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Abstract

In this paper, we give combinatorial proofs of Baillon and Simons’ almost fixed point and fixed
point theorems for discrete-valued mappings (J. Combin. Theory Ser. A 60 (1992) 147-154).
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1. Introduction

The almost fixed point and fixed point theorems of Baillon and Simons, as proposed in
[1], may be considered as the “discrete” versions (see Section 6 for further discussions)
of, respectively, the Halpern—Bergman and Browder fixed point theofg®is It is well-
known that the Brouwer and Kakutani fixed point theorems have numerous generalizations
appearing in various formulations; two typical examples, which we discuss in this section,
and also were used to prove Baillon and Simons’ resulf]inare the Halpern—Bergman
and Browder theorems. The outward and, later, inward sets for any compact convex subset
of a topological vector space, were first introduced by Halpern in his Ph.D. ThesiS]and
Let E be a topological vector space, aAc compact convex subset bf For anyx € A,
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theinward andoutward set®f x, denoted by 4 (x) and O 4 (x), respectively, are defined as
follows:

e [y x)={(l—a)x+ayelb|yeA aeR, a>0}
e O4(x)={1l—)x+ayelb|yeA aeR, a0}

A continuous mapping® : A — [ is said to benward if f(x) € I4(x) forall x € A.
Similarly, f is said to beoutwardif f(x) € O4(x) for all x € A. Halpern and Bergman'’s
theorem can be stated as follows.

Theorem 1.1([5, Halpern—Bergman fixed point theorem]Let A be a compact convex
subset ofR" (resp. locally convex spacde), and f : A — R" (resp.f : A — [F) a
continuous inward or outward mapping. Then f has a fixed point.

The construct of the Halpern—Bergman theorem was generalized by Browder to multi-
functions[3]. A compact convex-valued upper-semicontinuous multifuncgionA — [E
is said to beinward if g(x) N I4(x) # @ for all x € A; andg is said to beoutward if
gx)NO0s(x) #@forallx € A.

Theorem 1.2([3, Browder fixed point theorenn] Let A be a compact convex subseRSf
(resp. locally convex spadg,andg : A — R” (resp.g : A — [E)acompact convex-valued
upper-semicontinuous inward or outward multifunction. Then g has a fixed point.

The Baillon—-Simons almost fixed point theorem and fixed point theorem have certain
resemblances with, respectively, the Halpern—Bergman and Browder fixed point theorems.
The framework they considered &', in which the rectangle blocks are considered as
compact convex subsets. Since Baillon and Simons used the Halpern—Bergman and Browder
theorems in deriving their theorems, it was requested by tfidro find combinatorial
proofs of their results (or of at least one of them). In this paper, we will give combinatorial
proofs of both (Baillon and Simons’) theorems.

2. The Baillon-Simons almost fixed point and fixed point theorems for
discrete-valued mappings

The material presented in this section can be four{d]in

Let Z" be the product o copies of the sef of integers which is considered as a lattice
group under the pointwise order and algebraic operations.ife 7" such thatc <y, we
write [x, y] for thesegment

{zeZ" | x<z<y)

Note that some or all components of y are allowed to be-oco or co. For any point
d=(d1,...,d,) € Z" with 0<d; < oo foralli, letX; =[(0, ..., 0),d].

Thedirected followingof x € X; in X4, denoted by, is[x, x + (1, ..., )] N X,. Let
f : Xg — Z" be any mapping. Then a pointe X, is said to be alirected following
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almost fixed poinof f if
N\ f(Fo<x<\/ f(F).

Letpr; : Z" — Z be theprojectionof Z" onto itsith factor for alli, 1<i <n. Then

Theorem 2.1([1, Baillon—Simons almost fixed point theoremlet f : X; — Z" be any
mapping. Then f has a directed following almost fixed point if or{&)ef(3)is satisfied

(1) Foralli e {1,..., n}andx € Xy,
(pr;(x) =0= (pr; o f)(x) 20) & (pr;(x) =d; = (pr; o /)(x)<d;).
(2 Foralli € {1,...,n}andx € Xy,
(pr;(x) =0 = (pr; o f)(x)<0) & (pr;(x) =d; = (pr; o [)(x)=>di).
(3) fXa) € Xy.
We emphasize that, in Theorem 2 1s notrequired to be order-preserving.

