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Abstract

This paper develops a novel nonlinear numerical method to perform shakedown analysis of structures subjected to var-
iable loads by means of nonlinear programming techniques and the displacement-based finite element method. The anal-
ysis is based on a general yield function which can take the form of most soil yield criteria (e.g. the Mohr–Coulomb or
Drucker–Prager criterion). Using an associated flow rule, a general yield criterion can be directly introduced into the kine-
matic theorem of shakedown analysis without linearization. The plastic dissipation power can then be expressed in terms of
the kinematically admissible velocity and a nonlinear formulation is obtained. By means of nonlinear mathematical pro-
gramming techniques and the finite element method, a numerical model for kinematic shakedown analysis is developed as
a nonlinear mathematical programming problem subject to only a small number of equality constraints. The objective
function corresponds to the plastic dissipation power which is to be minimized and an upper bound to the shakedown load
can be calculated. An effective, direct iterative algorithm is then proposed to solve the resulting nonlinear programming
problem. The calculation is based on the kinematically admissible velocity with one-step calculation of the elastic stress
field. Only a small number of equality constraints are introduced and the computational effort is very modest. The effec-
tiveness and efficiency of the proposed numerical method have been validated by several numerical examples.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Shakedown analysis is a direct method to calculate the bearing capacity and the stability condition of an
elastoplastic structure subjected to variable loads. This can provide a powerful tool for the engineering design
and safety estimation of structures. When a variable load is applied to a structure, three conditions may occur:
0020-7683/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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• Purely elastic: If the applied load magnitude is lower than the elastic limit (first yield load) of the structure,
no plastic deformation occurs and the structure undergoes only a purely elastic deformation.

• Shakedown: If the load is larger than the elastic limit but is less than a critical limit, plastic deformation
takes place in some part of the structure. However, after a number of load cycles, the plastic deformation
will cease to develop further and the structure will respond purely elastically to the remaining load cycles. If
this happens, then the structure is said to have shakedown. The critical load limit below which shakedown
can occur is known as ‘shakedown limit’.

• Non-shakedown: If the applied load is higher than the shakedown limit, a non-restricted plastic flow will
occur and the structure will collapse due to excessive deformation or low cycle fatigue.

If the non-shakedown condition happens, the structure may undergo the failure mode of either incremental
collapse (ratchetting) or alternating plasticity (low cycle fatigue). In the first case, plastic strains and displace-
ment increase with the successive loading cycles until the structure fails. In the case of alternating plasticity,
materials at the most stressed points begin to break due to low-cycle fatigue damage and high plastic work
density, but the plastic deformation still remains small.

By means of shakedown analysis, the shakedown limit and shakedown condition of a structure subjected to
variable loads can be found. Shakedown analysis is based on two fundamental shakedown theorems, the static
or lower bound theorem (Melan, 1938) and the kinematic or upper bound theorem (Koiter, 1960). The early
research works were mainly focused on the theoretical analysis for simple structures. Due to the complexity of
engineering problems, numerical techniques are required for shakedown analysis. Over the last two decades,
with the rapid development of computational techniques, the numerical methods of shakedown analysis have
been developed rapidly (e.g. Maier, 1969; Weichert, 1984; Morelle, 1986; Weichert and Gross, 1986; Genna,
1988; Stein et al., 1992, 1993; Zhang, 1995; Xue et al., 1997; Feng and Liu, 1997; Hachemi and Weichert, 1998;
Carvelli et al., 1999; Weichert et al., 1999a,b; Ponter and Engelhardt, 2000; Maier et al., 2000; Chen and
Ponter, 2001; Zouain et al., 2002; Khoi et al., 2004). However, these works are mostly for von Mises’
yield criterion.

