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A convex polytope P is projectively unique if every polytope combinatoriaily isor.:or-
phic tu P is projectively equivalent to P. In this paper are described certain geometric con-
structivns, which are also discussed in terms of Gale diagrams. These constructions arc
applied to obtain projectively unique polytopes from ones of lower dimension; in particu-
laz, they lead to projectively unique polytopes with many vertices.

1. Introduction

Let p be a d-polytope in E4. Following Griinbaum [1] (as we shall
largely do in matters of terminology), we say that P is projectively unique
if, whenever P’ is a polytope combinatorially isomorphic to P, there is a
projective transformation ¢ of E“ such that P® = P'. We shall further
assume that & takes each vertex of P into the vertex of P’ which corre-
sponds to it under the combinatorial isomorphism. In this respect we
follow Perles, who first discussed projectively unique (or “rigid’’) poly-
topes in a letter to Grilnbaum (who kindly communicated its contents to
us). The relaxation of this additional assumption leads to polytopes
called “almost rigid” by Perles. However, no examples are known of
polytopes which are almost rigid, but not rigid. Indeed, such an example
would answer (in the negative) the probably very hard question (compare
[1, Exercise 6.5.7]): Does there correspond to every polytope £ a com-
binatorially isomorphic polytope P, such that every combinatorial auto-
morphism of P is induced by a symmetry of #’? In view of this problem,
we shall not discuss almost rigid polytopes any further.

Most of Perles’ original results are given in [1, §§4.8,5.5,6.5 and 11.1].
One other is described by Perles and Shephard [4] ; as we shall remark in
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Section 6, it is a special case of one of our constructions. These construc-
tions are described geometrically in Section 2, and in terms of Gale dia-
grams in Section 3; they generalize constructions of Perles and Shephard
[3] and may well be of use in other contexts.

Shephard, in an unpub'ished manuscript which he has kindly let us use,
made what is believed to be a complete list of projectively unique 4-poly-
topes; all these, and the known projectively unique 3-polytopes, can be
constructed by our methods. We shall see in Section 7, however, that there
are projectively unique polytopes which our constructions do not yield.

2. The geometric constructions

The first of our constructions, that of the (free) join, seem« to have
originated with Semmerville {5]; it was also used by Perles and Shephard
[3]. If P and Q are two polytopes, such that

dimconv(Pu@)=dimP+dimQ+1,

we call the polytope conv(P U Q) the join of P and @, and denote it by
P @ Q. In the particular case when Q 1s a point (0-polytope), P@Q is a
pyramid with basis P. The subspaces aff P and aff Q are independent (to-
tally skew); thus the union of affinely independent subsets of aff P and
aff Q is affinely independent.

The combinatorial structure of the join is easily described (we leave
the proof of the proposition to the reader).

Proposition 2.1. The faces of P ® Q are precisely the sets of the form
F @ G, where Fis a face of Pand G is a face of Q (including F=Q or P
ard G =0 or Q).

We dcnote by B(P) the group of projective symmetries of the polytope
P, that is, the group of {(necessarily non-singular) projective tran: ..rma-
tions ® of EZ such that P9 = P. We write B(P | vert P) for the suogroup
of B(P) consisting of those projective symmetries of P which leave fixed
each vertex of P. We then obtain the following useful characterization
of the join.
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Theorem 2.2. Let F be a k-face of a polytope P. Then B(P | vert P) is
transitive on relint F if and only if F is a k-simplex, with vertices

Xg» s Xy (say), and P has faces Py, ..., P, withx, € P (i=0, ..., k),
such that

P=P,®.QFP, .

To prove this, we imbed E? in E9*! as, say, the coordinate subspace
;41 = 1. To the projective transformations of B(P| vert P) correspond
the linear transformations of E9*! which leave fixed each of the direc-
tions through the vertices of P. Let F,, ..., F, be the maximal faces of P,
each point of which B(P | vert P) leaves fixed. Then, in E?*! each F,
spans a linear subspace L,; the corresponding linear transformatiors on
L, are the positive scalar multiples of the identity. It is now easy to see
that L, ..., L, are independent subspaces. From the definition of F,
each vertex of F lies in a different face F;. Hence, if Fis a k-face, it is a
k-simplex, with vertices x, ..., x, (say). Rename F, ..., F,, so that
x,€P,=F (i=1,.,k),andletP;=F,  , ® ..® F,,sothatx, € P,.
Since each vertex of P belongs to some face F, it follows that

P=F,®..9®F,
Py®@..@P,.

as required. Since the converse is clear, this proves Theorem 2.2.

