Z),
vanishes identically for exceptional curves in n-folds for n ≥ 3 (Lemma 5.2). We introduce the notion of partial invariants
and tabulate some examples.
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2. Results

Let W be a connected complex manifold (or smooth algebraic variety) and Z a curve contained in W that is reduced,
connected and locally a complete intersection. Let Ẑ denote the formal completion of Z inW . Ampleness of the conormal
bundle (see Definition 3.1) has a strong influence on the behaviour of bundles on Ẑ . We show:

Theorem 3.2. If the conormal bundle N∗Z,W is ample, then every vector bundle on Ẑ is filtrable. If in addition Z is smooth, then
every holomorphic bundle on Ẑ is algebraic.

It then follows from Peternell’s Existence Theorem (Theorem 4.3) that the same results hold true for bundles on an
analytic neighbourhood of Z inW . Alternatively, one can work with the more concrete cases whereW is the total space of
a vector bundle over Z; we consider such spaces with Z ∼= P1 in Sections 6 and 7. It turns out that when Z ∼= P1 and N∗Z,W is
ample, then the dimension γ (E) of the local deformation space of a bundle E on Ẑ depends only on the restriction of E to Z .
We show:

Theorem 6.5. Let W = Tot
(
OP1(−1)

⊕n
)
and Z the zero section. Let E be a vector bundle on W (or on Ẑ) such that E|Z has

splitting type a1 ≥ · · · ≥ ar . Then the dimension of the local deformation space at E is

γ (E) =
∑
ai−aj>1

ai−aj−2∑
t=0

(ai − aj − 1− t) ·
(
t + n− 1
t

)
.

However, for curves other than P1 a similar statement is very far from the truth, that is, the restriction to Z does not
determine the dimension of the deformation space. So the question of local moduli becomes more complicated as well as
more interesting.
In Section 8 we consider the case of chains of transversally intersecting P1’s. We give some numerical conditions on

a bundle E under which the dimension of the deformation space depends only on the splitting type (Propositions 8.8 and
8.10); but these are very restrictive conditions relating the splitting type of E and the degree of the conormal bundle, seldom
satisfied, but nevertheless also satisfied by certain non-split bundles.
For the case of curves of positive genus, the situation is naturally more complicated. Dimension of the local deformation

space of a split bundle is given by an exact formula (Theorem 9.4), but in full generality, even for bundles whose filtrations
have fixed degrees the dimension of the local moduli still varies. Note that for a curve Z of positive genus, the isomorphism
type of the normal bundle NZ,W is no longer determined by the degree of a filtration, and the dimension of the local
deformation space γ (E) of a bundle E on Ẑ depends both on F = E|Z and NZ,W . Yet not all hope is lost, and it is still possible
to give an upper bound for γ (E), at least in the case when NZ,W is a general element of the moduli spaceM(Z; r, d) of stable
vector bundles on Z of rank r and degree d. For E|Z = F we write

γ (F ,N) :=
∑
t≥0

γ (F ,N, t), where γ (F ,N, t) := h1
(
Z; End (F)⊗ St(N∗)

)
,

and show:

Theorem 9.5. Let Z be a curve of genus g ≥ 2. Fix a rank-r vector bundle F on Z and any increasing filtration {Fi}ri=0 of F such
that Fr = F , F0 = {0} and each Fi/Fi−1 is a line bundle. Set ai := deg(Fi/Fi−1), 1 ≤ i ≤ r. Assume that NZ,W is a general element
of M(Z; n− 1, d). Then for any bundle E on Ẑ with E|Z = F ,

γ (F ,NZ,W , t) ≤
r∑
i=1

r∑
j=1

max
{
0, t

(
d+ 2g − 2+ ai − aj

)
/r + 1− g

}
·

(
t + r − 1
t

)
for all t ≥ 1.

We also point out a rigidity behaviour when g = 1 (Proposition 9.9); namely, when Z has genus 1, if both E|Z and NZ,W
are semi-stable, then γ (E|Z ,NZ,W , t) = 0 for all t > 0.
In Section 7 we discuss concrete examples of Calabi–Yau threefolds and provide a table of numerical invariants.

3. Filtrability and Algebraicity

Let W be a connected, complex manifold (or smooth algebraic variety) and Z ⊂ W reduced, connected and locally a
complete intersection inW . Let I be the ideal sheaf of Z , then the conormal sheaf IZ,W/I2Z,W is locally free, and we write
NZ,W for its dual. We will assume that the conormal bundle N∗Z,W is ample. For all integers m ≥ 0 let Z

(m) denote the mth
infinitesimal neighbourhood of Z inW , i.e. the closed analytic subspace ofW with IZ

m+1 as its ideal sheaf. Thus Z (0) = Z .
Let Ẑ := lim

←−m
Z (m) denote the formal completion of Z inW .

In this section we assume that Z is a curve and that the conormal bundle N∗Z,W is ample. We recall the definition of
ampleness for a general vector bundle (a.k.a. locally free sheaf of finite rank) according to [9, p. 321]:
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Definition 3.1. Let (X,OX ) be a complex space and E a locally free OX -module of finite rank (i.e. the sheaf of sections of a
holomorphic vector bundle E). Then E (or E) is called ample if for every coherent sheafF on X there exists an integer n such
that G := F ⊗OX S

n(E) is generated as an OX -module by its global sections.
[Recall that this means that there exist sections s1, . . . , sp ∈ Γ (X,G) such that for every open U ⊆ X , G(U) is generated

by {s1|U , . . . , sp|U } as an OX (U)-module. This is equivalent by [9, Proposition 2.1] to every stalk Gx being generated by
{s1,x, . . . , sp,x} as an OX,x-module.]
We will also use the term spanned for ‘‘generated by global sections’’, which is equivalent on complex spaces.1

The aim of this section is to prove:

Theorem 3.2. If the conormal bundle N∗Z,W is ample, then every vector bundle on Ẑ is filtrable. If in addition Z is smooth, then
every holomorphic bundle on Ẑ is algebraic.

