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Abstract 

We construct a countable connected Hausdorff space in which every connected subset containing 
more than one point is dense. We prove that every regularly open-maximal topology of such a 
space also has this property, and in addition it admits no decomposition into two connected disjoint 
proper subsets containing more than one point. 
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In [I] ErdBs poses the question of whether there exists a connected space such that the 

complement of every connected subset of it, containing more than one point, is nowhere 

dense in it. In order to solve this problem we first construct a countable connected Haus- 

dorff space (S, r) in which every connected subset containing more than one point, is 

dense. A connected space having this property is called widely connected (Swingle [9]). 

Then we consider a regularly open-maximal topology T* (Mioduszewski and Rudolf [7]) 

finer than T and we prove that (S, T*) is also widely connected. Since in a regularly open- 

maximal topology every dense subset is open, it follows that in (S, 7*) the complement 

of every connected subset containing more than one point, is closed and nowhere dense. 

It also follows that the intersection of every such a pair of connected subsets of (S, 7”) 

is open dense. That is, the space (S,T*) admits no decomposition into two connected 

disjoint proper subsets containing more than one point. A connected space having this 

property is called biconnected (Kuratowski [5]). Thus the space (S, T*) being widely 

connected and biconnected answers a problem of Swingle [9] of whether a widely con- 

nected space can contain a biconnected subspace. An example of a biconnected widely 

connected space which is a subset of the plane has been constructed, under Continuum 
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Hypothesis, by Miller in [6]. A stronger example of a biconnected space has been con- 

structed, also under Continuum Hypothesis, by Rudin in [8]. In this example which also 

is a subset of the plane, the complement of every connected subset containing more than 

one point is at most countable. We note that in the above space (S, 7*) the complement 

of every connected subset containing more than one point, is not necessarily a finite set. 

The problem of existence of such a space was posed by Watson in [ 1 I] and was answered 

by Gruenhage in [2], where he constructed a countable connected Hausdorff space under 

Martin’s Axiom and a perfectly normal connected space under Continuum Hypothesis, 

in which the complement of every connected subspace containing more than one point 

is finite, hence nowhere dense. As far as I know, it is an open question of whether there 

exists a metrizable space in which the complement of every connected subset containing 

more than one point is nowhere dense. 

1. The space S2 

For the construction of a countable widely connected space we basically use the same 

method as in [3] or [4]. The auxiliary space T which will be attached in every step 

of the construction is a countable Hausdorff space which is due to Urysohn [lo]. This 

space contains two points a, b with the following two properties. The first is that f(a) = 

f(b), for every continuous real valued function of T. The second is that the basic open 

neighbourhoods of the points a, b consist of double sequences. The way of attaching 

the space T is based on the transformation of a double sequence into a simple one. 

That is, in every step of the construction, the attaching will “follow” the function of this 

transformation. This way of attaching forces the final space to be widely connected. 

We consider the set 

T=(a,b}u{aij,bij,ci: i,j= I,2 ,... ] 

with the following topology. Every point aij, b,, is isolated. For every point ci a basis 

of open neighbourhoods is the collection of sets 

0,(c~)={c~}U{a~~,b~~: j>n}, n=1,2 ,.... 

For the point a a basis of open neighbourhoods is the collection of sets 

0,(a) = {a} U {aij: i 3 n, j = 1,2,. . .}, n = 1,2,. . . 

For the point b a basis of open neighbourhoods is the collection of sets 

O,(b) = {b} U {bij: i > n, j = 1,2,.. .}, n = 1,2,.. . . 

The space T is due to Urysohn [lo]. It is a countable Hausdorff totally disconnected 

space having the property that f(a) = f(b), f or every continuous real valued function 

of T. The first deleted basic open neighbourhoods of the points a, b are the double 

sequences {aij}, { bij} respectively. 

LetTn(0),n= 1,2 ,..., be disjoint copies of T and let ~~(0) be the copy of z E T in 

P(0). We set J”(O) = Tn(0) \ {an(O), b”(O)} an we attach the disjoint copies J”(O) d 
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to the set N of natural numbers identifying the point an(O) with n and the point b”(O) 

with n + 1. On the set 

9 = NU 2, J”(0) 
TGl 

we define the following topology. Every point aFj (0), b$ (O), is isolated. For every point 

c:(O) a basis of open neighbourhoods is the collection of sets 

Oh(cF(O)) = {c;(O)} U{a$(O),b&(O): j >nn>, r~= 1,2,... 