We now describe our second construction. Let P and Q be polytopes
r/hose affine hulls meet in a single point, which is a relatively interior
point of the faces F of P and & of Q. We allow F =P or G =  here. Then
the polytope conv(P U Q) is walled the subdirect sum of P and Q relative
to F and G, and is denoted by

(P.F)e(Q G).
If F=Pand G = Q, we have the direct sum of Perles and Shephard [3]:
PeQ=P P)e(Q Q).

The next proposition describes the combinatorial structure of the sub-
direct sum.
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Proposition 2.3. The faces of the subdirect sum (P, ¥) ® (Q, G) are pre-
cisely those sets of the form either (a) FI ® G,, where F ;0 FcC Fand
G, NGCG or(b)(F,. F)®(G,, G), where F| 2Fand G, 2 G.

For, the faces are of type (a) or (b) according as the supporting hvper-
plan: determining them misses or contcins the common relatively interior
point of F and G, the details of the proof will be omitted. (Note that C
means strict inclusion.)
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the direct sum, which we have already mentioned) are as follows. First,
«he subdirect sum (P, F) 3 (Q, G) of P and Q relative to a vertex F = G of
cach is called a veriex sum; F = G is called the distinguished vertex of the
vertex sum. Second, if /' is a vertex of P, and T is a simplex, then we say
that (P, F) & (T, T) is obtained by «dding the szmplex T at the vertex F
of P.

It should be observed that the join can ..e obtained as a special case
of the subdirect sum, and, indeed, as an iterated vertex sum. For, con-
siderP=P, @ ...® P . Letx; be any vertex of P, (fori = 1, ..., r). Then
T=convix,, ., x,} is an (r—1)-simplex, and if we define successively:

+ .2
| SR FAW;S))

Q,=T. Q= _;, {x; 38, {x;}),

fors=1,...,r, then clearly Q, = P.

Our final construction is the dual of the second, and is defined as fol-
lcws. if Pis a polytope, and F a face of P, let P* be a dual of P, and Fits
corresponding face. (If we wish, we may assume that P* is defined to
wi.hin projective equivalence; see, for example, [2, §2.2, particularly
Theorem 14}, and compare Theorem 3.3 below.) Let P and Q be poly-
fopes, and let Fbe afaceof Pand G afaceof Q, withF# Pand G # Q
(but we allow F =0 or G = 9). Then the polytope

(P,F) e (Q,G) = ((P*, F) o (Q*, G))*

is called the subdirect product of P and Q relative to F and G.
As a particular case of the subdirect product, we have the direct or
cartesian product

PzQ=(P,0)2(Q0.0).
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We shall not give a geometrical description of the subdirect product,
since the details are a little complicated. We shall therefore confine our-
selves to stating the result which describes its combinatorial structure.

Proposition 2.4. The faces of the subdirect uct (P, F) ¢ (Q, G)are
precisely the sets of the form cither (a) F 1 U s where F, C Fand
G, C G, or (b) (F. F,nF)e (G, G, N G), where F, ¢ Fand G, %G

3. Projectively unique polytopes

We now investigate some of the connexions between our geometric
constructions and projectively unique polytopes.

Theorem 3.1. The join P ® Q of two polytopes P and Q is projectively
unique if and only if both P and Q are.

The proof of this result is a straightforward application of familiar
properties of projective transformations; we shall not go into the details.
(Compare the proofs of Theorem 2.2, or Theorem 5.1.)

More interesting is the next result, about subdirect sums. it only pro-
vides a necessary condition; we must postpone the discussion of suffi-
cient conditions until Section 5.

Theorem 3.2. If (P, F) & (Q. &) is projectively unique, then P and Q are
projectively unique, and B(P | vert Py (B(Q | vert Q)) is transitive on
relint F (relint G, respectivel}).