Lemma 3.3. Assume that Z ⊂ W is a smooth curve and that N∗Z,W is ample. Then there exists H ∈ Pic Ẑ such that H|Z(n) is ample
for all n.

Proof. For eachm > n ≥ 0 the restriction map ρm,n : Pic Z (m) → Pic Z (n) is surjective because H2
(̂
Z; S i(N∗Z,W )

)
= 0 for all

i; the result follows from the definition of Pic Ẑ . �

Lemma 3.4 (Filtrability). Assume that Z ⊂ W is a smooth curve and that N∗Z,W is ample. Fix any integer r ≥ 2 and any rank-r
vector bundle E on Ẑ . Then there exists an increasing filtration E1 ⊂ · · · ⊂ Er−1 ⊂ Er := E of E by subbundles such that
E1 ∈ Pic Ẑ and Ei/Ei−1 ∈ Pic Ẑ for all 2 ≤ i ≤ r.

Proof. FixH ∈ Pic Ẑ as in Lemma 3.3. SinceN∗Z,W is ample, there is an integerm such that S
n(N∗Z,W ) is spanned (i.e. generated

by global sections) for all integers n ≥ m. Since H|Z(m) is ample, there is an integer t ≥ 0 such that H
1
(
Z (m); E(tH)|Z(m)

)
= 0

and E(tH)|Z(m) is spanned. Since dim Z
(m)
= 1, h2

(
Z (m);F

)
= 0 for every coherent sheaf F on Z (m) and since Sn(N∗Z,W ) is

spanned for all integers n ≥ m, we get

H1
(
Z (m);

(
E(tH)|Z(m)

)
⊗ Sn(N∗Z,W )

)
= 0 for all n ≥ m

and that
(
E(tH)|Z(m)

)
⊗ Sn(N∗Z,W ) is spanned for all n ≥ m. Using the exact sequences

0 −→ Sn(N∗Z,W ) −→ O
(n)
Z −→ O

(n−1)
Z −→ 0,

we get that E(tH)|Z(n) is spanned for all n ≥ m and also that the restriction map

η : H0
(̂
Z; E(tH)

)
→ H0

(
Z (m); E(tH)|Z(m)

)
is surjective. Since dim Z (m) = 1 and r ≥ 2, there is a nowhere vanishing section

σ ∈ H0
(
Z (m); E(tH)|Z(m)

)
,

i.e. an inclusion (H⊗t)∨|Z(m) → E|Z(m) with locally free cokernel. Take α ∈ H
0
(̂
Z; E(tH)

)
such that η(α) = σ . Since Z is the

support of both Ẑ and Z (m), η induces an inclusion j : (H⊗t)∨ → E with locally free cokernel. Set E1 := j
(
(H⊗t)∨

)
. If r = 2,

then we are done. If r ≥ 3 we apply induction on r to the rank-(r − 1) vector bundle E/E1. �

Theorem 3.5 (Algebraicity). Assume that Z ⊂ W is a smooth curve and that N∗Z,W is ample. Then holomorphic vector bundles
on Ẑ are algebraic.

Proof. By Lemma 3.4, vector bundles on Ẑ are extensions

0 −→ Lar −→ E −→ Fr−1 −→ 0

and are therefore classified by Ext1
(
Fr−1, Lar

)
= H1

(
Fr−1 ⊗ L−1ar

)
, which is finite-dimensional. Furthermore, each such

extension (and hence each such E) is uniquely determined from some finite, infinitesimal neighbourhood X (n), an algebraic
object, and consequently E is algebraic. �

1 The notion of a spanned vector bundle is more general on spaces over non-algebraically closed fields.
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4. Local deformation space

Let W be a connected, complex manifold (or smooth algebraic variety) and X ⊂ W reduced, connected and locally a
complete intersection inW . We recall some general definitions and properties of deformation spaces.

Definition 4.1 (Deformation of a Vector Bundle, [16, p. 113]). Let X be complex space and V0 a holomorphic vector bundle on
X . A deformation of V0 is a pair (S, V ) consisting of a germ (S, s0) of a complex space and a vector bundle V on X× S together
with an isomorphism V0 ∼= V |X×{s0}.
Let (S ′, V ′) be another deformation of V0. A morphism (S ′, V ′) → (S, V ) is a pair (α, f ) consisting of a morphism

α : S ′ → S of germs of spaces and a morphism of vector bundles f : V ′ → V over α (i.e. a holomorphic map which maps
fibrewise and is linear on fibres), which respects the isomorphisms of the central fibres.
A deformation (S, V ) of V0 is called

1. complete if for every deformation (S ′, V ′) of V0 there exists a morphism

(α, f ) : (S ′, V ′)→ (S, V ),

2. effective if the following is true:
If (S ′, V ′) is another deformation of V0 and if (α, f ), (β, g) : (S ′, V ′)→ (S, V ) are morphisms of deformations, and if

T (α), T (β) : T (S ′)→ T (S) are the corresponding tangential maps, then T (α) = T (β),
3. semi-universal if (S, V ) is complete and effective.

In this paperwe calculate theminimal dimension of a semi-universal deformation for bundles on X̂ in the casewhenN∗X,W
is ample. The existence of a finite-dimensional, semi-universal deformation in this situation is given by results of Peternell:

Remark 4.2. If the conormal sheaf N∗X,W is ample, the deformation space of a bundle on X̂ is finite-dimensional:
Fix an integerm ≥ 0, a vector bundle Em on X (m) and set E0 := Em|X . If

h2
(
X; End E0 ⊗ Sm(N∗X,W )

)
= 0,

then there exists a vector bundle Em+1 on X (m+1) such that Em+1|X(m) ∼= Em [16, Satz 1].
Now let F be a vector bundle over X such that h2

(
X; End F ⊗ St(N∗X,W )

)
= 0 for all t > 0. If N∗X,W is ample, then

h1
(
X; End F ⊗ St(N∗X,W )

)
= 0 for t � 0, and hence

γ =
∑
t≥0

h1
(
X; End F ⊗ St(N∗X,W )

)
< +∞.

