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Abstract

In this paper, we give combinatorial proofs of Baillon and Simons’ almost fixed point and fixed
point theorems for discrete-valued mappings (J. Combin. Theory Ser. A 60 (1992) 147–154).
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1. Introduction

The almost fixed point and fixed point theorems of Baillon and Simons, as proposed in
[1], may be considered as the “discrete” versions (see Section 6 for further discussions)
of, respectively, the Halpern–Bergman and Browder fixed point theorems[5,3]. It is well-
known that the Brouwer and Kakutani fixed point theorems have numerous generalizations
appearing in various formulations; two typical examples, which we discuss in this section,
and also were used to prove Baillon and Simons’ results in[1], are the Halpern–Bergman
and Browder theorems. The outward and, later, inward sets for any compact convex subset
of a topological vector space, were first introduced by Halpern in his Ph.D. Thesis and[5].
Let E be a topological vector space, andA a compact convex subset ofE. For anyx ∈ A,
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theinwardandoutward setsof x, denoted byIA(x) andOA(x), respectively, are defined as
follows:

• IA (x)= {(1− �) x + � y ∈ E | y ∈ A, � ∈ R, ��0},
• OA(x)= {(1− �) x + � y ∈ E | y ∈ A, � ∈ R, ��0}.
A continuous mappingf : A → E is said to beinward if f (x) ∈ IA(x) for all x ∈ A.
Similarly, f is said to beoutwardif f (x) ∈ OA(x) for all x ∈ A. Halpern and Bergman’s
theorem can be stated as follows.

Theorem 1.1([5, Halpern–Bergman fixed point theorem]). Let A be a compact convex
subset ofRn (resp. locally convex spaceE), and f : A → Rn (resp.f : A → E) a
continuous inward or outward mapping. Then f has a fixed point.

The construct of the Halpern–Bergman theorem was generalized by Browder to multi-
functions[3]. A compact convex-valued upper-semicontinuous multifunctiong : A → E

is said to beinward if g(x) ∩ IA(x) �= ∅ for all x ∈ A; andg is said to beoutward if
g(x) ∩OA(x) �= ∅ for all x ∈ A.

Theorem 1.2([3, Browder fixed point theorem]). Let A be a compact convex subset ofRn

(resp. locally convex spaceE),andg : A→ Rn (resp.g : A→ E) a compact convex-valued
upper-semicontinuous inward or outward multifunction. Then g has a fixed point.

The Baillon–Simons almost fixed point theorem and fixed point theorem have certain
resemblances with, respectively, the Halpern–Bergman and Browder fixed point theorems.
The framework they considered isZn, in which the rectangle blocks are considered as
compact convex subsets.SinceBaillonandSimonsused theHalpern–BergmanandBrowder
theorems in deriving their theorems, it was requested by them[1] to find combinatorial
proofs of their results (or of at least one of them). In this paper, we will give combinatorial
proofs of both (Baillon and Simons’) theorems.

2. The Baillon–Simons almost fixed point and fixed point theorems for
discrete-valued mappings

The material presented in this section can be found in[1].
LetZn be the product ofn copies of the setZ of integers which is considered as a lattice

group under the pointwise order and algebraic operations. Ifx, y ∈ Zn such thatx�y, we
write [x, y] for thesegment

{z ∈ Zn | x�z�y}.
Note that some or all components ofx, y are allowed to be−∞ or ∞. For any point
d= (d1, . . . , dn) ∈ Zn with 0�di <∞ for all i, letXd = [(0, . . . ,0),d].
Thedirected followingof x ∈ Xd in Xd , denoted byFx , is [x, x + (1, . . . ,1)] ∩Xd . Let

f : Xd → Zn be any mapping. Then a pointx ∈ Xd is said to be adirected following
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almost fixed pointof f if∧
f (Fx)�x�

∨
f (Fx).