A segment multifunctiorf : X; — Z" is a multifunction which maps each point Xf;
to a segment of". f is strongly-simplicialif for any x, y € X, we have

-1 ..., “D<x—y<@, .., ) = fon f(y) #9.

Theorem 2.2([1, Baillon-Simons fixed point theorejn]Let f : X; — Z" be any
strongly-simplicial segment multifunction. Then f has a fixed pdivat is there exists
x € X4 such thatr € f(x), if one of(a)—(c)is satisfied

(@) Foralli e{1,..., n}andx € Xy,

(pr; (x) = 0 = max((pr; o /)(x)) 20) & (pr;(x) =d; = min((pr; o f)(x)) <dp).
(b) Foralli € {1,...,n}andx € Xy,

(pr;(x) = 0= min((pr; o f)(x))<0) & (pr;(x) =d; = max((pr; o f)(x)) =d;).
(€) fXa) € Xa.

3. Labeling

In [8], Quilliot developed a lemmdg, Lemme 2} to show that every (finite reflexive)
Helly graph has thp-fixed point property fop-graph homomorphismgi(any non-negative
integer). Here we generalize Quilliot’'s lemma (Lemma 3.1) in order to prove Theorems 2.1
and 2.2. The producn(times) ofm-pathsP,, is denoted byP,:. A maximal clique ofP}}
has 2 vertices, and is called sglementary rcubeof P;.. Let C be an elementarg-cube
of P, andS < C asubset o€. ThenSis afilling subsetof C if

(i) The cardinality ofS #S =n + 1,
(i) Sis not contained in any facet @.
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Every vertexx of P;; may be represented with coordinates(xs, ..., x,), all integers
between 0 andh. A function L : V(Py) — 1" from the vertex set of;; to then-product
of 1={0, 1}, 1", is alabelingof P}; if

0, Xi = 0,
Li(-x)_{l’ X;=m
forall i, 1<i <n,wherex = (x1, ..., x,) andL(x) = (L1(x), ..., L,(x)). We have

Lemma 3.1. For any given labeling L of), there exist elementary-cubesC, D and
filling subsetsS € C, §" C D such that

(1) (0,...,0) € L(S),andforevery coordinate 1<i <n, there exists an individual vertex
x € Ssuchthatl;(x) =1,

(2) (1,...,1) € L(S"), and for every coordinatg, 1< j <n, there exists an individual
vertexy € S’ such thatZ ;(y) = 0.

Proof. Fori e A/"(={0,1,...,n}), letS! denote thé&n — 1)-face of the (closed)-simplex
S" opposite the point’ of §”. The well-known Sperner Lemma applies in the formTlet
be a triangulation of” with each point off labeled with an integer in/” such that no point
in S is labeled. (Such a labeling is calle8perneror admissible) Then there is a simplex
in T whose points carry all the labels.ifi” (called acomplete labeled simplex

Recallthat a grapty =(V (G), E(G)) is said to be an-dimensionatriangulation graph
if there exists a triangulation ¢f' with VVthe O-face set aniithe 1-face set such th&t(G)=
V andE(G) = E. Thus Sperner’s lemma for simplicial complexes can be reformulated for
triangulation graphs: any admissible (Sperner) labeling af-dimensional triangulation
graph contains a complete-labeled clique. In the following we shall use Sperner’'s lemma to
prove Lemma 3.1. We say that an induced subgraphP;, is ak-FACE of P}, 0<k <n,
if (1) Ais isomorphic withP¥ , and (2) there existsl” € A", #.4” = n — k, such that for
eachx € V(A), we have either pix) =0 or pr;(x) =m forall j e A,

Lemma 3.2. Let L be a labeling ofP)}, and A a kFACE of P}, 0<k <n. Then for any
vertex x of Awe haveL (x) = L(y) for some corner verteg0-FACE) y of A

Proof. The FACEA is defined by fixing: — k of the coordinates to be either Or Thus
the labels of all the vertices @f coincide in these — k coordinate positions. Hence there
are only Z possible distinct labels associated with the vertices.@learly, however, all
of these 2 labels must occur at the 2orner vertices oA. [

Now we are ready to prove Lemma 3.1.