For every k E N a basis of open neighbourhoods is the collection of sets 

O:(k) = {k} U {aij(0): i 2 72, j = 1,2,. . .}, n = 1,2,. . , 

if k = 1 and 

O~(k)={k}U{b~~‘(0),a~j(O): i>n, j= I,2 ,... }, n.==1,2 ,..., 

ifk> 1. 

Lemma 1. The space 5” has the following properties: 

(1) It is countable HausdorJcs totally disconnected. 

(2) The set of isolated points is dense. 

(3) Every continuous real valuedjimction of S’ restricted to N is constant. 

Proof. It is obvious. •I 

In order to construct the space S* we first observe that the first deleted basic open 

neighbourhood of every point of the subspace N of St, except for point 1, consists of 

a pair of double sequences. Thus if we set 

z& (0) = a&(O), 

and 

,2$(O) = 
b;;‘(O) ifi=2,4,..., 

a+(O) ifi= 1,3,..., 

for n = 2,3,. . , it follows that the matrix [z;(O)] re p resents the first deleted basic 

open neighbourhood of the point n. Each matrix [z;(O)], n = 1,2, . . , whose rows are 

indexed by i and the columns by j, can be transformed into the simple sequence 

X;“t, 6 7 x72, x%7... 

which can be considered as the nth row of a matrix [y;(O)] whose rows are indexed by 

n and the columns by k. Therefore the set 

6 (J”(o)\{c;(o): i= 1,2,...}) 
%=I 
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of isolated points of S’ is represented by the matrix [y:(O)], whose nth row is now the 

first deleted basic open neighbourhood of the point n. 

Let fi be the one-to-one function transforming the double sequence [Y;(O)] into the 

simple sequence 

Y;(O), Y:(O), Y:(O)? Y;(O)>. . . . 

Let also, P(l), n = 1,2 ,..., be disjoint copies of the initial space T and let zP( 1) be 

the copy of z E T in T”( 1). We set J”( 1) = Tn( 1) \ {an(l), b”( 1)) and “following” 

the function fi we attach the copies J”(1) to S’ identifying the point an( 1) with fi (n) 

and the point P(l) with fi(n + 1). Thus to every point ft(n), n = 2,3,. . . , we attach 

the two copies P-‘(l) and P(l), w h ereas to the point fi (1) we only attach the copy 

J’ (1). Each copy is attached to different rows except for the copies 

Jan+‘(l), a,+] =a,44n-t3, n= I,2 ,... , a] =3 

which are attached only to the first row. 

On the set 

S2 = S’ u E J”(I) 
TL=l 

we define the following topology. Every point ufj (I), bFj (1) is isolated. For every point 

cf (1) a basis of open neighbourhoods is the collection of sets 

O;(c”(l)) = {c~(l)}U{a~~(l),b~~(l): j >n}, n= 1,2,... . 

If x is an isolated point of S’ then a basis of open neighbourhoods of x is the collection 

of sets 

02(x) = {z} u {C&(l): i 3 72, j = 1,2,. . .}, 72 = 1,2,. . .) 

if f,(l) = 5, and 

O;(x) = {x} U {bg:‘(l),aFj(l): i 3 n, j = 1,2,. . .}, n = 1,2,. . ., 

if fi(k) = 2, k > 1. For every point c?(O) a basis of open neighbourhoods is the 

collection of sets 

0; (&O)) = 0; (c!(O)) u u OA(fl(t)), n = 1,2,. . _ . 

flwEOf,(c:(O)) 

For every k E N a basis of open neighbourhoods is the collection of sets 

O;(k) = O;(k) u u @L(m). 
fl(tKOf,(k) 

Lemma 2. The space S2 has the following properties: 

(1) It is countable Hausdolfs totally disconnected. 

(2) The set of isolated points is dense. 

(3) Every continuous real valuedfimction of S2 restricted to 5” is constant. 
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(4)Zfn_l,n,n+l,n=2,3 ,..., are (successive) points of N then for every pair 

of basic open neighbourhoods Oj, (n - 1) and O;2(n + 1) in 5”) of the points n - 1 and 

n + 1, respectively, there exists a basic open neighbourhood 0; (n) in S’ , of the point n 

having the property that if fl (t) E 0; (n) then 

fi(t-l),fi(t+l)EOj,(n-l)UOjz(n+l). 

Proof. Properties (l)-(3) are obvious. We prove property (4). 

Let t be a natural number such that fi (t) belongs to some basic open neighbourhood 

of the point n. Hence f,(t) is a point of the nth row of the matrix [y;EL(O)], and hence 

fl(t) = YE(O)> f or some n, k. Let x:(O) be the corresponding position (entry) of y;(O) 

in the matrix [z;(O)]. The position of the points fi(t + 1) and fi(t - 1) in [y;(O)] 

depends on the direction of the function fi in [y;(O)]. That is, if fi(t + 1) belongs to 

(n - 1)th row then the point fi (t + 1) = y&r: (0) corresponds to the point ~7~;:) (j+ i) (0). 

If fi (t + 1) belongs to (n + 1)th row then the point fi (t + 1) = YE’: (0) corresponds 

to the point ZE~~~~~~_~~(O). 

If fi (t - 1) belongs to (n - 1)th row then the point fi (t - 1) = ytgii (0) corresponds 

to the point a$:i,JCj+,J (0). 

If fi (t - 1) belongs to (n + 1)th row then the point fi (t - 1) = yz:: (0) corresponds 

to the point x~~~:)~~_,~(O). 

Therefore in all cases, if Or, (n - 1) and 01, (n + 1) are basic open neighbourhoods of 

the points n - 1 and n + 1 respectively, then 01 (n) for 1 < min{Zi , Zz} - 1 is the required 

basic open neighbourhood of the point n. 0 

2. The space S 

In order to construct the final space S we first construct by induction the space Sm+2. 

For this, on the space Sm+’ = S” UUz_“=, J”(m) we consider the subset UC=“=, (J”(m) \ 

{c?(m): i= 1,2,...}) f’ 1 t d o iso a e points. We transform this subset into the sequence of 

matrices [xlfj”‘“‘(m)], n = 1,2,. . . , the nth term of which represents the first deleted 

basic open neighbourhood of the point fm(n) in S m+l. We transform each nth term into 

the simple sequence 

xf;“‘“‘(m), xf_$“‘(m), . . . ) 

and we consider it as the nth row of a matrix (y{““:“)(m)] whose rows are indexed 

by n and the columns by k, and whose nth row is now the first deleted basic open 

neighbourhood of the point fm(n) in Sm+‘. 

Let fm+i be the one-to-one function transforming the double sequence [y:“(“.)(m)] 

into the simple sequence 

yf”(‘+n), yf+?n), y;“(‘)(m), yfm(i)(m), . . . 
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LetalsoTn(m+l),n= 1,2.. . be disjoint copies of the initial space T and let zn(m+ 1) 

be the copy of It: E T in T”(m + 1). We set 

J”(m+l)=Tn(m+l)\{a”(m+l),b”(m+l)} 

and “following” the function fm+l we attach the copies P(m + I) to Sm+l identifying 

the point P(m + 1) with fm+l (n) and the point b”(m + I) with fm+l(n + 1). Thus 

to every point fm+l(n), n = 2,3,. . . , we attach the two copies J”-‘(m + 1) and 

P(m + l), whereas to the point fm+l(l) we only attach the copy J’(m + 1). Each 

copy is attached to different rows except for the copies 

P”+‘(m + l), a,+1 =a,+4n+3, n= I,2 ).‘. , ai =3, 

which are attached only to the first row. 

Finally we set Sm+2 = Sm+* U U,“=, J”(m + 1) and on the set Sm+2 we define by 

induction the following topology. Every point afj(m + l), b$(m _t l), is isolated. For 

every point cf(m + 1) a basis of open neighbourhoods is the collection of sets 

Ob(c,“(m + 1)) = {cf(m + l)} U {aFj(m + l), bFj(m + 1): j 3 n}, 

72= 1,2,... . 

If 3: E P+’ \ S” th en a basis of open neighbourhoods of z is the collection of sets 

O;(z) = O;(z) u u 0’ (fm+l @I)? 

fm+lwo;(~) 

72 = 1,2,...) where Ok(s) is a basis of open neighbourhoods of z in Sm+‘. If 5 E 

5’” let k be the minimal natural number for which z E Sk. Then a basis of open 

neighbourhoods of 5 is the collection of sets 

0,-+2-“(s) = o;+l-Q$ u u O:(fm+*(q, n= 1,2,... 1 

fw%+,(t)EOnm+‘-k(z) 

The final space is the set S = U,“=, 9 with the following topology. Let II: E S and let 

m be the minimal natural number for which 2 E 5‘“. If k is a natural number greater 

than m and if Ok-m(z), n = 1,2 ,... , is a basis of open neighbourhoods of z in the 

space S m+k then a basis of open neighbourhoods of x in S is the collection of sets 

O,(x) = 6 Ok-m(x), n= 1,2,... . 
k=m+l 

Remark. The topology on S is a modification of the topology of I(X) in [3]. Comparing 

the two topologies, it is not difficult to prove that the topology on S is strictly finer. By 

definition the topology on S is first countable while the topology in [4] is nowhere first 

countable 14, Theorem 1.2.5(c)]. 