Let pri : Zn → Z be theprojectionof Zn onto itsith factor for alli,1� i�n. Then

Theorem 2.1([1, Baillon–Simons almost fixed point theorem]). Letf : Xd → Zn be any
mapping. Then f has a directed following almost fixed point if one of(1)–(3) is satisfied:

(1) For all i ∈ {1, . . . , n} andx ∈ Xd ,
(pri (x)= 0⇒ (pri ◦ f )(x)�0) & (pri (x)= di ⇒ (pri ◦ f )(x)�di).

(2) For all i ∈ {1, . . . , n} andx ∈ Xd ,
(pri (x)= 0⇒ (pri ◦ f )(x)�0) & (pri (x)= di ⇒ (pri ◦ f )(x)�di).

(3) f (Xd) ⊆ Xd .

We emphasize that, in Theorem 2.1,f is not required to be order-preserving.
A segment multifunctionf : Xd → Zn is a multifunction which maps each point ofXd

to a segment ofZn. f is strongly-simplicialif for any x, y ∈ Xd , we have
(−1, . . . ,−1)�x − y�(1, . . . ,1)⇒ f (x) ∩ f (y) �= ∅.

Theorem 2.2([1, Baillon–Simons fixed point theorem]). Let f : Xd → Zn be any
strongly-simplicial segment multifunction. Then f has a fixed point, that is, there exists
x ∈ Xd such thatx ∈ f (x), if one of(a)–(c)is satisfied:

(a) For all i ∈ {1, . . . , n} andx ∈ Xd ,
(pri (x)= 0⇒ max((pri ◦ f )(x))�0) & (pri (x)= di ⇒ min((pri ◦ f )(x))�di).

(b) For all i ∈ {1, . . . , n} andx ∈ Xd ,
(pri (x)= 0⇒ min((pri ◦ f )(x))�0) & (pri (x)= di ⇒ max((pri ◦ f )(x))�di).

(c) f (Xd) ⊆ Xd .

3. Labeling

In [8], Quilliot developed a lemma ([8, Lemme 2]) to show that every (finite reflexive)
Helly graph has thep-fixed point property forp-graph homomorphisms (p: any non-negative
integer). Here we generalize Quilliot’s lemma (Lemma 3.1) in order to prove Theorems 2.1
and 2.2. The product (n times) ofm-pathsPm is denoted byPnm. A maximal clique ofP

n
m

has 2n vertices, and is called anelementary n-cubeof Pnm. LetC be an elementaryn-cube
of Pnm, andS ⊆ C a subset ofC. ThenS is afilling subsetof C if

(i) The cardinality ofS, #S = n+ 1,
(ii) S is not contained in any facet ofC.
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Every vertexx of Pnm may be represented withn coordinates(x1, . . . , xn), all integers
between 0 andm. A functionL : V (P nm)→ 1̇n from the vertex set ofPnm to then-product
of 1̇= {0,1}, 1̇n, is alabelingof Pnm if

Li(x)=
{
0, xi = 0,
1, xi =m

for all i,1� i�n, wherex = (x1, . . . , xn) andL(x)= (L1(x), . . . , Ln(x)). We have

Lemma 3.1. For any given labeling L ofPnm, there exist elementary n-cubesC,D and
filling subsetsS ⊆ C, S′ ⊆ D such that

(1) (0, . . . ,0) ∈ L(S),and for every coordinatei,1� i�n, there exists an individual vertex
x ∈ S such thatLi(x)= 1,

(2) (1, . . . ,1) ∈ L(S′), and for every coordinatej,1�j�n, there exists an individual
vertexy ∈ S′ such thatLj (y)= 0.