Then there exists a vector bundle G on X̂ such that G|X ∼= F , and for a fixed such G the deformation space of G is isomorphic to
Cγ ([17, Satz 2], and first Bemerkung at p. 115, and see also [7, Theorem 10.3.16]). There is a vector bundle A on an analytic
neighbourhood U of X inW such that A|̂X = G, and hence A|X ∼= F [17, Satz 3].

We will work with objects on infinitesimal neighbourhoods X (m) or on the formal completion X̂ of X ⊂ W . However, in
general the goal is to obtain statements about an actual neighbourhood of X , i.e. a tubular neighbourhood. Extending objects
that are defined on the formal neighbourhood to a tubular neighbourhood is done via the Formal Principle.
We restrict our attention to the case when X is an exceptional set, i.e. whenW is the resolution σ : W → W ′ of some

(possibly singular) spaceW ′, σ(X) = x ∈ W ′ andW \ X ∼= W ′ \ {x} via σ .

Theorem 4.3 (Existence, [16]). Let W be a complex space and let X be an exceptional subspace. Let E be a locally free sheaf on the
formal completion X̂ of X. Then there is a locally free sheaf F on a neighbourhood U ⊃ X in W such that F |̂X

∼= E . Moreover,
F is uniquely determined by the germ of the embedding X ↪→ W. �

5. Local holomorphic Euler characteristic

Suppose that Z is an exceptional curve inW , so that Z can be contracted to a point, and letW ′ be the space obtained from
W by contracting Z to a (singular) point x, and let π : W → W ′ be the contraction. Following Blache [6, 3.9], we define the
local holomorphic Euler characteristic of reflexive sheaves near Z .

Definition 5.1. The local holomorphic Euler characteristic of a reflexive sheaf F near Z ⊂ W is

χ (Z,F ) := χ (x, π∗F ) := h0
(
W ′; (π∗F )∨∨/π∗F

)
+

r−1∑
i=1

(−1)i−1h0
(
W ′; Riπ∗F

)
, (5.1)

where r = rkF .
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Since in our caseW is of cohomological dimension 1, the higher direct images Riπ∗F in Eq. (5.1) are all zero for i > 1.

Lemma 5.2. Let Z be a curve of codimension n ≥ 2 in W. Then for any reflexive sheaf F on W we have

h0
(
W ′; (π∗F )∨∨/π∗F

)
= 0.

Proof. The map π contracts Z to the point x, whereas the restriction π |W\Z : W \ Z → W ′ \ {x} is an isomorphism. Let
Ũ ⊆ W be an open set containing Z and let U = π(Ũ). For a section σ ∈ Γ (U \ {x}, π∗F ) there is thus a corresponding
section σ̃ ∈ Γ (Ũ \ Z,F ) such that π∗σ̃ = σ .
However, Z is of codimension n > 1 inW , so σ̃ can be extended uniquely (byHartogs’ Theorem) to a section τ̃ ∈ Γ (Ũ,F )

such that τ̃ |Ũ\Z = σ̃ , and thus the image τ := π∗τ̃ is a unique extension of σ over the singular point, i.e. τ |U\{x} = σ . It
follows that Γ (U \ {x}, π∗F ) ∼= Γ (U, π∗F ) for all open sets U ⊆ W ′, making π∗F a normal sheaf in the sense of Barth, and
by [10, Proposition 1.6] π∗F is reflexive; i.e. (π∗F )∨∨ ∼= π∗F . �

Remark 5.3. Note that this result is in strong contrast with the case of surfaces (n = 1), for which h0
(
W ′; (π∗F )∨∨/π∗F

)
attains a wide variety of values (compare with [5, Theorem 2.16]).

Corollary 5.4. If the codimension of the curve Z in W is at least 2, then for any reflexive sheaf F on W, we have χ (Z,F ) =
h0
(
W ′; R1π∗F

)
. �

6. Total space ofOP1(−1)⊕n

LetW be an (n+1)-dimensional complex manifold, Z ⊂ W with Z ∼= P1 and NZ,W isomorphic to the direct sum of n line
bundles of degree−1. In fact, we can assume thatW = Tot

(
OP1(−1)

⊕n
)
. We denote by Z̃ the inverse limit of all complex

manifoldsW ′ for whichW ′ is an open neighbourhood of Z inW and by Ẑ = lim
←−m

Z (m) the formal completion of Z inW .

Lemma 6.1. Pic Z̃ ≡ Pic Ẑ ∼= Z. More precisely, every line bundle L on Z̃ or Ẑ is uniquely determined by the integer deg(L|Z ).

Proof. To check the result for Ẑ , it is sufficient to show that for all integers i ≥ 0 the restrictionmap ρi : Pic Z (i+1) → Pic Z (i)
is bijective. The map ρi is injective (resp. surjective) because H1

(
Z; S i(N∗Z,W )

)
= 0 (resp. H2

(
Z; S i(N∗Z,W )

)
= 0). The

restriction map Pic Z̃ → Pic Ẑ is bijective by Grothendieck’s existence theorem [8, 5.1.4]. �

Notation: Let Lk denote the only line bundle on Z̃ or Ẑ such that deg(L|Z ) = k. Also, for any OW -module F , we write

F (n)
:= F ⊗OW

(
OW/I

n+1) ,
whereI is the ideal sheaf of Z ⊂ W .We can think ofF (n) as the sheaf of sections ofF on the nth infinitesimal neighbourhood
of Z .

Lemma 6.2. H1
(
Z̃; Lk

)
= H1

(
Ẑ; Lk

)
= 0 for all k ≥ −1.

Proof. Direct calculation. �

Proposition 6.3. Let E be a vector bundle on Z̃ or Ẑ such that E|Z has splitting type a1 ≥ · · · ≥ ar with ar ≥ a1 − 1. Then
E ≡

⊕r
i=1 Lai .

Proof. Use Lemmas 3.4 and 6.2. �

Remark 6.4. By Remark 4.2 the dimension of the local deformation space of any vector bundle E on Ẑ is

γ =
∑
t≥0

h1
(
Z; End (E|Z )⊗ St(N∗Z,W )

)
< +∞.