The proof follows immediately on considering the cases where P and
Q lie in compicmentary linear subspaces, with the origin as the common
point of relint £ and relint G.

The polytopes with the property of Theorem 3.2 were described in
Theorem 2.2. In view of the remarks there, we see that, if we wish to
apply our constructions to projectively unique polytopes, in order to
obtain cnes of higher dimension, we can confine our attention to three
particular cases:
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(1) The dircct sum of two simplices.
(I1) A vertex sum of two polytopes.

(I11) The result of adding a simplex at a vertex of a polytope.

In fact, this third case reduces still further; an easy induction argument
(compare Theorem 5.3 telow) shows that we need only consider:

(111)’ The result of adding a segment at a vertex of a polytope.

It would not be at all difficult to prove directly that polytopes ob-
tainzd by means of (I) or (ID) are projectively unique. However, the proofs
using Gale diagrams are more straigh¢forward.

Our final remark shows that we necd not consider the subdirect pro-
duct separately (compare [1, Exercise 4.8.30]).

Theorem 3.3. A polytope P is proje:tively unique if and only if its dual
P* is,

For, if P is a polytope with o & int P, then
P*={xe€E¥: (x,y)< 1, foral '€ P}

is a dual of P. Now, if P, is a polytope projectively equivalent to P, aiso
with o € int P, , then P¥ is projectively equivalent to P* ([2, Chapter 2
Theorem 14]). The theorsm follows at once.

4. Gale: diagrams

in this section, we shall describe the Gale diagrams of the join and sub-
direct sum of two polytopes, in terms of the Gale diazrams of the original
polytopes. It is sufficiently general, for our purposes, to consider the affine
(or Gale) transforms of the sets of their vertices. For cackground informa-
tion about Gale diagrams, the reader should consult Griinbaum [1, §5 4]
or McMullen and Shephard [2, Chapter 3].

We begin by recalling that, to find the affine transform of an ordered
set X = (xq. ..., x,) of points in E9, we write a basis for the linear sub-
space A(X) of affine dependences (@), ..., a,) E" of X, satisfying

n n
Ea.x.zo, Ea.=0
i=1 i=1 !

Lt
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as the column vectors of a matrix; the rows Xy, ... X, of this matrix
(which are in an obvious one to one correspondence with the points of
X) form our affine transform X. Clearly, X depends upon the choice of
basis,“lgut it is determined by X up to linear equivalence. If aff X = 9,
then X spans E*~9-! (linearly, and, indeed, positively).

We first consider the join P @ @, and write vert P = (... p,,) and
vert Q@ =(q,, .... q,,), so that vert(P ® Q) = (p,. ..., p,,, qy, - q,) If
dimP=rand dim Q =s, thendim(P® Q) =r +s + 1; thus, n {a,,
ay,_, yand {b,, .., b, _ 1} form bases of A(vert P) and A(vert Q)
respectively (where we write a = (a,, ..., a, ) € A(vert P), and so on), and
we define

a;‘=(ak,0)‘, (k=1,...m-r-1),
b;=(0,bl) (l=1,...,n-s5s-1)

(here,d’ = (a,, ..., a,, 0, ..., 0), and similarly for b') it is clear that
{dy,....a, , ;. by.... b, _, ,}islinearly independent, and so is a
basis of A(vert (P ® Q)) Hence an affine transform of vert(P ® () con-
sists of

p,=(p,0) (=1,.,m),
ﬁl‘:((‘l Z?I) (j: l-, aney n),

where (p,, ..., p,. ) and (g,. ..., ) are affine transforms of vert P and
vert Q, respectively. That is, we place the affine transforms of vert P and
vert @ in complementary linear subspaces.

We now consider the subdirect sum (P, F) & (Q, G). Here there are two
cases, according as neither £ nor G is a vertex, or as one or both are. Let

=TT NP = E -1 4 belonging to relint F N relint & be the common
pointofPandQ where?\ p/U 2” =1=Z —1“ and\;=0= M;
if p, eFandqﬁ(‘ wecanalso %%sume)\ M, >0;fp <—Fandq €G.
As before, let {a1 g tand B b ; } be bases ofA(Vert P)
and A(vert Q), respectiveiy.