Sharp and Booker (1984) were among the first to apply shakedown theory to the stability analysis of soil
structures. By assuming a plane strain deformation normal to the travel direction, Sharp and Booker found
that the problem of pavements under repeated surface loads may be analysed as a one-dimensional shakedown
problem. As a result, they developed a semi-analytical approach for determining the shakedown loads. Fol-
lowing this work, Raad et al. (1988) and Radovsky and Murashina (1996) applied the lower bound shakedown
analysis to pavement engineering for determining the stability condition, where a two-dimensional (2-D)
model was assumed.

Instead of using a lower bound method, Collins and Cliffe (1987), Collins and Wang (1992), and Collins
and Boulbibane (2000) adopted a kinematic approach to perform shakedown analysis for soil structures.
An upper bound to shakedown limit can be obtained.

Yu and Hossain (1998) and Shiau and Yu (2000) developed a linear programming technique to perform
shakedown analysis and successfully applied this method to engineering design of layered pavement. Linear
finite elements were used, and stress and strain discontinuities were considered. By means of the proposed
method, many practical shakedown charts were produced which can be directly used for engineering design
of pavements.

Johnson (1992) studied the influence of residual stresses, strain hardening and geometry on the shakedown
process and a design criterion in the form of shakedown maps was presented. By means of the static theorem
of shakedown analysis, Boulbibane and Weichert (1997), Hamadouche and Weichert (1999) and Yu (2005)
theoretically studied the shakedown condition of soil structures subject to variable loads. All of these theoret-
ical works can be used to benchmark numerical shakedown results.

Recently, Li and Yu (2005) developed a novel nonlinear numerical approach to perform limit analysis for a
general yield criterion by means of nonlinear mathematical programming technique and the finite element
method. Kinematic limit analysis was finally constructed as a nonlinear mathematical programming problem
and an upper bound to the limit load of a structure subjected to static loads can be calculated. The proposed
method is based entirely on kinematically admissible velocities without calculation of stress fields and only a
single equality constraint is introduced into the nonlinear programming problem. Therefore, the computational
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effort is very modest. Moreover, the proposed method is based on a general yield criterion which covers most of
soil yield criteria (e.g. the Mohr–Coulomb or Drucker–Prager yield criterion).

The purpose of this paper is to extend the nonlinear numerical technique of Li and Yu (2005) for limit anal-
ysis to shakedown analysis so that it can be used to evaluate the shakedown limit and shakedown condition of
frictional materials under repeated/cyclic loading. A general yield criterion defined by a polynomial with both
first and second-order terms is used, which makes the developed method suitable for most of frequently-used
yield criteria. By means of an associated plastic flow rule, the dissipation power for the general yield criterion
is expressed in terms of kinematically admissible velocity only. Nonlinear yield surfaces do not linearized and
then can be directly introduced into the kinematic shakedown analysis. This can significantly reduce the num-
ber of constraints and the computational error. Using the nonlinear programming theory and the finite ele-
ment technique, the numerical model of kinematic shakedown analysis is formulated as a nonlinear
mathematical programming problem subject to a small number of equality constraints. The objective function
corresponding to the plastic dissipation power is to be minimized and then an upper bound to the shakedown
limit of a structure subjected to variable loads can be calculated. An effective, direct iterative algorithm is then
developed to solve the resulting programming problem. The efficiency and effectiveness of the proposed
method are illustrated by numerical examples.
2. Shakedown analysis based on a general yield criterion

According to shakedown theory, a material model of elastic-perfectly plasticity and an associated flow rule
is assumed. For soil materials, most yield criteria can be expressed by a polynomial with both first and second-
order terms (e.g. the Mohr–Coulomb and Drucker–Prager criteria). Note that a tensile stress is assumed to be
positive in this paper. Moreover, in order to use the finite element method, we adopt column vectors to repre-
sent strains and stresses. For example, in a two-dimensional model, e = [e11, e22,2e12]T, and r = [r11,r22,r12]T,
and in a three-dimensional model, e = [e11, e22, e33,2e12,2e23,2e31]T, and r = [r11,r22,r33,r12,r23,r31]T.