Proof. Fori ∈N(={0,1, . . . , n}), letSni denote the(n−1)-face of the (closed)n-simplex
Sn opposite the pointvi of Sn. The well-known Sperner Lemma applies in the form: letT
be a triangulation ofSn with each point ofT labeled with an integer inN such that no point
in Sni is labeledi. (Such a labeling is calledSperneror admissible.) Then there is a simplex
in Twhose points carry all the labels inN (called acomplete labeled simplex).
Recall that a graphG=(V (G),E(G)) is said to be ann-dimensionaltriangulation graph

if there exists a triangulation ofSnwithV the 0-face set andE the 1-face set such thatV (G)=
V andE(G)=E. Thus Sperner’s lemma for simplicial complexes can be reformulated for
triangulation graphs: any admissible (Sperner) labeling of ann-dimensional triangulation
graph contains a complete-labeled clique. In the following we shall use Sperner’s lemma to
prove Lemma 3.1. We say that an induced subgraphA of Pnm is ak-FACE ofP

n
m, 0�k�n,

if (1) A is isomorphic withP km, and (2) there existsN
′ ⊆ N,#N′ = n− k, such that for

eachx ∈ V (A), we have either prj (x)= 0 or prj (x)=m for all j ∈N′.

Lemma 3.2. Let L be a labeling ofPnm, and A a k-FACE ofPnm, 0�k�n. Then for any
vertex x of A, we haveL(x)= L(y) for some corner vertex(0-FACE) y of A.

Proof. The FACEA is defined by fixingn− k of the coordinates to be either 0 orm. Thus
the labels of all the vertices ofA coincide in thesen− k coordinate positions. Hence there
are only 2k possible distinct labels associated with the vertices ofA. Clearly, however, all
of these 2k labels must occur at the 2k corner vertices ofA. �

Now we are ready to prove Lemma 3.1.
(1)Assume that a labelingL : V (P nm)→ 1̇n is given. Note thatPnm has 2

n corner vertices,
i.e., theverticeswhosencoordinatesof integersareeither 0orm. For convenience,wedenote
the corner vertices labeled(0, . . . ,0) by 0, and(0, . . . ,1,0, . . . ,0) by j when the only 1
occurs in itsj-coordinate.
In order to apply Sperner’s lemma, we want to regard the (unit) cube as, topologically, a

simplex. To do this, we take then FACETs (i.e.,(n− 1)-FACEs) of the cube incident with
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0= (0, . . . ,0) as facets of the simplex; the remainingnFACETs of the cube (incident with
(1, . . . ,1)) constitute facet numbern+ 1 of the simplex (face opposite0).
Moreover, the 2n labels need to be replaced, in a consistent manner by “Sperner labels”.

Consistency just means that vertices having the same label receive the same Sperner label;
thus we have a mapping� : 1̇n → {0, . . . ,n}. The mapping� may be chosen arbitrarily,
subject only to the condition:

(�(x)= 0⇒ x = 0) & (�i (x)= 1⇒ xi = 1) (1)

for all i,1� i�n, wherex = (x1, . . . , xn) and�(x)= (�1(x), . . . , �n(x)). In other words,
� assigns all but one of the non-zero coordinates (if there are any) to zero.
The final ingredient needed for the application of Sperner’s lemma is triangulation (of

the “cubical complex”Pnm). Thus, we choose a spanning triangulation subgraphT of Pnm
which, in accordance with the preceding description, we view as a triangulation graph of
Sn, with labeling� ◦ L.
It is immediate by Lemma 3.2 (and condition (1)) that�◦L is an admissible labeling ofT.

Hence there exists a complete-labeled cliqueSofT. SinceT is a spanning triangulation sub-
graph ofPnm, therefore there exists an elementaryn-cubeC of Pnm such thatS ⊆ C. Clearly
there exists a vertex ofSwhich is labeled(0, . . . ,0). Furthermore, for anyj,1�j�n, if
x ∈ S is Sperner labeledj (for T), then thej-coordinate of labelL(x) must be 1.
(2) Prove by simply switching the role of 0 and 1 in the proof (1) above.�

Note that, althoughwe are dealingwith cubical structurePnm in Lemma3.1, it is clear that,
with similar proofs, we are able to extend above result to cuboidal structures

⊗
1� i�nPmi .

