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a b s t r a c t

An analytical model is presented for delamination initiation and growth and the resulting response dur-
ing small mass impact on orthotropic laminated composite plates, which typically is caused by runway
debris and other small objects. The solution is obtained by a fast stepwise numerical solution of a single
integral equation. Delamination size, load and deflection history are predicted by extension of an earlier
elastic impact model by the author. Good agreement is demonstrated in comparisons with finite element
simulations and experiments.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction 2009; Bouvet et al., 2009; Faggiani and Falzon, 2010). The drawback
Impact is a well known concern in composite structures and the ef-
fects of impact damage is a major issue in the design of aircraft made
of composite materials (Abrate, 1991; Davies and Olsson, 2004). The
impact response of plates is governed by the impactor/plate mass ra-
tio, where small mass impactors result in a local response controlled
by wave propagation and large mass impactors result in a quasi-static
response, Fig. 1 (Olsson, 2000). Small mass impacts result in a more
local response with smaller deflections and larger impact loads, and
experiments have demonstrated a significantly larger damage for a
given impact energy (Olsson, 2000). The mass ratios controlling small
and large mass impact response have been discussed by Olsson
(2000), who also derived a mass criterion for small mass impact. For
central impact on quasi-isotropic plates it is sufficient that the impac-
tor weighs less than 1/4 of the plate.

Contact deformations are often more significant in small mass
impact due to the smaller deflections and larger contact loads. Con-
sideration of contact deformations in finite element (FE) models
requires use of elastic 3D elements for the plate and impactor,
but for computational efficiency FE modellers frequently use shell
elements and rigid impactor models. In contrast the current ana-
lytical model explicitly includes contact deformations.

There is an abundance of papers on computational models of im-
pact on composites. In recent years simulations using damage or
fracture mechanics to consider damage initiation and growth have
become increasingly common, but only a few studies have consid-
ered realistic laminates with multiple interfaces (e.g. Lopes et al.,
ll rights reserved.
of these methods is the lack of explicit expressions for the influence
of various parameters and relatively long computational times (sev-
eral hours to days). Furthermore, the computational cost increases
rapidly with an increasing number of delaminating interfaces. This
paper is focused on faster analytical models which are suitable for
preliminary design, and are able to cope with an arbitrary number
of delaminations without any time penalty.

Before considering delamination growth it is useful to consider
previous work on small mass impact on plates without delamina-
tion. Small mass impact is independent of the plate boundary condi-
tions and may be treated as an impact on an infinite plate. The effect
of a point load on an infinite isotropic plate was first treated by Bous-
sinesq (1885) and subsequently more thoroughly by Sneddon
(1945) who also considered flexural stresses and the influence of
the size of the loaded area. Small mass elastic impact on isotropic
plates without transverse shearing was first treated by Zener
(1941) while impact on plates with shearing was considered by
Mittal (1987). Small mass impact on orthotropic plates without
shearing was treated independently by Frischbier (1987) and Olsson
(1989, 1992). The latter model was subsequently extended by
Olsson (2002) to include transverse shear in an approximate fashion
through generalisation of the approach suggested by Mittal (1987).

The influence of elliptic contact areas resulting from orthotropy
and finite contact areas in small mass impact was studied by Mittal
and Khalili (1994). More recently plastic contact in small mass
impact was studied by Zheng and Binienda (2007). The influence
of these complicating factors is, however, usually very small.

The threshold load for a single delamination under large mass
(quasi-static) impact conditions was first derived by Davies and
Robinson (1992). An exhaustive derivation, using a different
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Fig. 1. Comparison between (a) large mass and (b) small mass impact response.
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method, with generalisation to an arbitrary number of delamina-
tions was provided by Suemasu and Majima (1996). The correspond-
ing delamination threshold load for small mass impact was derived
by Olsson et al. (2006), who also provided an extensive validation
and closed form expressions for the resulting delamination thresh-
old velocity.

Analytical models for large mass impact on plates with delamina-
tion growth have been presented by Olsson (2001) and Huang et al.
(2008), but similar models for small mass impact appear to have been
lacking until a solution approach was outlined by Olsson (2009). The
current paper gives a more extensive presentation of the approach
and also presents some further development of the model.