(1) Assume that alabeling : V(P)) — 1" is given. Note thaP has 2 corner vertices,
i.e., the vertices whosecoordinates of integers are either OiFor convenience, we denote
the corner vertices labelg@, . .., 0) by 0, and(O, ..., 1,0,...,0) by j when the only 1
occurs in itg-coordinate.

In order to apply Sperner’s lemma, we want to regard the (unit) cube as, topologically, a
simplex. To do this, we take theFACETSs (i.e.,(n — 1)-FACES) of the cube incident with
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0=(0, ..., 0) as facets of the simplex; the remainin§ACETs of the cube (incident with
(1, ..., 1)) constitute facet number+ 1 of the simplex (face opposit®.

Moreover, the 2 labels need to be replaced, in a consistent manner by “Sperner labels”.
Consistency just means that vertices having the same label receive the same Sperner label,

thus we have a mapping: 1" — {0, ..., n}. The mapping. may be chosen arbitrarily,
subject only to the condition:

Ax)=0=x=0& (Lx)=1=x=1) Q)
forall i, 1<i <n,wherex = (x1, ..., x,) andA(x) = (A1(x), ..., 4,(x)). In other words,

A assigns all but one of the non-zero coordinates (if there are any) to zero.

The final ingredient needed for the application of Sperner’s lemma is triangulation (of
the “cubical complex’P;}). Thus, we choose a spanning triangulation subgraph P,
which, in accordance with the preceding description, we view as a triangulation graph of
S, with labeling/ o L.

Itisimmediate by Lemma 3.2 (and condition (1)) thatL is an admissible labeling dt
Hence there exists a complete-labeled cli§oéT. SinceT is a spanning triangulation sub-
graph ofP)!, therefore there exists an elementargubeC of P, such thatS < C. Clearly
there exists a vertex &which is labeledQO, ..., 0). Furthermore, for any, 1< j <n, if
x € S is Sperner labelef(for T), then thg-coordinate of labeL (x) must be 1.

(2) Prove by simply switching the role of 0 and 1 in the proof (1) abové.

Note that, although we are dealing with cubical struc®ffen Lemma 3.1, itis clear that,
with similar proofs, we are able to extend above result to cuboidal strucgdes  , P, -

Corollary 3.3. If everyd; > 0, then for any given labeling L ok, there existF,, F),
x,y € Xg4, and filling subsets! C Fy, A C F, such that

(1) (O,...,0) € L(4),andfor every coordinate 1<i <n, there exists an individual point
z € AsuchthatL;(z) =1,
(2) (1,...,1) € L(A), and for every coordinatg, 1< j <n, there exists an individual

pointz € A such thatZL ;(z) = 0.

4. Proof of the Baillon—Simons almost fixed point theorem

Proof of Theorem 2.1. Without loss of generality, we may assume tiat O for everyi.

(1) ForY =[(0,...,0),(d1+1,...,d, + 1)], we define the functiog : Y — 7" by

f(x), xeXq,

F), x¢Xa,y € Xg st |pry(x) —pry(y)|<Ipr;(x) —pri(2)|, Vz € Xq.