Corollary 3.3. If everydi >0, then for any given labeling L ofXd , there existFx, Fy ,
x, y ∈ Xd , and filling subsets� ⊆ Fx,� ⊆ Fy such that

(1) (0, . . . ,0) ∈ L(�),and for every coordinatei,1� i�n, there exists an individual point
z ∈ � such thatLi(z)= 1,

(2) (1, . . . ,1) ∈ L(�), and for every coordinatej,1�j�n, there exists an individual
point z ∈ � such thatLj (z)= 0.

4. Proof of the Baillon–Simons almost fixed point theorem

Proof of Theorem 2.1.Without loss of generality, we may assume thatdi >0 for everyi.

(1) ForY = [(0, . . . ,0), (d1+ 1, . . . , dn + 1)], we define the functiong : Y → Zn by

g(x)=
{
f (x), x ∈ Xd ,
f (y), x /∈Xd , y ∈ Xd s.t. |pri (x)− pri (y)|� |pri (x)− pri (z)|,∀z ∈ Xd .

The extension ofg in this way toY enables some tedious case analysis to be avoided,
later on. Notice thatx ∈ Xd is a directed following almost fixed point off if and only
if x is a directed following almost fixed point ofg (that is,

∧
f (Fx)�x� ∨

f (Fx)⇔∧
g(Fx ∩ Xd)�x� ∨

g(Fx ∩ Xd)⇔ ∧
g(Fx)�x� ∨

g(Fx)).
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Let us, then, show thatg has a directed following almost fixed point inXd . Define a
functionL : Y → {0,1}n by

Li(x)=
{
0, pri (x)�(pri ◦ g)(x),
1, pri (x)> (pri ◦ g)(x).

Clearly,L(x)= (L1(x), . . . , Ln(x)) is a labeling. Hence by Corollary 3.3, there exists
Fy, y ∈ Y, and a filling subset� ⊆ Fy , such that(0, . . . ,0) ∈ L(�), and for every
coordinatei,1� i�n, there exists an individual pointz ∈ � such thatLi(z)= 1. Also
note that, since� ⊆ Fy is a filling subset, we must havey ∈ Xd .
We show thaty is a directed following almost fixed point ofg. Let z be the point
of � which is labeled(0, . . . ,0). Then it is clear that pri (z)�(pri ◦ g)(z) for all i.
Thus we havey�z�g(z)� ∨

g(Fy). Furthermore, for every coordinatei,1� i�n,
there exists an individual pointw(i) ∈ � such thatLi(w(i)) = 1. Therefore we have
(pri ◦ g)(w(i))<pri (w(i)) for all i; hence(pri ◦ g)(w(i))�pri (y). Thus we have∧
g(Fy)�

∧
ig(w(i))�(g1(w(1)), . . . , gn(w(n)))�(pr1(y), . . . ,prn(y))= y.

(2) Arguing as in (1) but more simply, we define a functionL′ : Xd → {0,1}n by

L′i (x)=
{
1, pri (x)�(pri ◦ f )(x) and pri (x) �= 0,
0, pri (x)> (pri ◦ f )(x) or pri (x)= 0.

It is clear thatL′(x) = (L′1(x), . . . , L′n(x)) is a labeling. Thus by Corollary 3.3, there
existsFx, x ∈ Xd , and a filling subset� ⊆ Fx , such that(1, . . . ,1) ∈ L′(�), and
for every coordinatei,1� i�n, there exists an individual pointy(i) ∈ � such that
L′i (y(i))= 0.
We claim thatx is a directed following almost fixed point off. Let zbe the point of�
which is labeled(1, . . . ,1). Then it is clear that pri (z)�(pri ◦ f )(z) for all i. Thus we
havex�z�f (z)� ∨

f (Fx). Let�′ = {y(i) ∈ �\z | (pri ◦f )(y(i))=pri (y(i))=0}.
If �′ =∅, then (in a similar way to the proof of (1)) it is easy to check that∧

f (Fx)�x.
If �′ �= ∅, then for anyy(i) ∈ �′, we have pri (x)=pri (y(i))=(pri ◦f )(y(i))=0. Since
pri (x)�(pri ◦f )(y(i)) (in fact, pri (x)> (pri ◦f )(y(i))) for all y(i) /∈�′, therefore we
also have

∧
f (Fx)�x.