In case neither F nor G is a vertex,

n-8§-

a, =(a,,0) tk=1,...,m—-r—-1),
b, = (0, b)) (=1, ..n-5-1),
=\ A My M)
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form a basis of A(vert((P, F) @ (@, G))); the last affine dependence expres-
ses the relation involving the common p«)ipt x mentiocned above. Thus, an
affine transform of vert((?, F) @ (@, G)) consists of

p; = (p; 0, \) (i=1,..,m),
&l‘:(o: a's '""u]) U= l,...,N),

where (B, ..., P,,) and (g, ..., §,) are affine transforms of vert P «nd
vert (0, respectively, as before.

In the other case, suppose, without loss of generality, that x = p, is
the vertex of P lying in relint G, so that A; = 1. As will be seen, the case
where G s also a vertex is covered by the argument. Our basic affine
dependences are obtained from those of vert P and vert by everywhere
replacing p, by its expression

n

P, =,-=E, H;4; -
(Remember that p, is no longer a vertex of (P, F) @ (¢, G).) Hence, a
basis of A(vert((P, F) ® (Q, G))) consis!s of (in an obvious notation)

@ = (Cgps ey Qs By Qs e @) (K= 1, m—r—1),

b, =(O,...,O,B”:. B, (l=1,..,n-s-1),
and so an affine transform of vert((, F) ® (Q, G)) consists of

p;=®;,0) (i=2,..,m),

G=Wwp.a)  G=1..n).

If G is also a vertex, {q, } say, we see that we have symmetry between
the p’s and ¢’s (since p, = 1).

5. Siable Gale diagrams

To projective transformations on polytopes correspord equivalences
on their Gale diagrams, vhich are transformations of the form

X, »vx ¥,
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where v, > O for all i, and ¥ is a non-singular linear transformation. Two
Gale diagrams related in this way are called equivalent. To combinatori-
ally isomorphic polytopes correspond isomorphic diagrams, where the
(one-to-one) mappings preserve the relationships of the form

o € relint convY ,

for all subsets ¥ of X. We say a Gale diagram is stable if every isomorphic
diagram is equivalent to it; thus a polytope is projectively unique if and
only if its Gale diagram is stable.

We have already discussed in Section 3 the connexion between our
geometric constructions and projective unigueness. However, we left
open there the question of suificiency with the subdirect sums. Here we
complete that discussion. By the results of Section 3, we can restrict our
attention to projectively unique polytopes P and (). We had three cases
to consider, and we deal with them in the order given in Section 3.

Theorem 5.1. The direct sum of two simplices is projectively unique.

For, if the sum is d-dimensional, it has d + 2 vertices. Its Gale diagram
is therefore one-dimensional, and is clearly stable (compare [2, Chapter

3.

Theorem 5.2. 4 vertex sum cf two projectively unique polytopes is pro-
jectively unique.

For, let the two polytopes P and Q have Gale diagrams P and Q with
p € Pand g € Q corresponding to the distinguished vertex p = q. Then
the Gale diagram of K= (P, {p})® (Q, {q})is .

K=@\{pHu @\ (gHu(p+7),

where we regard Pand Q as lying in complementary linear subspaces. But
any isomorphic diagram K , has a simiiar decomposition into two subsets
lying in complementary subspaces L and M, and a single point p, + g,

(p, €L g, €M). Then P, = (K, n L)u {p,;} and @, = (K, n M) U {g,}
are isomorphic to P and Q, respectively; since these isomorphisms can be
realized by equivalences, it follows that K is equivalent to K, so that K
is stable, as was to be shown.
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Note that a similar, but zasier argument gives a proof of Theorem 3.1.
Our final result characterizes the remaining cases in ‘which our con-
structions yield a projectively unique polytope.

Theorem 5.3. Let P be a projectively unique polytope, and let x be a
veriex of P. Then adding a segment to P at x yields a projectively unique
polytope, except wheii P is a vertex sum, with x as distinguished vertex.