2. Theory

2.1. Impact response model

Consider a plate of thickness h and density q impacted by an
elastic concentrated mass M with initial velocity V0, Fig. 2a, which
results in indentation and a contact force F, Fig. 2b. The displace-
ments wi and wp of the impactor and plate mass centres have been
given by Mittal (1987) and his solution may be rewritten in the fol-
lowing form:

wi ¼ V0t �
Z t

0
FðsÞðt � sÞds=M

wp ¼
Z t

0

FðsÞ
4p

ffiffiffiffiffiffiffiffiffiffi
mD�n

p arctan ðt � sÞS�n=
ffiffiffiffiffiffiffiffiffiffi
mD�n

q� �
ds

þ
Z t�t0

0

FðsÞ
2pðt � sÞS�n

ds

ð1Þ

Here m ¼ qh is the plate mass per unit area, t0 is a time correction
accounting for a finite contact area and D�n and S�n are effective bend-
ing and shear stiffnesses of an orthotropic plate with n delamina-
tions. The original solution by Mittal (1987) did not consider
ρ, D*, S*

wp

V0

h

R

Μ
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Fig. 2. Impactor (a) before and (b)
delamination or orthotropic plates and treated D, S and t0 as con-
stants. In the present solution they are functions of time, and hence
have been moved into the integration.

The effective bending stiffness D�n of an orthotropic plate with n
delaminations is defined as follows (Olsson et al., 2006):

D�n ¼ D�=ðnþ 1Þ2; where D� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22ð1þ gÞ=2

p
and g ¼ ðD12 þ 2D66Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p ð2Þ

As shown by Olsson (2001), the above expression for D� is a very close
approximation of the exact expression, which involves elliptic func-
tions and was derived in the Appendix of Olsson (1992). Note that
the approximation D� � ð1þ gÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22
p

used in the main text of
Olsson (1992) becomes inaccurate when g not is close to unity.

The effective shear stiffness S�n of orthotropic plates with n del-
aminations has been defined as follows (Olsson et al., 2006):

S�n ¼ S�; where S� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�44A�55

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KyzGyzhKxzGxzh

q
ð3Þ

where Kxz and Kyz are shear factors, which for laminates with many
plies are close to the homogeneous shear factor K � 5=6 (Whitney,
1973). Thus, S�n is independent of n.

The time correction for a finite contact radius c, Fig. 2b, is de-
fined as follows (Olsson, 1992):

t0 ¼ c2
ffiffiffiffiffiffiffiffiffiffiffiffi
m=D�

q
=4 ð4Þ

Note that this definition differs from the constant time correction
used by Schweiger (1966) and Mittal (1987), as c is a function of
time. In essence the correction t0 expresses the ratio between the
contact area and the area affected by transient flexural waves,
and may be deduced from the expressions for flexural stresses in
the solution by Sneddon (1945).

The contact between a hemispherical impactor of radius R and
plate under a load F and indentation approach a is for Hertzian
ρ, Dn
*, Sn

* 
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(elastic) contact governed by the following relations (where indi-
ces i and p refer to impactor and plate):

a ¼ wi �wp ¼ F=k�H
� �2=3

; where k�H � kH ¼
4
3

Q H

ffiffiffi
R
p

Here 1=Q H ¼ 1=Q i þ 1=Qp and Q k � Ezk=ð1� mrzkmzrkÞ
k ¼ i;p

ð5Þ

The expressions k�H and kH are the contact stiffnesses for plates with
finite and infinite thickness. More accurate expressions for k�H and
Qp of the plate may be found in Olsson et al. (2006). As shown by
Goldsmith (1960) the contact radius c, Fig. 2b, under Hertzian con-
tact is given by

c ¼
ffiffiffiffiffiffi
Ra
p

ð6Þ

As a consequence the time constant in Eq. (4) may be written as
follows:

t0 ¼ Ra
ffiffiffiffiffiffiffiffiffiffiffiffi
m=D�

q
=4 ð7Þ

We now introduce the following dimensionless variables (Olsson,
2002):