(3) This is immediate from (1).

Thus we have completed the proof of Theorem 2.1.�

Remark 4.1. In the proof of Theorem 2.1(2), wemay also say that there existsFx, x ∈ Xd ,
and a filling subset� ⊆ Fx , such that there existsz ∈ � with L′(z) = (0, . . . ,0), and for
every coordinatei,1� i�n, there exists an individual pointy(i) ∈ � such thatL′i (y(i))=1.
Then it is clear that, for alli,1� i�n, we have either pri (z)> (pri ◦f )(z) or pri (z)= (pri ◦
f )(z)=0. In the former case, we would have pri (x)�(pri ◦f )(z), and in the latter case, we
would have pri (x)= pri (z)= (pri ◦ f )(z). Therefore we must have

∧
f (Fx)�x. To show

x� ∨
f (Fx), it is clear that, for alli,1� i�n, we have pri (x)�pri (y(i))�(pri ◦f )(y(i));

thusx� ∨
f (Fx).
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5. Proof of the Baillon–Simons fixed point theorem

We recall that atwo-way infinite path, denoted byP, is an infinite tree in which each
point has exactly two adjacent points[4].

Lemma 5.1. Letf : Xd → Zn be any strongly-simplicial segment multifunction, and x a
point ofXd . Then for any non-empty subset A ofFx ,

⋂
a∈Af (a) �= ∅.

Proof. The segments ofZn are exactly the intersections of balls of an (n times) product of
two-way infinite pathsP; and the finite product of two-way infinite paths is strongly Helly
(i.e., any infinite family of pairwise non-disjoint balls has a non-empty intersection). See
[7 or 6]. �

Lemma 5.2. Suppose that Theorem2.2 holds for bounded multifunctions. Then it holds
unrestrictedly.

Proof. Givenanyfinitepositive integerm�1, letY={x ∈ Zn | ‖x−y‖∞ ≡ max1� i�n|pri
(x)− pri (y)|�m, for somey ∈ Xd} (‖ · ‖∞ is the"∞-norm). Supposef is unbounded.We
define the multifunctiong : Xd → Zn, x �→ g1(x)× · · · × gn(x) by

gi(x)=
{
(pri ◦ f )(x) ∩ pri (Y) if (pri ◦ f )(x) ∩ pri (Y) �= ∅,
−m if z<−m for all z ∈ (pri ◦ f )(x),
di +m if z>di +m for all z ∈ (pri ◦ f )(x).

Note thatg is well-defined, sincef is a segment multifunction fromXd toZn.
It is easy to check thatg satisfies the hypotheses (a–c) of Theorem 2.2 iff does. We

show thatg is a strongly-simplicial multifunction whose images are segments ofY. Let x
be any point ofXd . If f (x) ∩ Y �= ∅, then sincef (x) is a segment ofZn, it is clear that
g(x)=f (x)∩Y is a segment ofY. Now, supposef (x)∩Y=∅.Without loss of generality,
we may assume thatf (x) = [(s1, . . . , sn), (t1, . . . , tn)] (wheresj , tk may be∞). Clearly,
there exists an index subsetM ⊆ {1, . . . , n} such that, for anyi ∈ M, we have either
si, ti <−m or si, ti > di +m. By the definition ofg, it is easy to check that, in the former
case we havegi(x) = −m; and in the latter case we havegi(x) = di + m. Also note that,
for any i such thati /∈M, we havegi(x) = (pri ◦ f )(x) ∩ pri (Y) �= ∅. Hence we have
g(x)= g1(x)× · · · × gn(x) is a segment ofY (in fact,g(x) is contained in one side of the
“boundary” ofY). To show thatg is strongly-simplicial: by Lemma 5.1, it is clear that for
anyFx, x ∈ Xd , we have⋂a∈Fxg(a) ⊇ g(