The extension of in this way toY enables some tedious case analysis to be avoided,
later on. Notice that € X, is a directed following almost fixed point 6if and only

if xis a directed following almost fixed point gf(thatis, A\ f(Fy) <x<\/ f(Fy) &
N&Fx N X)) <x< V g(Fx N Xa) & N\ g(Fr)<x <\ g(Fy)).

g@)={
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Let us, then, show thaf has a directed following almost fixed point X,. Define a
functionL : Y — {0, 1}" by

o )0, pri(x) < (pr; o g)(x),
bito = {1’ pr; (x) > (pr; o g)(x).

Clearly,L(x) = (L1(x), ..., L, (x)) is alabeling. Hence by Corollary 3.3, there exists
F,,y € Y, and afilling subsett < F,, such that©, ..., 0) € L(4), and for every
coordinate, 1<i <n, there exists an individual poigte 4 such that; (z) = 1. Also
note that, sincel C F, is a filling subset, we must havee X,.

We show thaty is a directed following almost fixed point @. Let z be the point
of 4 which is labeled(, ..., 0). Then it is clear that ptz) < (pr; o g)(z) for all i.
Thus we havey <z<g(z) < \/ g(F)). Furthermore, for every coordinaiel <i <n,
there exists an individual point(i) € 4 such thatZ; (w(i)) = 1. Therefore we have
(pr; o @)(w(@)) < pr;(w()) for all i; hence(pr; o g)(w(i)) <pr;(y). Thus we have
A (F)<N\igw@) < (g1(w(D), ... gn(wm) < (Pry(y), ... pr,(») = .
Arguing as in (1) but more simply, we define a functibn: X; — {0, 1} by

L) = {1, pr; (x) < (pr; © f)(x) and pg(x) # O,

! 0, pr;(x)>(pr;o f)(x) or pr;(x) =0.
Itis clear thatL'(x) = (L} (x), ..., L) (x)) is a labeling. Thus by Corollary 3.3, there
existsF,, x € Xy, and a filling subsett € F,, such that(1,...,1) € L'(A), and
for every coordinaté, 1<i <n, there exists an individual point(i) € A such that
Li(y(i)) =0.
We claim thatx is a directed following almost fixed point &fLet z be the point of1
which is labeled1, ..., 1). Thenitis clear that ptz) < (pr; o f)(z) for alli. Thus we
havex <z< f(2) <V f(Fx). LetA'={y(i) € A\z | (pr; o f)(y(i))=pr;(y(i)) =0}.
If A"=0¢, then (in a similar way to the proof of (1)) itis easy to check thaf (Fy) < x.
If A" # ¢, thenforanyy(i) € A’,we have pr(x)=pr, (y(i))=(pr;o f)(y(i))=0. Since
pr; (x) = (pr; o )(¥(i)) (in fact, pr (x) > (pr; o £)(y(i))) forall y(i) ¢ A’, therefore we
also have/\ f(Fy)<x.
This is immediate from (1).

Thus we have completed the proof of Theorem 2.1l

Remark 4.1. Inthe proof of Theorem 2.1(2), we may also say that there eKjsts € X,
and a filling subsett C F,, such that there existse A with L'(z) = (0, ..., 0), and for
every coordinaté, 1< <n, there exists anindividual poimti) € A suchthat.’(y(i))=1.
Thenitis clear that, for all, 1 <i <n, we have either p(z) > (pr; o f)(z) or pr;(z) = (pr; o
£)(z)=0.Inthe former case, we would have @r > (pr; o )(z), and in the latter case, we
would have pr(x) = pr;(z) = (pr; o f)(z). Therefore we must havg f (Fy) <x. To show

X<

\/ f(Fy),itisclearthat, forall, 1<i <n,we have pr(x) <pr,(y(@)) < (pr; o /) (y());

thusx < \/ f(Fy).
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5. Proof of the Baillon—Simons fixed point theorem

We recall that awo-way infinite pathdenoted byP, is an infinite tree in which each
point has exactly two adjacent poiri.

Lemma 5.1. Let f : X; — Z" be any strongly-simplicial segment multifunctiamd x a
point of X;. Then for any non-empty subset AR, (.4 f (@) # 9.