Now a1 ≥ · · · ≥ ar denote the splitting type of E|Z . Since here N∗Z,W ∼= OP1(1)
⊕n, we have

γ (E) =
∑
t≥0

(
t + n− 1
t

)
h1
(
P1; End (E|Z )(t)

)
.

Thus the dimension of the deformation space of E depends only on n and the splitting type of E|Z . ByGrothendieck’s existence
theorem the same is true with Z̃ instead of Ẑ .

We calculate γ (E):
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Theorem 6.5 (Dimension of Local Deformation Space). Let E be a vector bundle on Z̃ or Ẑ such that E|Z has splitting type
a1 ≥ · · · ≥ ar . Then the dimension of the local deformation space at E is

γ (E) =
∑
ai−aj>1

ai−aj−2∑
t=0

(ai − aj − 1− t) ·
(
t + n− 1
t

)
.

Proof. According to Remark 6.4, the dimension γ (E) does not depend on the choice of extension E, so we can assume
E = La1 ⊕ · · · ⊕ Lar . In this case,

End E =
⊕
1≤i,j≤r

Laj−ai ,

and consequently

h1
(
Z; End E ⊗ St(N∗Z,W )

)
=

∑
1≤i,j≤r

h1
(
P1; Lai−aj ⊗ S

t(N∗Z,W )
)
.

If aj − ai ≥ −1, then h1
(
P1; Laj−ai

)
= 0, so we have

γ (E) =
∑
t≥0

∑
ai−aj>1

h1
(
P1; Laj−ai ⊗ S

t(N∗Z,W )
)
.

We perform the computations on W = Tot
(
OP1(−1)

⊕n
)
using the standard coordinate charts (z, u1, . . . , un) 7→

(z−1, zu1, . . . , zun). In these charts, the bundle Laj−ai has transition function z
ai−aj , and consequently a non-trivial 1-cocycle

σ on the tth infinitesimal neighbourhood has an expression of the form:

σ =
∑

i1+···+in=t

−1∑
k=aj−ai+1+t

σi1...ink z
kui11 · · · u

in
n ,

andnon-zero terms occur onlywhen t ≤ ai−aj−2. Hence, for each pair ai−aj > 1 there are
∑ai−aj−2
t=0 (ai−aj−1−t)·

(
t+n−1
t

)
terms. �

7. Local Calabi–Yau threefolds

In this sectionwe specialise to the case of local Calabi–Yau threefolds.We provide only simple examples to give some idea
of the behaviour of the local holomorphic Euler characteristic (χ for short). The general Macaulay 2 algorithm to compute
numerical invariants for bundles on threefolds will appear in the companion paper [12]. Here we tabulate some invariants
for the local threefolds

Wi := Tot
(
OP1(−i)⊕ OP1(i− 2)

)
.

The cases i = 1, 2, 3 present quite different behaviour and are particularly interesting from the point of view of birational
geometry, see [11]. Recall from Eq. (5.1) that the local holomorphic Euler characteristic of a rank-2 bundle is by definition
χ (Z,F ) := w + h, wherew := h0

(
W ′; (π∗F )∨∨/π∗F

)
and h := h0

(
W ′; R1π∗F

)
. However, by Lemma 5.2, on threefolds

we havew ≡ 0; and even worse, for i > 1 bundles onWi have χ = ∞. To remedy this situation, we introduce some partial
invariants, obtained by restriction to a surface.

Definition 7.1. Let Di ∼= Tot
(
OP1(−i)

)
, considered as the hypersurface Tot

(
OP1(−i)⊕ 0

)
of Wi. We define the partial

invariants:

h′ (F ) := h
(
F |Di

)
,

w′ (F ) := w
(
F |Di

)
.

Some comments about theWi for i = 1, 2, 3:
1. W1 := Tot

(
OP1(−1)⊕ OP1(−1)

)
Note thatW1 is just the specialisation to n = 2 of the spaces in the previous section; and appears in the well-known

diagram of the basic flop: Let X be the cone over the ordinary double point defined by the equation xy− zw = 0 on C4.
The basic flop is described by the diagram:

X̃
f1 ↙ ↘

f2

X− X+

π1 ↘ ↙π2
X

,
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Table 1
Partial invariants of some bundles onW1 ,W2 andW3 (see Definition 7.1)

W1 W2 W3
χ h′ w′ χ h′ w′ χ h′ w′

j = 0, any p 0 0 0 0 0 0 ∞ 0 0
j = 1, any p 0 0 1 0 0 0 ∞ 0 0
j ≥ 2, p = 0 f0(j) f1(j) g1(j) ∞ f2(j) g2(j) ∞ f3(j) g3(j)
j = 3, p = u1 3 2 1 ∞ 2 1 ∞ 2 1
j = 4, p = zu1 6 3 1 ∞ 3 0 ∞ 3 0
j = 4, p = z3u1 7 4 6 ∞ 3 2 ∞ 3 1
j = 4, p = z3u21 9 5 6 ∞ 4 2 ∞ 3 2
j = 5, p = zu1 10 4 1 ∞ 4 0 ∞ 4 0
j = 5, p = z3u1 11 5 6 ∞ 4 2 ∞ 4 1
j = 5, p = z3u21 16 7 6 ∞ 6 2 ∞ 5 2

where X̃ := X̃x,y,z,w is the blow-up of X at the vertex x = y = z = w = 0, X− := X̃x,z is the blow-up of X along x = z = 0
and X+ := X̃y,w is the blow-up of X along y = w = 0. The basic flop is the transformation from X− to X+.
By Theorem 3.5 holomorphic bundles onW1 are algebraic, and this has the nice consequence that χ is finite overW1.