⋂
a∈Fxf (a)) �= ∅ (sinceg(⋂a∈Fxf (a)) ⊆ g(b)

for all b ∈ Fx and⋂a∈Fxf (a) �= ∅). Sogmust be strongly-simplicial.
Finally, it is clear thatg(x) ∩ Xd = f (x) ∩ Xd for all x ∈ Xd . Thereforef satisfies

Theorem 2.2 ifg does. �

We are ready to prove Theorem 2.2.

Proof of Theorem 2.2.Without loss of generality, we may assume thatdi >0 for everyi.

(a) From Lemma 5.2, without loss of generality, wemay assume that, for anyx ∈ Xd , f (x)
is bounded inZn.
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Let mi = max{0, ui}, whereui = max(
⋃
x,pri (x)=di (pri ◦ f )(x)) − di + 1. LetY =

[(0, . . . ,0), (d1+m1, . . . , dn+mn)]. It is easy to check thatY=⋂
1� i�n[(0, . . . ,0),

(∞, . . . , di +mi, . . . ,∞)]. Let us define the multifunctiong : Y → Zn by

g(x)=
{
f (x), x ∈ Xd ,
f (y), x /∈Xd , y ∈ Xd s.t. |pri (x)− pri (y)|� |pri (x)− pri (z)|,∀z ∈ Xd .

We claim that, ifg has a fixed point inY, then f has a fixed point inXd . To show
this, supposex ∈ Y is a fixed point ofg. It is trivial that x is a fixed point off if
x ∈ Xd . Hence we assume thatx /∈Xd , and we would like to show that the pointy ∈
Xd , |pri (x)−pri (y)|� |pri (x)−pri (z)|,∀z ∈ Xd , is a fixed point off. Note that for any
i,1� i�n, we have, respectively, pri (y)= pri (x) if 0<pri (x)�di , and pri (y)= di if
pri (x)> di .Also note that, sinceg (resp.f) is a segmentmultifunction, we havea ∈ g(b)
(resp.a ∈ f (b)) if and only if pri (a) ∈ (pri ◦ g)(b) (resp. pri (a) ∈ (pri ◦ f )(b)) for
all i,1� i�n. Now, sincex is a fixed point ofg, we have pri (x) ∈ (pri ◦ g)(x) for all
i,1� i�n. From the definition ofg, we haveg(x)= f (y). Thus pri (x) ∈ (pri ◦ f )(y)
for all i,1� i�n. Hence for alli,1� i�n, we have:

• If pr i (y)= pri (x): Clearly pri (y) ∈ (pri ◦ f )(y);
• If pr i (y)=di (where pri (x)> di): By the inward definition off, we have min((pri ◦
f )(y))�di . Sincef (y) is a segment, therefore we have pri (y) ∈ [min((pri ◦
f )(y)),pri (x)]Z ⊆ (pri ◦ f )(y).

Thereforey is a fixed point off.
Next, we show thatg indeed has a fixed point inY. Define a functionQ : Y → {0,1}n
by

Qi(x)=
{
0 if pri (x)�y for somey ∈ (pri ◦ g)(x),
1 if pri (x)> y for everyy ∈ (pri ◦ g)(x).