2.1. A general yield criterion

Many widely used yield criteria for frictional materials can be expressed in a general form as follows:
F ðrÞ ¼ rTPrþ rTQ � 1 ¼ 0 ð1Þ
where F(r) defines a yield function in terms of strength parameters, P and Q are coefficient matrices and re-
lated to the strength properties of the material.

Expression (1) can be regarded as a general yield criterion for frictional materials. For example, the Mohr–
Coulomb criterion in plane strain can be expressed as
F ðrijÞ ¼ ðrxx � ryyÞ2 þ ð2rxyÞ2 � ð2c cos u� ðrxx þ ryyÞ sin uÞ2 ¼ 0 ð2Þ
where c and u are the cohesion and the internal friction angle of the material, respectively. It can be shown
that the Mohr–Coulomb criterion can be expressed in the form of Eq. (1) with the following relations:
P ¼

1

4c2

�1� sin2 u
4c2 cos2 u

0

�1� sin2 u
4c2 cos2 u

1

4c2
0
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The Drucker–Prager criterion is also frequently used for frictional materials and can be expressed as
F ðrÞ ¼ u0I1 þ
ffiffiffiffiffi
J 2

p
� c0 ¼ 0 ð5Þ
where I1 is the first invariant of stress tensor, J2 is the second invariant of the deviatoric stress tensor, u0 and c0

are strength parameters of the material. In a general stress state, Eq. (1) can also be used to define the
Drucker–Prager criterion under the following conditions:
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0 0 0

� �T

ð7Þ
2.2. Kinematic theorem of shakedown analysis

An upper bound to the shakedown limit of a structure can be obtained using the kinematic theorem of
shakedown analysis (Koiter, 1960). The kinematic theorem states:

Shakedown cannot occur for a structure subject to repeated or cyclic loads when the rate of plastic dissipation

power is less than the work rate done by the applied tractions and body forces for at least one admissible cycle of

plastic strain. In other words, shakedown occurs if the rate of plastic dissipation power exceeds the work rate due

to external forces for any admissible cycle of plastic strain.

Since the kinematic theorem of shakedown analysis is based on kinematically admissible plastic strain rates,
it can be formulated as follows:
ksd

Z T

0

Z
Ct

ti _u�i dCþ
Z

V
fi _u�i dv

� �
dt 6

Z T

0

Z
V

Dð_ep�

ij Þdvdt ð8Þ
where ksd is the shakedown load multiplier, ti is the basic load of surface tractions, fi is the basic load of body
force, ti and fi are cyclic over a time interval [0,T], _ui is the displacement velocity, _ep

ij is the plastic strain rate,
‘‘Dð_ep�

ij Þ’’ denotes a function for the rate of plastic dissipation power in terms of the admissible strain rate _ep�

ij ,
the superscript ‘‘*’’ stands for a parameter corresponding to the kinematically admissible strain field, Ct de-
notes the traction boundary, and V represents the space domain of the structure.

By applying the principle of virtual work to the first term of the left-hand side of Eq. (8), one can obtain
Z T

0

Z
Ct

ti _u�i dCdt ¼
Z T

0

Z
V

re
ijð_e

p�

ij þ Cijkl _qs�

klÞdvdt ¼
Z T

0

Z
V

re
ij _e

p�

ij dv dt ð9Þ
where re
ij is the linear elastic stress response to the current external traction ti, Cijkl is the elastic compliance

tensor, and _qs�
kl is the residual stress rate associated with the admissible plastic strain rate _ep�

ij and _qs�
kl is self-

equilibrated.
Based on the mathematical programming theory and by applying Eq. (9) to Eq. (8), the kinematic shake-

down theorem can be re-expressed as the following programming problem, if the body force is omitted:
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ksd ¼ min
_ep�
ij ;Dui

R T
0

R
V Dð_ep�

ij Þdv dt

s.t.
R T

0

R
V re

ij _e
p�

ij dvdt ¼ 1

Dep
ij ¼

R T
0

_ep�

ij dt ¼ 1
2
ðDui;j þ Duj;iÞ in V

Dui ