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a b s t r a c t

For x = (x1, x2, . . . , xn) ∈ Rn
+
, the second dual form of the Hamy symmetric function is

defined by

H∗∗

n (x, r) = H∗∗

n (x1, x2, . . . , xn; r) =


1≤i1<i2<···<ir≤n


r

j=1

xij

 1
r

,

where r ∈ {1, 2, . . . , n} and i1, i2, . . . , in are positive integers.
In this paper, we prove that H∗∗

n (x, r) is Schur concave, and Schur multiplicatively
and harmonic convex in Rn

+
. Some applications in inequalities and reliability theory are

presented.
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, we use Rn to denote the n-dimensional Euclidean space, and Rn
+

= {(x1, x2, . . . , xn) : xi > 0, i =

1, 2, . . . , n}. In particular, we use R to denote R1.
For x = (x1, x2, . . . , xn) ∈ Rn

+
and r ∈ {1, 2, . . . , n}, the Hamy symmetric function [21] is defined by

Hn(x, r) = Hn(x1, x2, . . . , xn; r) =


1≤i1<i2<···<ir≤n


r

j=1

xij

 1
r

,

where i1, i2, . . . , in are positive integers.
Corresponding to this is the r-th order Hamy mean

σn(x, r) = σn(x1, x2, . . . , xn; r) =
1 n
r

Hn(x, r),

where
 n
r


=

n!
(n−r)!r! . Hara et al. [21] established the following refinement of the classical arithmetic and geometric mean

inequalities:

Gn(x) = σn(x, n) ≤ σn(x, n − 1) ≤ · · · ≤ σn(x, 2) ≤ σn(x, 1) = An(x).

Here An(x) =
1
n

n
i=1 xi and Gn = (

n
i=1 xi)

1
n denote the classical arithmetic and geometric means, respectively.
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Paper [28] contains some interesting inequalities including the fact that (σn(x, r))
1
r is log-concave. More results can be

found in [5]. In [20], the Schur convexity of the Hamy symmetric function Hn(x, r) and its generalization were discussed.
In [9], the authors proved that Hn(x, r) is Schur harmonic convex in Rn

+
for r ∈ {1, 2, . . . , n}.

In [24], Jiang introduced the first dual form of the Hamy symmetric function as follows:

H∗

n (x, r) = H∗

n (x1, x2, . . . , xn; r) =


1≤i1<i2<···<ir≤n


r

j=1

x
1
r
ij


,

and proved that H∗
n (x, r) is Schur concave and Schur multiplicatively convex in Rn

+
for r ∈ {1, 2, . . . , n}.

The Schur convexity or concavity was introduced by Schur [39] in 1923; it has many applications in analytic
inequalities [31,41,47], mathematical programming [16,23,35], probability theory and stochastic processes [22,26,29,40,
44,45], and multivariate statistics [1–4,11–15,25,27,33,34,36,38,43].

Dalal and Fortini [13] proved that

P{X + Y ≤ c} ≥ P
√

2max(X, Y ) ≤ c


(1.1)

for every c > 0 if X and Y are nonnegative random variables with joint density f such that f (
√
x,

√
y) is Schur convex,

and inequality (1.1) is reversed if ‘‘convex’’ is replaced by ‘‘concave’’. Inequality (1.1) can be used to provide conservative
simultaneous confidence intervals for all a1µ1 + a2µ2 based on samples from N(µ1, σ

2
1 ) and N(µ2, σ

2
2 ), all parameters

unknown.
In [25], Joe established a sufficient condition for themaximality andminimality of the class P (p1, p2, . . . , pn) of possible

probability matrices P = (pij)i≠j associated with paired comparisons in terms of the Schur convexity on P .
Nappo and Spizzichino [33] researched the law of scaled empirical total time on test (TTT)-plots of exchangeable

lifetimes; they gave amonotonicity property in the case of absolutely continuous distributionswith Schur concave (or Schur
convex) densities.

Recently, the Schur multiplicative convexity was introduced and investigated in the literature [10,17,18,30,42]. But only
paper [9] discussed the Schur harmonic convexity.

In this paper, we introduce the second dual form of the Hamy symmetric function as follows:

H∗∗

n (x, r) = H∗∗

n (x1, x2, . . . , xn; r) =


1≤i1<i2<···<ir≤n


r

j=1

xij

 1
r

(1.2)

for x = (x1, x2, . . . , xn) ∈ Rn
+
and r ∈ {1, 2, . . . , n}, where i1, i2, . . . , in are positive integers.

The purpose of this paper is to prove that H∗∗
n (x, r) is Schur concave, and Schur multiplicatively and harmonic convex in

Rn
+
. Some applications in inequalities and reliability theory are presented.

2. Definitions and lemmas

For the convenience of the readers, we introduce some definitions and lemmas, which we present in this section.

Definition 2.1. Let E ⊆ Rn be a set; a real-valued function F : E → R is said to be Schur convex on E if

F(x1, x1, . . . , xn) ≤ F(y1, y2, . . . , yn) (2.1)

for each pair of n-tuples x = (x1, . . . , xn) and y = (y1, . . . , yn) in E, such that x ≺ y, that is

k
i=1

x[i] ≤

k
i=1

y[i], k = 1, 2, . . . , n − 1

and
n

i=1

x[i] =

n
i=1

y[i],

where x[i] denotes the ith largest component in x. F is said to be Schur concave if −F is Schur convex.

Definition 2.2. Let E ⊆ Rn
+

be a set; a real-valued function F : E → R+ is said to be Schur multiplicatively convex on
E if (2.1) holds for each pair of n-tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in E, such that log x = (log x1,
log x2, . . . , log xn) ≺ log y = (log y1, log y2, . . . , log yn). F is said to be Schur multiplicatively concave if 1

F is Schur
multiplicatively convex.
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Definition 2.3. Let E ⊆ Rn
+
be a set; a real-valued function F : E → R+ is said to be Schur harmonic convex on E if (2.1)

holds for each pair of n-tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in E, such that 1
x = ( 1

x1
, 1

x2
, . . . , 1

xn
) ≺

1
y = ( 1

y1
,

1
y2
, . . . , 1

yn
). F is said to be Schur harmonic concave if inequality (2.1) is reversed.

Lemma 2.1 (see [31]). Suppose that f : Rn
+

→ R+ is a continuous symmetric function. If f is differentiable in Rn
+
, then f is Schur

convex in Rn
+
if and only if

(xi − xj)

∂ f
∂xi

−
∂ f
∂xj


≥ 0 (2.2)

for all i, j = 1, 2, . . . , nwith i ≠ j and x = (x1, . . . , xn) ∈ Rn
+
. And f is Schur concave if and only if inequality (2.2) is reversed for

all i, j = 1, 2, . . . , nwith i ≠ j and x = (x1, . . . , xn) ∈ Rn
+
. Here f is a symmetric function in Rn

+
, which means that f (Px) = f (x)

for all x ∈ Rn
+
and any n × n permutation matrix P.

Remark 2.1. Since f is symmetric, the Schur’s condition in Lemma 2.1, that is (2.2) can be reduced to

(x1 − x2)

∂ f
∂x1

−
∂ f
∂x2


≥ 0.

Lemma 2.2 (see [10,18]). Suppose that f : Rn
+

→ R+ is a continuous symmetric function. If f is differentiable in Rn
+
, then f is

Schur multiplicatively convex in Rn
+
if and only if

(log x1 − log x2)

x1
∂ f
∂x1

− x2
∂ f
∂x2


≥ 0

for all x = (x1, x2, . . . , xn) ∈ Rn
+
.

Lemma 2.3 (see [9]). Suppose that f : Rn
+

→ R+ is a continuous symmetric function. If f is differentiable in Rn
+
, then f is Schur

harmonic convex in Rn
+
if and only if

(x1 − x2)

x21
∂ f
∂x1

− x22
∂ f
∂x2


≥ 0

for all x = (x1, x2, . . . , xn) ∈ Rn
+
.

Lemma 2.4 (see [18–20]). Suppose that x = (x1, x2, . . . , xn) ∈ Rn
+
and

n
i=1 xi = s. If c ≥ s, then

c − x
nc
s − 1

=


c − x1
nc
s − 1

,
c − x2
nc
s − 1

, . . . ,
c − xn
nc
s − 1


≺ (x1, x2, . . . , xn) = x.

Lemma 2.5 (see [19]). Suppose that x = (x1, x2, . . . , xn) ∈ Rn
+
and

n
i=1 xi = s. If c ≥ 0, then

c + x
nc
s + 1

=


c + x1
nc
s + 1

,
c + x2
nc
s + 1

, . . . ,
c + xn
nc
s + 1


≺ (x1, x2, . . . , xn) = x.

3. Main results

Theorem 3.1. H∗∗
n (x, r) is Schur concave in Rn

+
.

Proof. According to Lemma 2.1 and Remark 2.1, we only need to prove that

(x1 − x2)

∂H∗∗

n (x, r)
∂x1

−
∂H∗∗

n (x, r)
∂x2


≤ 0 (3.1)

for all x = (x1, x2, . . . , xn) ∈ Rn
+
and r ∈ {1, 2, . . . , n}.

We divide the proof into four cases.
Case 1. If r = 1, then (1.2) leads to

H∗∗

n (x, 1) = H∗∗

n (x1, x2, . . . , xn; 1) =

n
i=1

xi. (3.2)
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It follows from (3.2) that

(x1 − x2)

∂H∗∗

n (x, 1)
∂x1

−
∂H∗∗

n (x, 1)
∂x2


= −

(x1 − x2)2

x1x2

n
i=1

xi ≤ 0.

Case 2. If r = n, then from (1.2) we clearly see that

H∗∗

n (x, n) = H∗∗

n (x1, x2, . . . , xn; n) =


n

i=1

xi

 1
n

. (3.3)

From (3.3) we get

∂H∗∗
n (x, n)
∂x1

=
∂H∗∗

n (x, n)
∂x2

=
1
n


n

i=1

xi

 1
n −1

(3.4)

and

(x1 − x2)

∂H∗∗

n (x, n)
∂x1

−
∂H∗∗

n (x, n)
∂x2


= 0.

Case 3. If n ≥ 3 and r = 2, then it follows from (1.2) that

H∗∗

n (x, 2) = H∗∗

n (x1, x2, . . . , xn; 2)

= H∗∗

n−1(x2, x3, . . . , xn; 2)(x1 + x2)
1
2

n
j=3

(x1 + xj)
1
2 . (3.5)

From (3.5) we get

∂H∗∗
n (x, 2)
∂x1

=
1
2
H∗∗

n (x, 2)


1

x1 + x2
+

n
j=3

1
x1 + xj


. (3.6)

Similarly, we have

∂H∗∗
n (x, 2)
∂x2

=
1
2
H∗∗

n (x, 2)


1

x1 + x2
+

n
j=3

1
x2 + xj


. (3.7)

It follows from (3.6) and (3.7) that

(x1 − x2)

∂H∗∗

n (x, 2)
∂x1

−
∂H∗∗

n (x, 2)
∂x2


= −

1
2
(x1 − x2)2H∗∗

n (x, 2)
n

j=3

1
(x1 + xj)(x2 + xj)

≤ 0.

Case 4. If n ≥ 4 and 3 ≤ r ≤ n − 1, then (1.2) leads to

H∗∗

n (x, r) = H∗∗

n (x1, x2, . . . , xn; r)

= H∗∗

n−1(x2, x3, . . . , xn, r)


3≤i1<i2<···<ir−1≤n


x1 +

r−1
j=1

xij

 1
r 

3≤i1<i2<···<ir−2≤n


x1 + x2 +

r−2
j=1

xij

 1
r

. (3.8)

Making use of (3.8) and differentiating H∗∗
n (x, r)with respect to x1, we get

∂H∗∗
n (x, r)
∂x1

=
1
r
H∗∗

n (x, r)

 
3≤i1<i2···<ir−1≤n


x1 +

r−1
j=1

xij

−1

+


3≤i1<i2···<ir−2≤n


x1 + x2 +

r−2
j=1

xij

−1
 . (3.9)

Similarly, we have

∂H∗∗
n (x, r)
∂x2

=
1
r
H∗∗

n (x, r)

 
3≤i1<i2···<ir−1≤n


x2 +

r−1
j=1

xij

−1

+


3≤i1<i2···<ir−2≤n


x1 + x2 +

r−2
j=1

xij

−1
 . (3.10)
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It follows from (3.9) and (3.10) that

(x1 − x2)

∂H∗∗

n (x, r)
∂x1

−
∂H∗∗

n (x, r)
∂x2



= −
1
r
(x1 − x2)2H∗∗

n (x, r)


3≤i1<i2···<ir−1≤n

x1 +

r−1
j=1

xij

−1 
x2 +

r−1
j=1

xij

−1


≤ 0.

Therefore, inequality (3.1) follows from Cases 1–4, and the proof of Theorem 3.1 is completed. �

Theorem 3.2. H∗∗
n (x, r) is Schur multiplicatively convex in Rn

+
.

Proof. By Lemma 2.2, we only need to prove that

(log x1 − log x2)

x1
∂H∗∗

n (x, r)
∂x1

− x2
∂H∗∗

n (x, r)
∂x2


≥ 0 (3.11)

for all x = (x1, x2, . . . , xn) ∈ Rn
+
.

We divide the proof into four cases.
Case I. If r = 1, then (3.2) leads to

(log x1 − log x2)

x1
∂H∗∗

n (x, 1)
∂x1

− x2
∂H∗∗

n (x, 1)
∂x2


= 0.

Case II. If r = n, then (3.4) implies that

(log x1 − log x2)

x1
∂H∗∗

n (x, n)
∂x1

− x2
∂H∗∗

n (x, n)
∂x2



=
1
n
(log x1 − log x2)(x1 − x2)


n

i=1

xi

 1
n −1

≥ 0.

Case III. If n ≥ 3 and r = 2, then it follows from (3.6) and (3.7) that

(log x1 − log x2)

x1
∂H∗∗

n (x, 2)
∂x1

− x2
∂H∗∗

n (x, 2)
∂x2


=

1
2
H∗∗

n (x, 2)(log x1 − log x2)(x1 − x2)


1

x1 + x2
+

n
j=3

xj
(x1 + xj)(x2 + xj)


≥ 0.

Case IV. If n ≥ 4 and 3 ≤ r ≤ n − 1, then from (3.9) and (3.10) we have

(log x1 − log x2)

x1
∂H∗∗

n (x, r)
∂x1

− x2
∂H∗∗

n (x, r)
∂x2



=
1
r
H∗∗

n (x, r)




3≤i1<i2<···<ir−1≤n

r−1
j=1

xij
x1 +

r−1
j=1

xij


x2 +

r−1
j=1

xij



+


3≤i1<i2<···<ir−2≤n

1

x1 + x2 +

r−2
j=1

xij

 (x1 − x2)(log x1 − log x2)

≥ 0.

Therefore, inequality (3.11) follows from Cases I–IV, and the proof of Theorem 3.2 is completed. �

Theorem 3.3. H∗∗
n (x, r) is Schur harmonic convex in Rn

+
.
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Proof. From Lemma 2.3, we clearly see that we only need to prove that

(x1 − x2)

x21
∂H∗∗

n (x, r)
∂x1

− x22
∂H∗∗

n (x, r)
∂x2


≥ 0 (3.12)

for all x = (x1, x2, . . . , xn) ∈ Rn
+
.

We divide the proof into four cases.
Case A. If r = 1, then it follows from (3.2) that

(x1 − x2)

x21
∂H∗∗

n (x, 1)
∂x1

− x22
∂H∗∗

n (x, 1)
∂x2


= (x1 − x2)2

n
i=1

xi ≥ 0.

Case B. If r = n, then (3.4) leads to

(x1 − x2)

x21
∂H∗∗

n (x, n)
∂x1

− x22
∂H∗∗

n (x, n)
∂x2


=

1
n
(x1 − x2)2(x1 + x2)


n

i=1

xi

 1
n −1

≥ 0.

Case C. If n ≥ 3 and r = 2, then (3.6) and (3.7) imply that

(x1 − x2)

x21
∂H∗∗

n (x, 2)
∂x1

− x22
∂H∗∗

n (x, 2)
∂x2


=

1
2
H∗∗

n (x, 2)(x1 − x2)2

1 +

n
j=3

x1x2 + xj(x1 + x2)
(x1 + xj)(x2 + xj)


≥ 0.

Case D. If n ≥ 4 and 3 ≤ r ≤ n − 1, then from (3.9) and (3.10) we get

(x1 − x2)

x21
∂H∗∗

n (x, r)
∂x1

− x22
∂H∗∗

n (x, r)
∂x2


= (x1 − x2)2




3≤i1<i2<···<ir−1≤n

x1x2 + (x1 + x2)
r−1
j=1

xij
x1 +

r−1
j=1

xij


x2 +

r−1
j=1

xij



+


3≤i1<i2<···<ir−2≤n

x1 + x2

x1 + x2 +

r−2
j=1

xij

 H∗∗
n (x, r)

r

≥ 0.

Therefore, inequality (3.12) follows from Cases A–D, and the proof of Theorem 3.3 is completed. �

4. Applications in inequalities

In this section, we establish some inequalities by use of Theorems 3.1–3.3 and the theory of majorization.
The following result easily follows from Lemmas 2.4 and 2.5 together with Theorems 3.1–3.3.

Corollary 4.1. Suppose that x = (x1, x2, . . . , xn) ∈ Rn
+
with

n
i=1 xi = s. If c1 ≥ s, c2 ≥ 0 and r ∈ {1, 2, . . . , n}, then

(i) H∗∗
n (c1 − x, r) ≥

 nc1
s − 1

 n!
r[r!(n−r)!] H∗∗

n (x, r);

(ii) H∗∗
n


e

c1−x
nc1
s −1 , r


≤ H∗∗

n (ex, r);

(iii) H∗∗
n

 1
x , r


≥
 nc1

s − 1
 n!

r[r!(n−r)!] H∗∗
n


1

c1−x , r

;

(iv) H∗∗
n (c2 + x, r) ≥

 nc2
s + 1

 n!
r[r!(n−r)!] H∗∗

n (x, r);

(v) H∗∗
n


e

c2+x
nc2
s +1 , r


≤ H∗∗

n (ex, r);

(vi) H∗∗
n

 1
x , r


≥
 nc2

s + 1
 n!

r[r!(n−r)!] H∗∗
n


1

c2+x , r

.

If we take c1 = s = 1 and r = 1 in Corollary 4.1(i) and (iv), and take c2 = s = 1 and r = n in Corollary 4.1(iii) and (vi),
respectively, then we obtain the following.
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Corollary 4.2. If x = (x1, x2, . . . , xn) ∈ Rn
+
with

n
i=1 xi = 1, then

(i)
n

i=1


1
xi

− 1


≥ (n − 1)n;

(ii)
n

i=1


1
xi

+ 1


≥ (n + 1)n;

(iii)
n

i=1
1
xin

i=1
1

1−xi

≥ (n − 1);

(iv)
n

i=1
1
xin

i=1
1

1+xi

≥ (n + 1).

Remark 4.1. Inequalities in Corollary 4.2(i) and (ii) are the well-knownWeierstrass inequalities (see [6, p. 260]).

Corollary 4.3. If x = (x1, x2, . . . , xn) ∈ Rn
+
and r ∈ {1, 2, . . . , n}, then nr

n
i=1

1
xi


n!

r[r!(n−r)!]

≤ H∗∗

n (x, r) ≤


r
n

n
i=1

xi

 n!
r[r!(n−r)!]

.

Proof. Corollary 4.3 follows from Theorems 3.1 and 3.3 together with the facts that
n

i=1
xi

n
,

n
i=1

xi

n
, . . . ,

n
i=1

xi

n

 ≺ (x1, x2, . . . , xn) = x

and 
n

i=1

1
xi

n
,

n
i=1

1
xi

n
, . . . ,

n
i=1

1
xi

n

 ≺


1
x1
,
1
x2
, . . . ,

1
xn


=

1
x
. �

Corollary 4.4. If x = (x1, x2, . . . , xn) ∈ Rn
+
and r ∈ {1, 2, . . . , n}, then

H∗∗

n (x, r) ≥


r

n
i=1

x
1
n
i

 n!
r[r!(n−r)!]

.

Proof. Corollary 4.4 follows from Theorem 3.2 and the fact that

log


n

i=1

x
1
n
i ,

n
i=1

x
1
n
i , . . . ,

n
i=1

x
1
n
i


≺ log(x1, x2, . . . , xn) = log x. �

Corollary 4.5. Suppose that A ∈ Mn(C)(n ≥ 2) is a complex matrix, λ1, λ2, . . . , λn and σ1, σ2, . . . , σn are the eigenvalues and
singular values of A, respectively. If A is a positive definite Hermitian matrix and r ∈ {1, 2, . . . , n}, then

(i)


1≤i1<i2···<ir≤n

r
j=1 λij

 1
r ≤

 r
n trA

 n!
r[r!(n−r)!] ;

(ii)


1≤i1<i2···<ir≤n

r
j=1 λ

−1
ij

 1
r

≥
 nr
trA

 n!
r[r!(n−r)!] ;

(iii)


1≤i1<i2···<ir≤n

r
j=1 λij

 1
r ≥


r(detA)

1
n

 n!
r[r!(n−r)!] ;

(iv)


1≤i1<i2···<ir≤n

r
j=1 λij

 1
r ≤


1≤i1<i2···<ir≤n

r
j=1 σij

 1
r .
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Proof. From the assumption in Corollary 4.5, we clearly see that

(λ1, λ2, . . . , λn), (σ1, σ2, . . . , σn) ∈ Rn
+
,

n
i=1

λi = trA (4.1)

and
n

i=1

λi = detA. (4.2)

On the other hand, a result due to Weyl [46] (see also [31, p. 231]) gives

log(λ1, λ2, . . . , λn) ≺ log(σ1, σ2, . . . , σn). (4.3)

Therefore, Corollary 4.5(i) follows from (4.1) and Theorem 3.1, Corollary 4.5(ii) follows from (4.1) and Theorem 3.3,
Corollary 4.5(iii) follows from (4.2) and Theorem 3.2, and Corollary 4.5(iv) follows from (4.3) and Theorem 3.2. �

Corollary 4.6. Let A = A1A2 · · · An+1 be a n-dimensional simplex in Rn, and P be an arbitrary point in the interior of A.
If Bi is the intersection point of straight line AiP and hyperplane


i = A1A2 · · · Ai−1Ai+1 · · · An+1, i = 1, 2, . . . , n + 1 and

r ∈ {1, 2, . . . , n + 1}, then

(i)


1≤i1<i2···<ir≤n+1

r
j=1

PBij
AijBij

 1
r

≤
 r
n+1

 n!
r[r!(n−r)!] ;

(ii)


1≤i1<i2···<ir≤n+1

r
j=1

PAij
AijBij

 1
r

≤
 nr
n+1

 n!
r[r!(n−r)!] ;

(iii)


1≤i1<i2···<ir≤n+1

r
j=1

AijBij
PBij

 1
r

≥ [(n + 1)r]
n!

r[r!(n−r)!] ;

(iv)


1≤i1<i2···<ir≤n+1

r
j=1

AijBij
PAij

 1
r

≥


(n+1)r

n

 n!
r[r!(n−r)!] .

Proof. We clearly see that

n+1
i=1

PBi

AiBi
= 1 (4.4)

and
n+1
i=1

PAi

AiBi
= n. (4.5)

Therefore, Corollary 4.6(i) follows from (4.4) and Theorem 3.1, Corollary 4.6(ii) follows from (4.5) and Theorem 3.1,
Corollary 4.6(iii) follows from (4.4) and Theorem 3.3, and Corollary 4.6(iv) follows from (4.5) and Theorem 3.3. �

Remark 4.2. Mitrinović et al. [32, p. 473–479] established a series of inequalities for PAi
AiBi

and PBi
AiBi
, i = 1, 2, . . . , n + 1.

Obviously, our inequalities in Corollary 4.6 are different from theirs.

Corollary 4.7. Suppose that X1, X2, . . . , Xn are independent random variables with characteristic functions ϕX1(t), ϕX2(t), . . . ,
ϕXn(t), and generating functions ψ1(s), ψ2(s), . . . , ψn(s). If η =

n
i=1 Xi with characteristic function ϕη(t) and generating

function ψη(s), then


1≤i1<i2<···<ir≤n


r

j=1

ϕXij
(t)

 1
r

≥


rϕ

1
n
η (t)

 n!
r[r!(n−r)!]

and


1≤i1<i2<···<ir≤n


r

j=1

ψij(s)

 1
r

≥


rψ

1
n
η (s)

 n!
r[r!(n−r)!]

for r ∈ {1, 2, . . . , n}.
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Proof. We clearly see that

ϕη(t) =

n
i=1

ϕXi(t) (4.6)

and

ψη(s) =

n
i=1

ψi(s). (4.7)

Therefore, Corollary 4.7 follows from (4.6) and (4.7) together with Theorem 3.2. �

Corollary 4.8. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be independent random variables, and F i(t) = P{Xi > t} and Gi(t) =

P{Yi > t}, i = 1, 2, . . . , n. If (F 1(t), F 2(t), . . . , F n(t)) ≺ (G1(t),G2(t), . . . ,Gn(t)), then

H∗∗

n (EX1, EX2, . . . , EXn; r) ≥ H∗∗

n (EY1, EY2, . . . , EYn; r)

for r ∈ {1, 2, . . . , n}.

Proof. It follows from [31, p. 350] that

(EX1, EX2, . . . , EXn) ≺ (EY1, EY2, . . . , EYn). (4.8)

Therefore, Corollary 4.8 follows from Theorem 3.2 and (4.8). �

5. Application in reliability

In this section, we discuss an application of the proposed H∗∗
n (x, r) in analysis the reliability of K out of N systems with

dependent components based on Copula function.
In reliability theory, a K out of N system is a system with N components, which functions if and only if K or more of the

components function. For the system that theN components function independently, Boland and Proschan [3] have obtained
a result on Schur-concave and Schur-convex of the reliability function of the system. Unfortunately, for the situation with
dependent components, the reliability function of the system is a multivariate cumulative distribution function of all
components and its analytic representation is often too complex.

To overcome the issue, the multivariate Copula function [8] can be used to estimate the reliability function of the system
by splitting it into two parts, namely, determining the marginal distribution of each component, and determining the
dependence structure of them, which specify a meaningful copula function.

Furthermore, as well known, the Sklar’s theorem [37] is the most important theorem regarding to copula functions,
because it provides a way to analyze the dependence structure of multivariate distributions by an adequate copula function.

In the following, inspired by the work of Bregman and Klüppelberg [7], we will first introduce a special copula function
and discuss the relationship between it and our H∗∗

n (x, r) and then obtain a simple result on the reliability of the systems
with dependent components.

For any x = (x1, x2, . . . , xn) ∈ Rn
+
, let y = (y1, y2, . . . , yn) , x−1

= (x−1
1 , x

−1
2 , . . . , x

−1
n ) ∈ Rn

+
, we define

Sn(y1, . . . , yn) = (y−n
1 + · · · + y−n

n )
−1/n,

and then for any r ∈ {1, 2, . . . , n} and 1 ≤ i1 < i2 < · · · < ir ≤ n, we have

Sr(yi1 , . . . , yir ) = (y−r
i1

+ · · · + y−r
ir )

−1/r ,

where (yi1 , . . . , yir ) ∈ Rr
+
is a subvector of y. According to [7], each Sr(yi1 , . . . , yir ) is a function of Clayton family of S-Copula,

namely, Sθ (θ > 0)with θ = r .
From the definition of Copula function, we can find easily that

H∗∗

n (x, r)
−1

=


1≤i1<i2<···<ir≤n

Sr(yi1 , . . . , yir ), (5.1)

which is also a Copula function.
Based on Sklar’s theorem and (5.1), it is known that there will be a K out of N systems with dependent components and

the reliability function of this system can be expressed as

RK (p) =

N
r=K


N
r

 
H∗∗

N (p, r)
−1

, (5.2)

where p = (p1, . . . , pN) is the vector of component reliabilities which depend on the marginal distribution of each
component. From (5.1) and (5.2) together with Theorem 3.1, we clearly see that the maximum value of reliability function
RK (p) will be reached when the components have same reliabilities, e.g., the system is consisted of components of same
type.
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