It is clear that, from the definition ofg,Q(x)=(Q1(x), . . . ,Qn(x)) is a labeling. Hence
by Corollary 3.3, there exists a filling subset� ⊆ Fx for somex ∈ Y, such that
• there exists a unique pointz ∈ � such thatQ(z)= (0, . . . ,0), and
• for every coordinatei,1� i�n, there exists an individual point, denoted byz(i),
z(i) ∈ �, such thatQi(z(i))= 1.

We claim thatz is a fixed point ofg; hence based on our previous discussion,f has
a fixed point. Supposez is not a fixed point ofg. Then there existsj,1�j�n, such
that prj (z) ∩ (prj ◦ g)(z) = ∅. If prj (z)>prj (w) for all w ∈ g(z), then clearly, the
j-coordinate ofz would be labeled 1: contradiction. If prj (z)<prj (w) for all w ∈
g(z), then for the pointz(j) ∈ � whosej-coordinate is labeled 1, we would have
g(z) ∩ g(z(j))= ∅: contradiction.

(b) Wemay give a proof along lines parallel to the proof of (a) above. However, it is simpler
to reduce the assertion of (b) directly to that of (a).
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To do this, we define the multifunctiong : Xd → Zn by

g(x)= 2x − f (x) ∀x ∈ Xd .
It is clear that, for anyx ∈ Xd , g(x) is a segment ofZn. Furthermore, by Lemma 5.1, it
is easy to check thatg is strongly-simplicial. For any pointx ∈ Xd such that pri (x)=0,
clearly(pri ◦g)(x)=2pri (x)− (pri ◦f )(x)=−(pri ◦g)(x). Hence, from the definition
of f (min((pri ◦ f )(x))�0), we have max((pri ◦ g)(x)) = max(−(pri ◦ f )(x))�0.
Similarly, for any pointx ∈ Xd such that pri (x)= di , we have(pri ◦ g)(x)=2pri (x)−
(pri ◦ f )(x) = 2di − (pri ◦ f )(x). Since max((pri ◦ f )(x))�di , we have min((pri ◦
g)(x))�2di − (pri ◦ f )(x)�2di − di = di . Thereforeg satisfies the conditions of
Theorem 2.2(a), and henceg has a fixed point, say the pointz ∈ Xd . Then we have
z ∈ g(z)⇒ z ∈ 2z− f (z)⇒ z ∈ f (z).

(c) This is immediate from (a).

Thus we have completed the proof of Theorem 2.2.�

Remark 5.3. The idea of the proof of Theorem 2.2(b) comes from[3].

6. Application to topology

SinceZn ⊂ Rn, we may define a mapping� : Rn → Zn by

�(x)=min((↑Rnx) ∩ Zn),∀x ∈ Rn,

where↑Rnx = {y ∈ Rn | x�y}. It is clear that� is well-defined.
The following theorem (Theorem 6.1) is a generalization of Theorem 2 in[1], where

Baillon and Simons showed that Theorem 2.1(3) implies the Brouwer fixed point theorem.

Theorem 6.1. Theorem2.1(1)and(2) imply the Halpern–Bergman fixed point theorem for
compact convex subsets ofRn.

Proof. It is enough to show the case for continuous inward mappings, since the case for a
continuous outward mapping then follows by a dual argument (see the proof of Theorem
4.3(1) in[5]).
Let In be the unitn-cube inRn. Firstly, we prove it for then-cubesIn for any s ∈

R,0<s <∞. Let f : sIn → Rn be any continuous inward mapping fromsIn toRn. For
anyk ∈ N, k�1, we define the mappingfk : [(0, . . . ,0), (k, . . . , k)] → Zn by

fk(x)=�
(
k

s
f

( s
k
x
))

,

for all x ∈ [(0, . . . ,0), (k, . . . , k)]. It is clear thatfk satisfies the condition of Theorem
2.1(1) if f is a continuous inward mapping. By Theorem 2.1,fk must have a directed
following almost fixed point, sayy ∈ [(0, . . . ,0), (k, . . . , k)].
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Sincey is adirected followingalmost fixedpoint offk, i.e.,
∧