Proof. The segments of" are exactly the intersections of balls of artimes) product of
two-way infinite path4?; and the finite product of two-way infinite paths is strongly Helly
(i.e., any infinite family of pairwise non-disjoint balls has a non-empty intersection). See
[7or6]. O

Lemma 5.2. Suppose that Theoreth2 holds for bounded multifunctions. Then it holds
unrestrictedly.

Proof. Givenanyfinite positive integet > 1,letY={x € Z" | [x—Y|lcoc = Max < <n|Pr;
(x) —pr;(y)|<m, for somey € X;} (|l - llo IS thels-norm). Supposéis unbounded. We
define the multifunctiory : X; — 7", x > g1(x) x - -+ x g,(x) by

(pr; o H) Npr(Y) if (pr; o fH(x) Npri(Y) # 4,
gix)=1-m if z<—m forall z € (pr; o f)(x),
di +m if z>d; +m for all z € (pr; o f)(x).

Note thatg is well-defined, sincéis a segment multifunction frod, to 7".

It is easy to check thay satisfies the hypotheses (a—c) of Theorem 2f2dibes. We
show thatg is a strongly-simplicial multifunction whose images are segments. afet x
be any point ofX,. If f(x) N'Y # @, then sincef (x) is a segment of", it is clear that
g(x)=f(x)NY isasegmentof. Now, supposeg (x) NY =. Without loss of generality,
we may assume that(x) = [(s1, ..., sn), (t1, ..., t,)] (Wheres;, fy may beoo). Clearly,
there exists an index subsét C {1,...,n} such that, for any € M, we have either
si, i < —m Ors;, t; > d; + m. By the definition ofg, it is easy to check that, in the former
case we havg; (x) = —m; and in the latter case we hayg(x) = d; + m. Also note that,
for anyi such thati ¢ M, we haveg;(x) = (pr; o f)(x) N pr;(Y) # #. Hence we have
g(x) =g1(x) x --- x g,(x) isasegment of (infact, g(x) is contained in one side of the
“boundary” of Y). To show thag is strongly-simplicial: by Lemma 5.1, it is clear that for
any Fr, x € Xq, we have),cr, 8(a) 2 g(Nyer, (@) # B (SINCR(Nyep, £(@)) € g(b)
forall b € Fy andﬂueFxf(a) # (). Sog must be strongly-simplicial.

Finally, it is clear thatg(x) N X; = f(x) N Xy for all x € X,. Thereforef satisfies
Theorem 2.2 igdoes. O

We are ready to prove Theorem 2.2.
Proof of Theorem 2.2. Without loss of generality, we may assume tthat O for everyi.

(a) From Lemma 5.2, without loss of generality, we may assume that, for anf,, f (x)
is bounded irZ".
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Let m; = max0, u;}, whereu; = max(Ux’pri(x)zdi (pr; o f)(x)) —d; + 1. LetY =
[0,...,0), (d1+m1,...,d, +my)]. Itis easy to check that = ﬂlgi@[(o, ..., 0),
(00, ...,di +m;,...,00)]. Let us define the multifunctiog : Y — Z" by

g(x) — {f(x)v X € de
FO), x¢Xa,y € Xg st |pr;(x) —pr;(»|<[pr;(x) — pr;(2)], Vz € X4.

We claim that, ifg has a fixed point irY, thenf has a fixed point inX,;. To show
this, suppose:r € Y is a fixed point ofg. It is trivial that x is a fixed point off if
x € Xy4. Hence we assume thatt X, and we would like to show that the pointe
Xa, Ipr; (x) —pr; ()| < |pr; (x) —pr; (z)], Vz € Xg4, is a fixed point of. Note that for any
i, 1<i <n, we have, respectively, giy) = pr; (x) if 0 < pr; (x) <d;, and pf(y) =d; if
pr; (x) > d;. Also note that, sincg (respf) is a segment multifunction, we hawes g(b)
(resp.a € f(b)) if and only if pr;(a) € (pr; o g)(b) (resp. pf(a) € (pr; o f)(b)) for
all i, 1<i <n. Now, sincex s a fixed point ofg, we have pr(x) € (pr; o g)(x) for all
i, 1<i <n. From the definition ofj, we haveg(x) = f(y). Thus pr(x) € (pr; o f)(y)
forall i, 1<i <n. Hence for all, 1<i <n, we have:

e Ifpr;(y) = pr;(x): Clearly pt.(y) € (pr; o f)(y);

e Ifpr;(y)=d; (where pf(x) > d;): By the inward definition of, we have min(pr; o
£ (y)) <d;. Since f(y) is a segment, therefore we have @) < [min((pr; o
), prix)lz < (pry o FH(y).

Thereforey is a fixed point off.
Next, we show thag indeed has a fixed point M. Define a functiorD : Y — {0, 1}"

by

0:(x) = 0 if pr;(x) <y for somey e (pr; o g)(x),
L if pri(x) >y for everyy € (pr; o g)(x).

Itis clear that, from the definition @f, Q0 (x)=(Q1(x), ..., 0,(x))isalabeling. Hence
by Corollary 3.3, there exists a filling subsétC F, for somex € Y, such that

e there exists a unique pointe 4 such thatQ(z) = (0, ..., 0), and
o for every coordinaté, 1<i <n, there exists an individual point, denoted 41y),
z(i) € 4, such thatQ; (z(i)) = 1.

We claim thatz is a fixed point ofg; hence based on our previous discussiomas
a fixed point. Supposeis not a fixed point ofy. Then there existg, 1< j <n, such
that pri(z) N (pr; o g)(z) = ¥. If pr;(z) > pr;(w) for all w € g(z), then clearly, the
j-coordinate ofz would be labeled 1: contradiction. If piz) <pr;(w) for all w €
g(2), then for the point:(j) € 4 whosej-coordinate is labeled 1, we would have
g(2) N g(z(j)) = @: contradiction.

(b) We may give a proof along lines parallel to the proof of (a) above. However, itis simpler
to reduce the assertion of (b) directly to that of (a).
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To do this, we define the multifunctign: X, — 7" by
glx)y=2x — f(x) Vx e Xy.

Itis clear that, for any € X4, g(x) is a segment of”. Furthermore, by Lemma 5.1, it
is easy to check thatis strongly-simplicial. For any point € X, such that pr(x) =0,
clearly(pr; o g)(x) =2pr; (x) — (pr; o f)(x) =—(pr; o g)(x). Hence, from the definition
of f (min((pr; o f)(x))<0), we have mag(pr; o g)(x)) = max(—(pr; o f)(x))=>0.
Similarly, for any pointx € X4 such that pr(x) =d;, we have(pr; o g)(x) = 2pr; (x) —
(pr; o f)(x) =2d; — (pr; o f)(x). Since max(pr; o f)(x))>d;, we have mid(pr; o
g)(x)<2d; — (pr; o f)(x)<2d; — d; = d;. Thereforeg satisfies the conditions of
Theorem 2.2(a), and hengehas a fixed point, say the pointe X;. Then we have
z7€g(x) =>z2€2z— f(2) >z € f(2).

(c) This is immediate from (a).

Thus we have completed the proof of Theorem 2.21

Remark 5.3. The idea of the proof of Theorem 2.2(b) comes fri&h

6. Application to topology
SinceZ" c R", we may define a mapping : R* — 7" by
T(x) =min((tpex) N Z"), Vx € R",

wheretpix = {y € R" | x <y}. Itis clear that]T is well-defined.
The following theorem (Theorem 6.1) is a generalization of Theorem[2]inwhere
Baillon and Simons showed that Theorem 2.1(3) implies the Brouwer fixed point theorem.

Theorem 6.1. Theoren®.1(1)and(2) imply the Halpern—Bergman fixed point theorem for
compact convex subsets®f.

Proof. Itis enough to show the case for continuous inward mappings, since the case for a
continuous outward mapping then follows by a dual argument (see the proof of Theorem
4.3(1) in[5]).