Lemma 3. The space S TM* has the following properties: 

(1) It is countable Hamdo@ totally disconnected. 
(2) The set of isolated points is dense. 
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(3) Every continuous real valued function of Sm+2 restricted to Sm+l is constant. 

(4) rffm(n - I), fm(n), fm(n + I), n = 2,3,. . . , are (successive) points of S” then 

for every basic open neighbourhoods Oi, (fm(n- 1)) and Ot(fm(n+ 1)) in P+‘, ofthe 

points fm(n - 1) and fm(n + l), respectively, there exists a basic open neighbourhood 

O,l (fm(n)) in Sm+‘, of the point fm(n), having the property that if t is a natural number 

such that fm+l(t) E 0; (fm(n)) then 

fm+l(t - 11, fm(t + 1) E @,(fm(n - 1)) u oi2 (f,(n + 1)). 

Proof. Properties (l)-(3) are obvious. The proof of (4) is similar to that of (4) of 

Lemma 2. Ij 

Proposition 1. The space S is countable HausdorfSwidely connected. 

Proof. Obviously the space S is countable Hausdorff. That it is connected follows from 

property (3) of Lemma 3. 

Let A4 be a connected subset of S containing more than one point. By the definition of 

topology on S it follows that the subspace C = {cl(k): i, n = 1,2, . . . , k = 0, 1, . . .} 

is discrete. Hence there exists z E M and z $ C. Let m be the minimal natural number 

for which x E Sm. Then x is an isolated point of Sm and therefore there exists a natural 

number k > 1 for which fm(k) = x. Obviously if k = 1 for every m = 1,2,. . . , then 

M is discrete. We consider the points y = fm(k - I), z = fm(k + 1) and we suppose 

that, y, z $ Cls M. Then there exist basic open neighbourhoods 01, (y), 01, (2) of the 

points y, z respectively, not intersecting Cls M. The points y, x, z are successive and 

therefore by property (4) of Lemmas 2 and 3, and by the definition of topology on 5’: we 

can find for n < min{lr ,12}, a basic open neighbourhood O,(x) of J: having the property 

that if m, t is any pair of natural numbers such that fm(t) E O,(x) then fm(t - 1 ), 

fin(t + 1) E 01, (y) U Ol,(z). But then for the set 

-qO&)) = O?%(x) u u On(c) 
cEao,(z)\o,(z) 

it holds that E(O,(x)) n C1.s M is open and closed in Cls M for every n < min{Zt , /2} 

which is impossible. Therefore either y E Cls M or z E Cls M. Continuing in this 

manner first for the points fm(k + i), i = 2,3, . . . , and then for the points fm(k - i), 

i = 2,3, . , k - 2, we first conclude that all but finitely many isolated points of ST” 

belong to Cls M, and then that every isolated point of Sm belongs to Cls M. Hence 

every point of S” belongs to Cls M because the set of isolated points is dense in S” 

(Lemma 3). Since the space S m is totally disconnected (Lemma 3) it follows that there 

exists a point of M belonging to S \ Sm not belonging to C and not being of the form 

fi( l), 1 > m. This fact finally implies that Cls M = S. 0 

Proposition 2. Let (S, r) be a Hausdolfs widely connected space and r* be a regu- 

larly open-maximal topology finer than r. Then the space (S, r*) is HausdorJ widely 

connected biconnected. 
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Proof. Obviously the space (S, r*) is Hausdorff connected. We prove that if M is a 

connected subset containing more than one point then M is dense in r*. Suppose not. 

Then there exists an open set U in r* such that U n Cl,. M = 0. Hence Cl,. U n 

I&* Cl,. M = 0. Observe that I&* Cl,. M # 0, for if it is empty then Cl,. M is a 

boundary set in T*. Hence by [7, 2.3 of Section 21 it is a discrete subspace of (S, r*) 

and is therefore not connected. By [7, 1.3, 1.1(2) and 1.1(3) of Section I] for the set U 

there exists an open set V in r such that U C V and Cl,* U = Cl,.* V. Consequently 

V n Int,. Cl,. M = 0, while V f’ M # 0 because M is connected in r, hence dense 

in 7. Since the subspace Cl,* M \ Int,. Cl,. M is discrete in r* it follows that the set 

V n Cl,* M is open and closed in Cl,. M which is impossible. Therefore M is dense. 

The space (S, 7”) is biconnected because if M, N are connected subsets containing 

more than one point then both M, N are dense and hence open, by [7, 2.2 of Section 21. 

Therefore M n N # 0. 0 
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