The necessity of this condition is obvious from geometric considera-
tions; if P= (P, {x,}) P (P, {x,}) (withx =x, =x), we can form a
polytope comtinatorially isomorphic to (P, {x}) @ (/, 1), where [/ is a seg-
ment, by parallel displacement of P, , moving x, to a new pesition in /
distinct from x, . Clearly, this new polytope will not (in general) be pro-
jectively equivalent to 2. However, it is by no means obvious (and the
author was unable to prove) geonetrically that the condition is sufficient.
So, to prove this, we consider the Gale d° gram P of P. The Gale diagram
of (P, {x})e(l I)is obtained (up to equivalence) by replacing the point
tof P corresponding t& x by the repeated pair (¥, X¥). If we can obtain
an equivalent Gale diagram of P by replacing ¥ by ¥ # A%, and keeping
fixed the remaining points of P, then the diagram obtained by replacing
% by the pair (%, X') is isomorphic, but clearly not equivalent to the ori-
ginal Gale diagram of (P, {x}) @ (/, I). We thus conclude that the Gale
diagram of (P, {x}j @ (I, I is stable if and only if ¥ is determired (up to
pcsitive multiple) by the positions of the remaining points of 2. But
clearly ¥ is not so determined preciselv when these remaining points lie
in complementary linear subspaces (recall that B is stable, so that the
possible positions of ¥ can be attained by equivalences). Comparing with
the proof of Theorem 5.2, we see at once that P is a vertex sum, with x
as distinguisheod vertex, as we wished to show.

6. Projectively unique polytopes with many vertices
Results exactly analogous to those of Section 5 hold for subdirect

preducts of polytopes (by virtue of Theorem 3.3). In particular, if, for
i=1,.. k PE. is a c!’.-dimens.ionai prism, whose basis is a (¢ i—-l )-dimen-
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sional simplex Pl then the subdirect product
P= 2,. Fl)@» @\’Pk, F)

is projectively unique (it is dual to a repeated vertex sum of bipyramids
with simplicial bases). Easy calculations, using Proposition 2.4, show

that Phasd, +..+d, + k + | facets and dy..d, +d, +..+d, vertices
It can be proved (though the details are involved) that P is the polytope
whose Gale diagram was constructed directly by Perles, who remarked
that, by suitable choice of d , ..., d, , one could then find projectively
unique d-polytopes with about 34/3 vertices. We refer the reader to [4)
for further details.

7. Remarks

If we apply any of our three constructions to projectively unique
rational polytopes, which are (projectively equivalent to} polytopes
whose vertices have rational cartesian coordinates, then we obtain ratio-
nal polytopes. Since Perles has found non-rational projectively unique
polytopes (see [ 1, Theorem 5.5.4]), we conclude (not surprisingly) that
our constructions cannct yield all projectively unique polytopes, starting
from points as basic building blocks.

In fact, we can even give a rational polytope which (we believe) cannot
be so constructed. Following the notation of Perles and Shephard [4], if
we regard the points ¢;, 7 of their Gale diagram as being linearly (rather
han affinely) independent, and add to the diagram the further point
we obtain a new stable Gale diagram, of a rational (d, + ... + d} )-polytope
withd, .. d, +d, +...+d, +1 vertices, one more than in the previous
example. If £ > 3 and d, =3 for all i, this number of vertices seems not
to be attainable hy means of our constructions.

On the more positive side, the projectively unique 3-polytopes have
been characterized as precisely those with at most 9 edges (see |1, Exer-
cise 4.8.30]), and Shephard (private communication) has independently
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made a list, believed to be complete, of the projectively unique 4-poly-
topes. All of these polytopes can be constructed by the methods described
here.

Mcast of the results of this paper appear in my Ph. D. Thesis (Birming-

ham, 1968), written under the supervision of Professor G.C. Shephard.
Hnwavpr the account remained incomplete. until I recentlyv found the

v wa TEE LW wur W, A WESIIRLEEW N REAWTIAIPTAW LW Y SRR WAL v warsay T W .

characterization of Theorem 5.3. My thanks are due to Professor Shep-
hard for his patient reading and commenting on a previous version of
this work, and to Professor B. Griinbaum, without whose prompting this
paper would probably never have seen the light of day.
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