2. W2 := Tot
(
OP1(−2)⊕ OP1(0)

)
Note thatW2 ∼= Z2×C, andwe can contract the zero section on the first factor, thus obtaining a singular family X2×C,

where X2 is the surface containing an ordinary double-point singularity defined by xy − z2 = 0 in C3. Holomorphic
bundles onW2 have infinite χ , but h′ andw′ take finite values onW2.
Note that in contrast to W1, there are strictly holomorphic (not algebraic) bundles on W2, although every rank-2

bundle onW2 is still an extension of line bundles.
3. W3 := Tot

(
OP1(−3)⊕ OP1(+1)

)
Here not even a partial contraction of the zero section is possible, but nevertheless we can still calculate partial h′ and

w′.
Again, onW3 there are strictly holomorphic (not algebraic) bundles, and moreover, there are (many) rank-2 bundles

which are not extensions of line bundles.

Given a rank-2 bundle E onWi with vanishing first Chern class, its restriction to the zero section Z determines an integer
j ≥ 0 called the splitting type of E, such that E|Z ∼= OP1(j) ⊕ OP1(−j). We consider bundles E that are extensions of line
bundles

0 −→ O (−j) −→ E −→ O (j) −→ 0.

Such a bundle is uniquely determined by j and an extension class p. We tabulate the values of χ , h′, w′ in Table 1, in which
the formulae for the split bundles are as follows:

f0(j) =
(
j3 − j

)
/6 g1(j) =

(
j2 + j

)
/2

f1(j) =
(
j2 − j

)
/2 g2(j) =

⌊
j
2

⌋
j−

⌊
j
2

⌋2
f2(j) =

⌊
j
2

⌋(
j−

⌊
j
2

⌋)
g3(j) =

1
2

⌊
j
3

⌋(
2j− 1− 3

⌊
j
3

⌋)
f3(j) =

1
2

⌊
j+ 1
3

⌋(
2j+ 1− 3

⌊
j+ 1
3

⌋)
.

8. Neighbourhoods of P1-chains

Fix an integer a > 0. Since the case a = 1 was studied in Section 6, we will often silently assume a ≥ 2. Let Ya be
the nodal and connected projective curve with a irreducible components, say T1, . . . , Ta, such that Ti ∼= P1 for all i and
Ti ∩ Tj = ∅ if |i− j| ≥ 2, and #(Tj ∩ Tj+1) = 1 for all j = 1, . . . , a − 1. Notice that the plurigenus is pa(Ya) = 0. Let W
be an n-dimensional complex manifold (or smooth algebraic variety) and Za ⊂ W a compact complex subspace such that
Za ∼= Ya. Abusing notation, we will also call Ti the irreducible components of Za. Since Za is a local complete intersection in
W , its conormal sheaf N∗Za,W is locally free.
Every vector bundle on Ya is isomorphic to a direct sum of line bundles. Hence setN∗Za,W

∼= L1⊕· · ·⊕Ln−1 with Lj ∈ Pic Za.
For each 1 ≤ j ≤ n− 1 and each 1 ≤ i ≤ a set

bi,j := deg(Lj|Ti)

and set

bi := min
1≤j≤n−1

bi,j.
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The first set of integers may depend upon a choice of the ordering L1, . . . , Ln−1 of the indecomposable factors of N∗Za,W . The
bundle N∗Za,W is ample if and only if each Lj is ample, i.e. if and only if each Lj|Ti is ample, i.e. if and only if bi,j > 0 for all
1 ≤ j ≤ n− 1 and all 1 ≤ i ≤ a. Notice that the case bi,j = 1 for all i, j is the natural generalisation of Section 6. From now
on we will assume the ampleness of N∗Za,W .

Remark 8.1. We have Pic Za ∼= Z⊕a. More precisely, for every ordered set (d1, . . . , da) of a integers there is (up to
isomorphisms) a unique line bundle L on Za such that deg(L|Ti) = di for all i. Then L is ample if and only if it is very ample if
and only if di > 0 for all i, and L is spanned if and only if di ≥ 0 for all i. Furthermore, if L is spanned, then h1 (Za; L) = 0 and
hence h0 (Za; L) = 1+

∑a
i=1 di (Riemann–Roch).

Set deg(L) :=
(
deg(L|T1), . . . , deg(L|Ta)

)
∈ Z⊕a.

Remark 8.2. Since dim Za = 1, h2 (Za;F ) = 0 for every coherent sheafF on Za.We have h1 (Za; L) = 0 for every line bundle
on Za such that deg(L|Tj) ≥ 0 for at least a− 1 indices j ∈ {1, . . . , a} and deg(L|Ti) ≥ −1 for all i (use a− 1 Mayer–Vietoris
exact sequences and the cohomology of line bundles on P1).

Lemma 8.3. Pic Z̃a ≡ Pic Ẑa ∼= Z⊕a. More precisely, every line bundle L on Z̃a or Ẑa is uniquely determined by the ordered set of
a integers deg(L|Za).

Proof. To check the result for Ẑa it is sufficient to show that for all integers i ≥ 0 the restrictionmap ρi : Pic Z
(i+1)
a → Pic Z (i)a

is bijective. The map ρi is injective (resp. surjective), because H1
(
Za; S i(N∗Za,W )

)
= 0 (resp. H2

(
Za; S i(N∗Za,W )

)
= 0)

(Remark 8.2). The restriction map Pic Z̃a → Pic Ẑa is bijective by Grothendieck’s existence theorem [8, 5.1.4]. �

Notation: For each rank-r vector bundle F on Za let ai,1(F) ≥ · · · ≥ ai,r(F) be the splitting type of F |Ti . Set εi(F) := ai,1− a1,r ,
1 ≤ i ≤ a. For each rank-r vector bundle E on Ẑa set ai,h(E) := ai,h(E|Za), 1 ≤ i ≤ a, 1 ≤ h ≤ r , and εi(E) := εi(E|Za) =
ai,1(E)− ai,r(E), 1 ≤ i ≤ a.
Notation: For every integer i such that 1 ≤ i ≤ a set T [i] := T1 ∪ Ti. For each 1 ≤ i ≤ n− 1 set Pi := Ti ∩ Ti+1. Set T [0] := ∅.