�a ¼ a=ðTV0Þ; �wp ¼ wp8
ffiffiffiffiffiffiffiffiffiffi
mD�
p

=ðMV0Þ

kn ¼ ðnþ 1ÞM= 8T
ffiffiffiffiffiffiffiffiffiffi
mD�
p� �

; bn ¼
ffiffiffiffiffiffiffiffiffiffi
mD�
p

= ðnþ 1ÞS�T½ �
�t ¼ t=T; �t0 ¼ t0=T ¼ ktH �a

where T ¼ M=ðka

ffiffiffiffiffiffi
V0

p
Þ

h i2=5
and ktH ¼ RV0

ffiffiffiffiffiffiffiffiffiffiffiffi
m=D�

q
=4

ð8Þ

The dimensionless parameters kn and bn represent the relative
mobility in bending and shear. Considering Eqs. (5) and (8) the rela-
tions in Eq. (1) may be transformed into the following dimension-
less integral equation:

�a ¼ �t �
Z �t

0
Fð�sÞð�t � �sÞd�s� �wp

where F ¼ �aq and q ¼ 3=2

�wp ¼
Z �t

0
Fð�sÞkn

2
p

arctan �t � �sð Þ=bn½ �d�s

þ
Z �t��t0

0
Fð�sÞkn

2
p

2bn= �t þ �t0 � �sð Þ½ �d�s

ð9Þ

For the present Hertzian elastic contact the load exponent was set
to q ¼ 3=2, while q � 1 for plastic contact and sandwich panels (Ols-
son, 2002).

The integral equation in Eq. (9) may be solved numerically by
piecewise integration over time increments D�t, assuming a piece-
wise constant load F for each time increment, as suggested by Tim-
oshenko (1913). The resulting stepwise solution becomes:

�a0 ¼ 0

�aNþ1 ¼ ðN þ 1ÞD�t � 1
2

D�t2
XN

i¼0

�aq
i ð2N � 2iþ 1Þ

� 2
p
XN

i¼0

�aq
i kn D�tðN � iþ 1Þ arctan

N � iþ 1
bn

D�t
	 
�

� D�tðN � iÞ arctan
N � i
bn

D�t
	 


�1
2

bn ln
b2

n þ ðN � iþ 1Þ2D�t2

b2
n þ ðN � iÞ2D�t2

( )#

� 4
p
XN0

i¼0

�aq
i knbn ln ðN � iþ 1Þ=ðN � iÞf g

where N ¼ �t=D�t and N0 ¼ ð�t � �t0Þ=D�t ¼ N � ktH �aN=D�t

ð10Þ

Note that the parameters kn and bn in the current model change
with time as delaminations appear, while they were constants in
Olsson (2002). Furthermore, the current model assumes that the
parameters kn and bn are fully controlled by the plate properties
in the central region with delaminations and that both parameters
change instantaneously as delaminations appear.

The numerical solution of Eq. (10) was implemented in a short
Fortran 95 program, with a typical run time of a few seconds. Suf-
ficient accuracy was obtained with a dimensionless time step of
D�t ¼ 0:01. The program allows onset of a specified number of del-
aminations nd at a specified dimensionless load �aq

dth. Prior to
delamination, n is set to 0, i.e. the values k0 and b0 are used. After
delamination onset, n is set to nd, i.e. the values knd and bnd are
used. For the present Hertzian contact (q = 3/2) the dimensionless
threshold load is defined by

�aq
dth ¼ ðFdth=k�HÞ=ðTV0Þ; where q ¼ 3=2 ð11Þ

and Fdth is the delamination threshold load, defined in Eq. (13).

2.2. Load for delamination onset and growth

The load for growth of n delaminations under small mass im-
pact was defined as follows (Olsson et al., 2006):

Fdn ¼ Cp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32GIIcD�=ðnþ 2Þ

q
;

where C ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 7p2=216

q
� 1:213 ð12Þ

The above delamination load for small mass impact was obtained
by multiplying the corresponding load for large mass impact with
the factor C, which accounts for the inertial effects during small
mass impact. Delaminations during impact initiate in all interfaces,
but a detailed analysis demonstrates that the strain energy release
rate is slightly non-uniformly distributed through the thickness
(Suemasu and Majima, 1996; Olsson, 2001). Thus, delamination
growth first occurs in a single interface ðn ¼ 1Þ so that the delami-
nation threshold load Fdth at small mass impact is given by

Fdth ¼ Fd1 ¼ Cp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32GIIcD�=3

q
ð13Þ

This conclusion is supported by extensive experimental evidence
both from quasi-static impacts ðC ¼ 1Þ (Davies and Robinson,
1992; Olsson, 2001) and from small mass impacts ðC � 1:213Þ
(Olsson et al., 2006). Analysis by Suemasu and Majima (1996) and
experimental evidence demonstrate that delamination onset (at
Fd1) in the most critical interface is followed by more or less uni-
form delamination growth (at Fdn) in all available interfaces.