Let I" be the unitn-cube inR”". Firstly, we prove it for then-cubesI” for anys €
R,0<s <oo. Let f:sI" — R" be any continuous inward mapping from* to R". For
anyk € N, k> 1, we define the mapping; : [(0,...,0), (k,..., k)] > Z" by

Sy =11 (f f (%x)) ,

forall x € [(O,...,0), (k,...,k)]. Itis clear thatf; satisfies the condition of Theorem
2.1(2) if f is a continuous inward mapping. By Theorem 2f1,must have a directed
following almost fixed point, say < [(O, ..., 0), (k,..., k)].
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Sinceyis adirected following almostfixed point g, i.e., A 7« fi (Fy) <y < \/ 70 fi (Fy),
therefore

|:S/\Z”fk(Fy)<S_y<s\/Z"fk(Fy):|
AP TTETGE) sy S\/Z"TT(]ﬁf(%Fy))}

= k k k

[SAw GFGRD) _sy sV GG F)+ 1)}

k = k

- VI GR) <2V 0 GR) DY 1o

Rn Rn

Letzx = (sy)/k: clearlyzx € sI". Then it is easy to check that we halgy: f(D;,) < zx
<V f(Dg) +s/k, whereD, = {b € sI" | zx <b<zx + s/k}. Since then-cubes" is
compact and is a constant, thus lét— oo and then by the uniform continuity éff has
a fixed point.

Now letAbe any compact convex subseftf, without loss of generality, we may assume
that for anyx € A, we have ps(x) > 0 for eachi, 1<i <n. We claim that any continuous
inward mapping : A — R"” fromAto R" has a fixed point. Sinc&andg(A) are bounded
subsets iR, for s sufficiently large, we have thecubes” properly containst U g(A).
SinceAis a compact convex subsetléf (see for examplf2]), for any pointx € sI", there
exists a unique point € A such thatlp: (x, y) <dp (x, z) for all z € A, and furthermore,
the mapping : sI" — A defined byr(x) = y is continuous. Then it is clear thasatisfies
the following conditions (sincel” is a compact convex subset Bf containingA as a
subset):

e  maps each point of the boundarysaf*, denoted by#(s1"), to a point of%(A), the
boundary ofA,

e foranyx € sI™\ A, r maps the set of pointdl — a)x + ar(x), 0<a<1, to{r(x)} C
AB(A),

e foranyx € A, r(x) =x.

Note thatr : s1" — A is indeed a retraction from/” to A.

Leth =g or. Clearly,h : sI" — R" is a continuous inward mapping fromi” to
R" (in fact, we haver(sI™) € f(A) C sI"). From aboveh has a fixed point, say €
f(A). We show thatw € A, and hences(w) = (g o r)(w) = h(w) = w; w is also a
fixed point ofg. Suppose not, that is, we haue¢ A. Then we havev € f(A)\A, hence
g(r(w)) = (g or)(w) = h(w) = w (Wwherer(w) # w). Thus (by the property of inward
continuity ofg) there exists a point € A, z # r(w) such thatw € {(1 — a)r(w) + oz €
R" | o e R,a>0} C I4(r(w)). Sowe havelp: (w, r(w)) > dg» (w, z): contradiction. [

Hence by Theorem 6.1, we may call Theorem 2.1 the discrete Halpern—Bergman fixed
point theorem. On the other hand, since in general Euclidean convex subB&tsanfinot
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be“approximated” by rectangle blocks (segmentdRdfit is impossibleo “approximate”
the Browder fixed point theorem by Theorem 2.2.

A possible discrete Browder fixed point theorem should have a formulation similar to
those given i9, Theorem 5.4]Indeed, it is not difficult to show that it can be done by
approaches similar to those which we proposef®]nHowever, as already mentioned in
[9], suitable combinatorial proofs for these (discrete Browder and Kakutani fixed point)
theorems are still unavailable.
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