Lemma 8.4. Let F be a rank-r vector bundle on Za such that ai,r ≥ −1 for all i and ai,r ≥ 0 for at least a − 1 indices. Then
h1 (Za; F) = 0. If ai,r ≥ 0 for all i, then F is spanned.

Proof. Notice that ai,r ≥ −1 if and only if h1
(
Ti; F |Ti

)
= 0 and that ai,r ≥ 0 if and only if F |Ti is spanned. In particular

h1
(
T1; F |T1

)
= 0. Hence we may assume a ≥ 2. Fix an integer 1 ≤ i < a and assume h1

(
T [i]; F |T [i]

)
= 0. To get the first

assertion of the Lemma by induction on i it is sufficient to prove h1
(
T [i+ 1]; F |T [i+1]

)
= 0. To get the second assertion we

also need to prove that if F |T [i] and F |Ti are spanned, then F |T [i+1] is spanned. Consider the Mayer–Vietoris exact sequence

0 −→ F |T [i+1] −→ F |T [i] ⊕ F |Ti+1 −→ F |{Pi} −→ 0. (8.1)

By assumption, h1
(
T [i]; F |T [i]

)
= h1

(
Ti+1; F |Ti+1

)
= 0. If ai+1 ≥ 0, then F |Ti is spanned, and hence the restriction map

η : H0
(
T [i]; F |T [i]

)
⊕ H0

(
Ti+1; F |Ti+1

)
−→ F |{Pi}

is surjective. The cohomology exact sequence of (8.1) gives h1
(
T [i+ 1]; F |T [i+1]

)
= 0. If ai+1,r = −1, then the inductive

assumption gives that F |T [i] is spanned. Hence the first component of η is surjective, and consequently so is η, and again we
obtain h1

(
T [i+ 1]; F |T [i+1]

)
= 0. Similarly, fixing any Q ∈ T [i + 1] we see that if both F |T [i] and F |Ti+1 are spanned, then

F |T [i+1] is spanned, concluding the inductive proof. �

Lemma 8.5. Let E be a rank-r vector bundle on Ẑa. Assume that bi ≥ εi(E) − 1 for all 1 ≤ i ≤ a, and assume the existence
of b ∈ {1, . . . , a} such that bi ≥ εi(E) for all i ∈ {1, . . . , a} \ {b} and all 1 ≤ j ≤ n − 1. Then the natural restriction map
ρE : H1

(
Ẑa; E

)
→ H1

(
Za; E|Za

)
is bijective.

Proof. The surjectivity of ρE comes just from Remark 4.2, it uses only that dim Za = 1 and that X = Za is reduced and a
local complete intersection inW . To check the injectivity of ρE it is sufficient to prove H1

(
Za; Sm(N∗Za,W )⊗ (E|Za)

)
= 0 for

all m ≥ 1. Fix an integer m ≥ 1 and set F := Sm(N∗Za,W ) ⊗ (E|Za) and t :=
(
n+m−1
n−1

)
r . Notice that t = rk F . Notice that

ai,t(F) = mbi+ ai,r . Sincem ≥ 1, our assumptions give ai,t(F) ≥ −1 for all i and ai,t(F) ≥ 0 for at least a−1 indices i. Apply
Lemma 8.4. �

Proposition 8.6. Fix any rank-r vector bundle E on Ẑa and a decomposition E|Za ∼= L1 ⊕ · · · ⊕ Lr with Lh ∈ Pic Za, 1 ≤ h ≤ r.
Let L̂h denote the only line bundle on Ẑa such that L̂h|Za ∼= Lh (Lemma 8.3). Assume bi ≥ 2εi(E) − 1 for all i and bi ≥ 2εi(E) for
at least a− 1 indices i. Then E ∼= L̂1 ⊕ · · · ⊕ L̂r .
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Proof. We fix an isomorphism α0 : E → L1⊕· · ·⊕ Ln. Set A := Hom (E, L̂1⊕· · ·⊕ L̂r). It is sufficient to show the existence
of α ∈ H0

(
Ẑa; A

)
which induces an isomorphism E → L̂1 ⊕ · · · ⊕ L̂r , or, using Nakayama’s Lemma, to prove the existence

α ∈ H0
(
Ẑa; A

)
such that α|Za = α0. Equivalently, it is sufficient to show the existence of{

αm ∈ H0
(
Z (m)a ; A|Z(m)a

)}
m≥1

such that αm|Z(m−1) = αm−1.

Fix an integerm ≥ 1 and assume that α0, . . . , αm−1 have been constructed as above. The obstruction to the existence of αm
is an element of H1

(
Za; Sm(N∗Za,W )⊗ (A|Za)

)
. Notice that εi(A) = 2εi(E) for all 1 ≤ i ≤ a, and now apply Lemma 8.5. �

Remark 8.7. Let E be a vector bundle on Ẑa. Set F := E|Za . By Remark 4.2 the cohomology group H1
(
Ẑa; End E

)
is finite-

dimensional, andH1
(
Ẑa; End E

)
(resp.H1 (Za; End F)) is the tangent space to the deformation space of E (resp. F ). Remark 4.2

gives the surjectivity of the restriction map

ρEnd E : H1
(
Ẑa; End E

)
→ H1 (Za; End F) .

In Proposition 8.8 we will give a sufficient condition for the injectivity of the map ρEnd E . Then in Proposition 8.10 we will
give other cases in which we are able to ‘‘partially control’’ ker(ρEnd E).

The proof of Proposition 8.6 gives the following result.

Proposition 8.8. Fix a rank-r vector bundle E on Ẑa. Assume that bi ≥ 2εi(E) − 1 for all i and assume bi ≥ 2εi(E) for at least
a− 1 indices i. Then the restriction map ρEnd E : H1

(
Ẑa; End E

)
→ H1

(
Za; End (E|Za)

)
is bijective. �

Remark 8.9. Fix an integerm ≥ 0 and a vector bundle A on Ẑa. Let

ρA,m : H1
(
Ẑa; A

)
→ H1

(
Z (m)a ; A|Z(m)a

)
.