2.3. Delamination growth model

In the present dynamic case, load and deflection will be out of
phase, as illustrated by Fig. 1b. Hence, the conventional linear
load–displacement relations from statics are inapplicable. For this
reason, delamination growth will be considered during a small



Fig. 4. C-scan of 10 g/10 J impact damage in ½0�6=90�6=� 45�6�s blocked laminate
(Beks, 1996).

Fig. 5. C-scan of 10 g/10 J impact damage in ½0�=90�=� 45��6s standard laminate
(Beks, 1996).
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portion of the load–deflection curve, where linear relations are as-
sumed to prevail, Fig. 3.

For linear elastic materials the change in external work DW is
twice the change in the strain energy DU. The energy balance dur-
ing dynamic fracture at a constant strain energy release rate Gc

may then be written as follows:

GcA ¼ DW � DU � DT ¼ 2DU � DU � DT ¼ DUð1� DT=DUÞ ð14Þ

where Gc is the critical strain energy release rate and DW; DU and
DT are the changes in external work, elastic energy and kinetic en-
ergy due to generation of the crack surface A. The behaviour during
delamination growth is schematically illustrated in Fig. 3. Assuming
that the load drops linearly, with an average load Fav , during the
change in deflection Dw from the undelaminated deflection w0 to
the delaminated deflection wdn with n delaminations we may write
the change in elastic energy as follows:

DU ¼ 1
2

DW ¼ 1
2

FavDw ¼ 1
4
ðFdn þ F0Þðwdn �w0Þ ð15Þ

For small mass impact response due to a point load the ratio be-
tween the changes in kinetic energy and elastic energy due to
delamination is given by (Olsson et al., 2006)

DT=DU ¼ 7p2=216 ð16Þ

For plates in flexure, delamination takes place under mode II with a
critical value GIIc and combination of Eqs. (14)–(16) results in the
following approximation of the delamination area, A:

A ¼ 1
4
ðFdn þ F0Þðwdn �w0Þð1� 7p2=216Þ=GIIc ð17Þ

The predicted delamination sizes increase to a certain point in the
impact history, which is followed by decreasing values of A. Crack
healing is not allowed in the current model, and for this reason
the delamination area at a given time is defined by the maximum
area up to this time. Table 1 presents the ratio between delamina-
tion areas predicted from Eq. (17) using the loads and deflections
from FE simulations with and without delamination, and the
delamination area predicted directly by the FE simulation for vari-
ous laminates.

These results demonstrate that the delamination size can be
predicted with acceptable accuracy, provided that the load and
deflection histories can be predicted correctly for plates with and
without delaminations.

2.4. Representation of delaminations in real laminates

Delaminations in real impacted laminates are not circular, but
consist of peanut shaped delaminations of different orientation
(Abrate, 1991; Davies and Olsson, 2004). For large mass (quasi-sta-
tic) impact the delamination pattern has been thoroughly
described (e.g. Hull and Shi, 1993) but a similar pattern has also
been observed in small mass impact (Kumar and Rai, 1993). Com-
parisons between delaminations due to small mass and large mass
impact have been presented by Beks (1996) and Morita et al.
(1997).

For a laminate with blocked plies and just a few interfaces the
individual delaminations are discernible, Fig. 4. For a realistic lam-
inate of equal thickness the individual delaminations are no longer
discernible, and the damage zone in a laminate which is quasi-iso-
tropic in flexure appears as more or less circular, Fig. 5
Table 1
Ratio of delamination areas predicted from Eq. (17) and from FE analysis.

h 2 mm 3 mm 4 mm 5 mm 6 mm
Atheory=AFE 0.83 0.98 0.98 1.03 0.86
ðD11=D22 ¼ 1:07Þ. The elliptical outer boundary of the damage zone
in Fig. 4 is caused by the flexural orthotropy ðD11=D22 ¼ 1:68Þ of
this laminate. The grey scale in the C-scans of Figs. 4 and 5 indi-
cates increasing depth. Thus, the damage zone may be described
as a truncated cone with a base at the unimpacted face of the lam-
inate, as illustrated by the sections in Fig. 6. After the initiation
phase the damage zone in thick laminates is often better described
as two truncated zones with a common base in the laminate mid-
plane (Davies and Olsson, 2004).

Fractography has demonstrated that A � 0:30 defines the ratio
between the delaminated peanut shaped area and an inscribing
circular area in quasi-isotropic laminates (Levin, 1991). Delamina-
tions generally appear between all plies of dissimilar orientation,
where the size increases with the ply mismatch angle to a maxi-
mum at 90� mismatch angle, e.g. +45�/�45� or 0�/90� interfaces
(Liu, 1988). The relative delamination area for a mismatch angle
of 45�, when compared to a 90� mismatch angle, is A45 � 0:60
(Liu, 1988). Thus, the total delamination area in a laminate with
multiple peanut shaped delaminations may be represented by n�

equivalent elliptical delaminations of area A�, half-axes a� and b�

and average diameter d�, Fig. 7:

A ¼ n�A�; where n� ¼ A A45 � nD45 þ nD90

h i
and

A� ¼ pd�2=4 with A � 0:30 A45 � 0:60 d�2 ¼ 4a�b� ð18Þ



Fig. 6. Perpendicular sections of 10 g/10 J impact damage in ½0�=90�=� 45��6s

standard laminate (Beks, 1996).
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Here nD45 is the number of interfaces with 45� mismatch angle and
nD90 the number of interfaces with 90� mismatch angle. In most
cases, typical dimensions of delaminations are not uniform through
the thickness. It is common that the delamination zone may be
described as a truncated cone, with minimum and maximum diam-
eters dmin and dmax. The ratio w between the average and maximum
delamination area is then defined by

w ¼ A�=Amax ¼
1
n

Xi¼n

i¼1

d2
i =d2

max

¼ 1
n

Xi¼n

i¼1

dmin þ dmax � dminð Þi=n½ �2=d2
max

) w ¼ �d2
min þ �dmin � �d2

min

� �
þ ð1� �dminÞ2ð2nþ 1Þ=6

h i
ðnþ 1Þ=n2

where �dmin ¼ dmin=dmax

ð19Þ

Combination of Eqs. (17)–(19) then results in the following expres-
sion for the maximum diameter of a conical delamination zone with
n* equivalent delaminations:

dmax ¼ d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amax=A�

q
¼ d�=

ffiffiffiffi
w

p
where d� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A�=p

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A=ðpn�Þ

p
dmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFdn þ F0Þðwdn �w0Þð1� 7p2=216Þ=ðpwn�GIIcÞ

q ð20Þ
AmaxmaxA   A⋅

2bmax 

2amax 

n=3

Fig. 7. Real delaminations and equ

Table 2
Plate properties in finite element simulations.

Er ¼ Ex ¼ Ey Ez Gr ¼ Gxy mr ¼ mxy

56 GPa 10 GPa 4.5 GPa 0.25
3. Validation

3.1. Numerical validation

To validate the current analytical model it was first compared
with finite element (FE) simulations performed at the delamina-
tion threshold velocity for a range of homogenous quasi-isotropic
plates with a single delamination developing at the mid-plane. A
rigid 3 g ball with 6 mm radius was used to impact 2–6 mm thick
plates with properties representative of homogenised quasi-isotro-
pic laminates. The assumed properties have been listed in Table 2.

The FE results of the current paper are based on unpublished
data from simulations used for preparation of a previous paper
(Olsson et al., 2006). These FE simulations were performed in the
explicit code LS-Dyna, using 6 	 6 	 3 single point integration solid
elements per mm3 for the impactor and plate. Contact between the
impactor and plate was modelled using sliding-line surface-to-sur-
face contact logic based on the penalty method formulation.
Delamination initiation and growth was modelled using a single
layer of 0.01 mm thick cohesive (interface) elements at the plate
mid-plane interface. The cohesive elements were based on solid
elements with cubic stress-displacement decohesion laws
accounting for mode mixity and implemented as a user defined
material model, as described by Pinho et al. (2006). The approach
was based on elements with a bilinear decohesion law by Camanho
et al. (2003). The FE simulations confirmed that delamination
growth occurred in pure Mode II, as expected. Further details on
the FE model may be found in Olsson et al. (2006). No attempt
was made here to model growth in multidirectional laminates with
multiple orthortropic plies.

Fig. 8 illustrates the analytically predicted behaviour for a 2 mm
laminate with (bold line) and without (dotted line) delamination.
Delamination onset is reflected by a drop in impact load, and a cor-
responding increase in deflection. It is noted that the drop in load
is significantly larger than the increase in deflections. The difference
in load and deflection for the case with and without delamination
was used in Eq. (17) to generate predictions of the delamination size.

Fig. 9a–e shows comparisons of the predicted response with
delamination by the current analytical model (solid line) and by
FE simulations (dashed line). In all cases the delamination growth
initiates at the peak (threshold) load with the delamination grow-
ing radially from the impact centre and quickly approaching a con-
stant finite size. It is worth noting that the test cases correspond to
delamination threshold cases, which were found by gradually
increasing the impact velocity by 0.5 m/s in the FE simulations
until delamination was achieved.
Amax 

Α∗= ψ ·Amax 
⇒

3n

n      An

≈
=∗

A=n*A*

ivalent elliptic delamination.

mrz ¼ mxz ¼ myz sU GIIc Density q

0.25 100 MPa 600 J/m2 1600 kg/m3
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3.2. Experimental validation

To experimentally validate the model, it was compared with
small mass impact experiments with an instrumented spring-acti-
vated 10 g aluminium impactor with 6.35 mm tup radius impact-
ing a 6.22 mm HTA/6376C carbon/epoxy laminate at 10 J, Fig. 10
(Beks, 1996). This energy corresponded to the threshold energy
for damage in quasi-static impacts with a 1.5 kg mass, but caused
significant delaminations in the small mass impact tests. The
ð0�=90�=� 45�Þ6s layup consisted of 23 interfaces with 45� mis-
match angle and 24 interfaces with 90� mismatch angle, i.e.
nD45 ¼ 23 and nD90 ¼ 24. Thus the expected number of equivalent
circular delaminations is n� � 11. The damage zone was approxi-
mately conical with a ratio �dmin � 0:41 between minimum and
maximum width. The resulting ratio between average and maxi-
mum delamination area is w � 0:32. The measured delamination
diameter in this experiment was about 4.5 cm.
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Fig. 10. Spring activated ‘‘mouse trap” instrumented impact rig.
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In the analysis, the assumed properties of aluminium were
Ei ¼ 70:6 GPa; mi ¼ 0:3 and qi ¼ 2790 kg=m3. Table 3 lists the as-
sumed properties for the HTA/6376C material.

In the experiments, the load was measured by a pair of strain
gauges on the impactor. One of these appears as a black rectangle
on the cylindrical part of the impactor head in the centre of Fig. 10.
The strain gauges had been positioned at a section expected to
have virtually uniform stresses. This section had been found by a
static FE analysis by Jarlås and Olsson (1997), where it was
assumed that the inertial loads could be represented by a uniform
mass load. The experimentally measured contact force reported by
Beks (1996) was obtained by multiplying the resulting stress with
the cross sectional area and a factor accounting for the difference
between the mass above the cross section and the total impactor
mass. To get a better understanding of the violent oscillations in
the impact force measured by Beks (1996) a dynamic FE analysis
of an elastic impactor was performed in LS-Dyna for an impact
without delamination. The results are shown in Fig. 11 and demon-
strate significant differences between the true contact force and
the contact force evaluated from the strain gauges. The actual con-
tact force is only 52% of the value estimated from the strain gauge
signals and does not show the oscillations observed in the strains,
but the reasons for these differences are not yet fully understood.
The corrected strain based force was therefore defined as 52% of
the nominal value reported by Beks (1996) and the general shape
shows good agreement with the actual contact force.

A comparison between predictions and experiment for the ex-
pected 11 equivalent delaminations ðn� ¼ 11Þ is presented in
Fig. 12, where the corrected strain based force has been used. A fair
agreement is observed in the general response, although the pre-
dicted delamination size is 33% lower than the size measured in
experiments.

Cross-sections of similar specimens impacted quasi-statically at
30 J exhibited delaminations in most of the interfaces (Beks, 1996).
The specimens impacted with a small mass at 10 J had only 55% as
many delaminations, which were concentrated towards the
impacted surface, Fig. 6. To study the influence of the number of
delaminations the response was also predicted for 55% of 11 equiv-
alent delaminations, i.e. n� ¼ 6. A comparison between experiment
and predictions is given in Fig. 13. The influence of the assumed
number of delaminations is relatively moderate although the
agreement with experimental response and damage is clearly
Table 3
Ply properties in experiment.

E1 E2 = E3 G12 = G13 G12 = G13

137 GPa 10.4 GPa 5.2 GPa 3.9 GPa
improved, with a predicted delamination size only 23% lower
than in the experiments.
m12 = m13 m23 GIIc Density q

0.30 0.5 600 J/m2 1620 kg/m3
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4. Discussion

The agreement between the predictions by the current model
and by FE simulations is very good, considering the significant
simplifications made in the analytical model. These simplifications
include a linear load–deflection relation during delamination
growth and the use of expressions for a fully delaminated plate
after delamination onset.

The heuristic assumption of a linear load–displacement relation
during delamination growth seems to be justified by the results in
Table 1, where the analytically predicted delamination size purely
is based on load and displacement data from the FE simulation. The
use of a fully delaminated plate to represent the plate after delam-
ination onset implies that the influence of the outer, not yet dela-
minated, parts of the laminate are neglected. Clearly this is a gross
simplification, but the surprisingly good agreement between the
analytical predictions and FE simulations indicates that the simpli-
fication is acceptable for obtaining an efficient analytical model.

The inclusion of transverse shearing requires consideration of a
finite contact area, which is accounted for by the time factor t0. The
corrected treatment of t0 in the current numerical algorithm was
found to significantly reduce the time to peak load, and has virtu-
ally eliminated the previously observed phase shift between ana-
lytically predicted loads versus experiments and FE simulations
(Olsson, 1992, 2002, 2009).

The FE simulations in Fig. 9 were all done just above the delamina-
tion threshold velocity, which had been found by gradually increasing
the impact velocity by 0.5 m/s. Thus, no delamination was present at
velocities just 0.5 m/s less than the ones in Fig. 9. Hence, it may be con-
cluded that noticeable delaminations appear as soon as the delamina-
tion threshold velocity has been marginally exceeded.

The comparison with experiments on real laminates with multi-
ple plies of different orientation indicates that the assumed num-
ber of equivalent circular delaminations is crucial for reliable
predictions of the delamination size. In the small mass impact
experiment studied here delaminations were primarily located
close to the impacted interface rather than having the assumed
uniform distribution over all interfaces. The most probable cause
seems to be that the impact velocity was relatively close to the
delamination threshold velocity. Similar effects, with a gradual
shift from delaminations close to the impacted surface at initiation
to fully developed delaminations in all interfaces have been ob-
served in quasi-static impact tests (Davies and Olsson, 2004).
Delamination growth is promoted by matrix cracks, and the ne-
glect of such cracks may also have contributed to the underesti-
mated delamination sizes.

The most significant weakness of the model is clearly the sim-
plified representation of the complex damage pattern in real lam-
inates. It should be stressed that this weakness is common with
most FE simulations of impact. Full consideration of the complex
damage requires capability to model growth of all individual
matrix and fibre cracks and delaminations, which requires separate
FE elements with progressive damage modelling for each ply.

A practical problem in experiments is that the oscillations in re-
corded strains used to determine loads during small mass impact
tests make it difficult to distinguish delamination onset and to
compare with model predictions. A way to overcome these prob-
lems may be selective filtering after an FFT analysis of the spectral
content of the signals. Alternatively loads in the impactor should
be measured closer to the point of contact.
5. Conclusions

It has been shown that the suggested analytical model can be
used to predict response and delamination size during small mass
impact on plates with delamination onset and growth. Noticeable
delaminations appear as soon as the delamination threshold veloc-
ity has been marginally exceeded.
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