Znfk(Fy)�y�∨
Znfk(Fy),

therefore[
s
∧

Znfk(Fy)

k
� sy

k
� s

∨
Znfk(Fy)

k

]

⇒
[
s
∧

Zn�( ks f (
s
k
Fy))

k
� sy

k
�
s
∨

Zn�( ks f (
s
k
Fy))

k

]

⇒
[
s
∧

Rn(
k
s
f ( s

k
Fy))

k
� sy

k
�
s
∨

Rn(
k
s
f ( s

k
Fy)+ 1)

k

]

⇒

∨

Rn

f
( s
k
Fy

)
� sy

k
�

∨
Rn

(
f

( s
k
Fy

)
+ s

k

)
=

∨
Rn

f
( s
k
Fy

)
+ s

k


 .

Let zk = (sy)/k: clearlyzk ∈ sIn. Then it is easy to check that we have∧
Rnf (Dzk )�zk

�∨
Rnf (Dzk )+ s/k, whereDzk = {b ∈ sIn | zk�b�zk + s/k}. Since then-cubesIn is

compact ands is a constant, thus letk→∞ and then by the uniform continuity off, f has
a fixed point.
Now letAbeany compact convex subset ofRn, without loss of generality, wemayassume

that for anyx ∈ A, we have pri (x)>0 for eachi,1� i�n. We claim that any continuous
inwardmappingg : A→ Rn fromA toRn has a fixed point. SinceAandg(A) are bounded
subsets inRn, for ssufficiently large, we have then-cubesIn properly containsA ∪ g(A).
SinceA is a compact convex subset ofRn (see for example[2]), for any pointx ∈ sIn, there
exists a unique pointy ∈ A such thatdRn(x, y)�dRn(x, z) for all z ∈ A, and furthermore,
the mappingr : sIn → A defined byr(x)= y is continuous. Then it is clear thatr satisfies
the following conditions (sincesIn is a compact convex subset ofRn containingA as a
subset):

• r maps each point of the boundary ofsIn, denoted byB(sIn), to a point ofB(A), the
boundary ofA,

• for anyx ∈ sIn\A, r maps the set of points(1− �)x + �r(x),0���1, to {r(x)} ⊆
B(A),

• for anyx ∈ A, r(x)= x.
Note thatr : sIn → A is indeed a retraction fromsIn toA.
Let h = g ◦ r. Clearly,h : sIn → Rn is a continuous inward mapping fromsIn to

Rn (in fact, we haveh(sIn) ⊆ f (A) ⊆ sIn). From above,h has a fixed point, sayw ∈
f (A). We show thatw ∈ A, and henceg(w) = (g ◦ r)(w) = h(w) = w;w is also a
fixed point ofg. Suppose not, that is, we havew /∈A. Then we havew ∈ f (A)\A, hence
g(r(w)) = (g ◦ r)(w) = h(w) = w (wherer(w) �= w). Thus (by the property of inward
continuity ofg) there exists a pointz ∈ A, z �= r(w) such thatw ∈ {(1− �)r(w) + �z ∈
Rn | � ∈ R, ��0} ⊆ IA(r(w)). So we havedRn(w, r(w))> dRn(w, z): contradiction. �

Hence by Theorem 6.1, we may call Theorem 2.1 the discrete Halpern–Bergman fixed
point theorem. On the other hand, since in general Euclidean convex subsets ofRn cannot
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be“approximated” by rectangle blocks (segments) ofRn, it is impossibleto “approximate”
the Browder fixed point theorem by Theorem 2.2.
A possible discrete Browder fixed point theorem should have a formulation similar to

those given in[9, Theorem 5.4]. Indeed, it is not difficult to show that it can be done by
approaches similar to those which we proposed in[9]. However, as already mentioned in
[9], suitable combinatorial proofs for these (discrete Browder and Kakutani fixed point)
theorems are still unavailable.
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