Remark 4.2 gives the surjectivity of ρA,m and that the map ρA,m is injective if

h1
(
Za; St(N∗Z,W )⊗ A

)
= 0 for all t ≥ m+ 1.

Since bi
(
St(N∗Z,W )

)
= tbi, the proof of Lemma 8.5 gives that ρA,m is injective if (m + 1)bi ≥ εi(A) − 1 for all i and

(m + 1)bi ≥ εi(A) for at least a − 1 indices i. Now we fix a vector bundle E on Ẑa and take A := End (E|Za). Since
εi(End E) = 2εi(E), we get the following result.

Proposition 8.10. Fix a rank-r vector bundle E on Ẑa and an integer m ≥ 0. If (m + 1)bi ≥ 2εi(E) − 1 for all i and
(m+ 1)bi ≥ 2εi(E) for at least a− 1 indices i, then the restriction map

ρEnd E,m : H1
(
Ẑa; End E

)
→ H1

(
Z (m)a ; End (E|Z(m)a )

)
is bijective. �

9. Neighbourhoods of positive-genus curves

Let W be an n-dimensional complex manifold or an n-dimensional smooth algebraic variety and Z ⊂ W a closed
submanifold which is a smooth and connected curve of genus g > 0.We assume that the conormal bundle N∗Z,W is ample.

Remark 9.1. Let F be a semi-stable vector bundle on Z . Since we work in characteristic zero, End F ∼= OZ ⊕ ad F , and ad F
is a semi-stable vector bundle on Z of degree zero [14, Theorem 2.5 or 2.6].

LetM(Z; r, d) denote themoduli space of all stable vector bundles on Z with rank r and degree d. If g ≥ 2, thenM(Z; r, d)
is a non-empty irreducible variety of dimension r2(g − 1)+ 1.

Remark 9.2. Set d := degNZ,W . Since dim Z = 1, h2 (Z;F ) = 0 for every coherent sheaf F on Z . We also recall that
h0 (Z; A) = 0 if A is a semi-stable (resp. stable) vector bundle and deg A < 0 (resp. deg A ≤ 0). Thus the restriction map
Pic Ẑ → Pic Z is surjective. The restriction map Pic Ẑ → Pic Z is injective if h1

(
Z; St(N∗Z,W )

)
= 0 for all integers t ≥ 1, i.e. if

α(NZ,W , t) := h0
(
Z; St(NZ,W )⊗ ωZ

)
= 0

for all integers t ≥ 1.
Now we will give some conditions which ensure that α(NZ,W , t) = 0: Let µ+(NZ,W ) denote the maximal slope of a

non-zero subsheaf of NZ,W . The ampleness of N∗Z,W implies µ+(NZ,W ) < 0. Since the tensor product of semi-stable vector
bundles is semi-stable [14, Theorem 2.6], we get µ+(St(NZ,W )) = tµ+(NZ,W ). Hence α(NZ,W , t) = 0 if NZ,W is semi-stable
and d < (n − 1)(2 − 2g) or NZ,W is stable and d ≤ (n − 1)(2 − 2g). If NZ,W is a general element of M(Z; n − 1, d), then
α(NZ,W , t) = 0 for all t ≥ 1 if and only if d ≤ (n− 1)(1− g).
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For any vector bundle F on Z and every integer t ≥ 0 set

γ (F ,N, t) := h1
(
Z; End F ⊗ St(N∗)

)
and

γ (F ,N) :=
∑
t≥0

γ (F ,N, t).

The ampleness of N∗Z,W implies γ (F ,NZ,W ) < +∞. Furthermore, there is a vector bundle E on Ẑ such that E|Z ∼= F , the
deformation space of any such E is smooth and γ (F ,NZ,W ) is the dimension of the deformation space of any such E. Hence
our main aim will be the computation of the integers γ (F ,N, t) for some N and/or some F .

Remark 9.3. Set r := rk F . We have

γ (F ,N, 0) = h1 (Z; End F) = r2(g − 1)+ h0 (Z; End F) ,

where h0 (Z; End F) ≥ 1, with equality if F is stable. For an arbitrary F we cannot say much about the integer h0 (Z; End F)
and hence about the integer γ (F ,N, 0).
As an example, assume r ≥ 2 and F ∼=

⊕r
i=1 Li, where the Li are line bundles. Thus

h0 (Z; End F) =
r∑
i=1

r∑
j=1

h0
(
Z; Li ⊗ L∗j

)
.

Hence h0 (Z; End F) ≥ r , with equality if and only if h0
(
Z; Li ⊗ L∗j

)
= 0 for all i 6= j. For all integers r, a, x there exists a

decomposable F as above with rank r , degree a and h0 (Z; End F) ≥ x.

Theorem 9.4. Assume g ≥ 2 and fix F ∼=
⊕r
i=1 Li, where each Li is a line bundle of degree ai. Assume that N is a general element

of M(Z; n− 1, d). Then

γ (F ,N, t) =
r∑
i=1

r∑
j=1

max
{
0, t

(
d+ 2g − 2+ ai − aj

)
/r + 1− g

}
·

(
t + r − 1
t

)
(9.1)

for all t ≥ 1.

Proof. Note that End F ∼=
⊕r
i=1
⊕r
j=1 Li ⊗ L

∗

j , that Li ⊗ L
∗

j has degree ai − aj if i 6= j and that Li ⊗ L
∗

j
∼= OZ if i = j. For all

integersm, t such that t ≥ 0 set

ut,m := max {0, t (d+ 2g − 2+m) /r + 1− g} ·
(
t + r − 1
t

)
.

Fix any M ∈ Pic Z and take a general N ∈ M(Z; n − 1, d). By [2, Theorem 1], we have h1
(
Z; St(N∗)⊗M

)
=

h0
(
Z; St(N)⊗M∗ ⊗ ωZ

)
= ut,m. Notice that in the decomposition of End F only finitely many line bundles appear. Hence

γ (F ,N, t) =
∑r
i=1
∑r
j=1 ut,ai−aj . �

We stress that in the statement of Theorem 9.4 we first choose the line bundles Li and then take a general N . If we fix a
general N , then for all choices of Li ∈ Picai(Z)we only claim the inequality

γ (F ,N, t) ≤
r∑
i=1

r∑
j=1

max
{
0, t

(
d+ 2g − 2+ ai − aj

)
/r + 1− g

}
·

(
t + r − 1
t

)
(just use semi-continuity and the proof of Theorem 9.4 just given), but it is easy to get examples (say, with t = 1) in which
this inequality is strict.

Theorem 9.5 (Dimension of Local Moduli). Assume g ≥ 2. Fix a rank-r vector bundle F on Z and any increasing filtration {Fi}ri=0
of F such that Fr = F , F0 = {0} and each Fi/Fi−1 is a line bundle. Set ai := deg (Fi/Fi−1), 1 ≤ i ≤ r. Assume that N is a general
element of M(Z; n− 1, d). Then

γ (F ,N, t) ≤
r∑
i=1

r∑
j=1

max
{
0, t

(
d+ 2g − 2+ ai − aj

)
/r + 1− g

}
·

(
t + r − 1
t

)
(9.2)

for all t ≥ 1.
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Proof. If r = 1, then F = F1 and we may apply Theorem 9.4. Assume r ≥ 2. By Theorem 9.4 it is sufficient to prove the
existence of an integral smooth affine curve T , 0 ∈ T , and a flat family {Fλ}λ∈T such that F0 ∼=

⊕r
i=1 Fi/Fi−1 and Fλ ∼= F for

all λ ∈ T \ {0}. Notice that F1 = F1/F0 is a line bundle. Call ε the extension

0 −→ F1 −→ F −→ F/F1 → 0. (9.3)

Set T := C. For every λ ∈ C \ {0}, the extension λε has as its middle sheaf space Fλ a vector bundle isomorphic to F . The
zero-extension of F/F1 by F1 has F1 ⊕ F/F1 as its middle sheaf. Then use induction on r . �

Corollary 9.6. Assume g ≥ 2. Fix any integer c and assume that (N, F) is general in M(Z; n− 1, d)×M(Z; r, cr). Then

γ (F ,N, t) ≤ r2 ·
(
t + r − 1
t

)
·max {0, t (d+ 2g − 2) /r + 1− g} .

Proof. Fix any R ∈ Pic−c(Z). Since End F ∼= End (F⊗R) and (N, F⊗R) is general inM(Z; n−1, d)×M(Z; r, 0), it is sufficient
to do the case c = 0. Apply Theorem 9.5 toO⊕rZ taking Fi := O⊕iZ for all 1 ≤ i ≤ r . Hence ai = 0 for all i. Every vector bundle
on Z is a flat limit of a family of stable vector bundles with the same degree and the same rank [15, Proposition 2.6]. Apply
this observation to O⊕rZ and use the semi-continuity theorem for cohomology groups. �

Corollary 9.7. Assume g ≥ 2. Fix any integer d and assume that (N, F) is general inM(Z; n−1, d)×M(Z; r, a). Write a = rx+y
with x, y ∈ Z and 0 ≤ y < r. Set c := min {y, r − y}. Then γ (F ,N, t), t ≥ 1, satisfies the inequality (9.2) with ai := 0 for
1 ≤ i ≤ r − 1 and ar := c.

Proof. First assume c = y, i.e. 0 ≤ y ≤ br/2c. Fix any R ∈ Pic−x(Z) and any M ∈ Picy(Z). Note that End F ∼= End (F ⊗ R)
and (N, F ⊗ R) is general in M(Z; n − 1, d) × M(Z; r, y), and every vector bundle on Z is a flat limit of a family of stable
vector bundles with the same degree and the same rank [15, Proposition 2.6]. Apply this observation to M ⊕ O

⊕(r−1)
Z and

use the semi-continuity theorem for cohomology groups.
Now assume c = r − y. Notice that End F ∼= End (F∗) and that −a ≡ c(mod r). Apply the first part of the proof to the

vector bundle F∗. �

Remark 9.8. For any rank-(r ≥ 2) vector bundle F there are many filtrations as in the statement of Theorem 9.5 with very
different numerical invariants. However, when r = 2, there is always a numerically better filtration, as we will soon see. Let
F be a rank-r vector bundle. First assume that F is not semi-stable. Then F fits in an extension of line bundles

0 −→ L1 −→ F −→ L2 −→ 0

with deg L1 > deg L2. Furthermore, this extension is unique and minimises the integer |deg L1 − deg L2|.
Note that the integer deg(L1) + deg(L2) = deg(F) is fixed. To get the best estimate from inequality (9.2), we need to

find an extension (9.3) which minimises the integer |deg L1 − deg L2|. If F is semi-stable but not stable, then we may find
an extension (Theorem 9.4) with deg L1 = deg L2. Now assume that F is stable. There is a unique integer s(F) such that
s(F) ≡ deg F(mod 2), 0 < s(F) ≤ g , and there is an extension (9.3) with deg L2 = deg L1 + s(F) [13, Proposition 3.1].
Such an extension is not always unique (see e.g. [13, Corollary 4.6 and Theorem 5.1]), but any of those minimises the integer
|deg L1 − deg L2|.

Proposition 9.9. Assume that g = 1 and that both E and NZ,W are semi-stable and write F := E|Z . Then γ (F ,NZ,W , t) = 0 for
all t ≥ 1, and consequently the deformation space of E coincides with the deformation space of E|Z .

Proof. By Serre duality we need to prove that for t ≥ 1

h0
(
Z; St(NZ,W )⊗ End (E|Z )

)
= 0.

Since N∗Z,W is ample, we have deg
(
St(NZ,W )⊗ End (E|Z )

)
< 0. By Atiyah’s classification of vector bundles on elliptic curves

[1] or by [14, Theorem 2.6], St(NZ,W )⊗ End (E|Z ) is semi-stable. Hence h0
(
Z; St(NZ,W )⊗ End (E|Z )

)
= 0 [1]. �
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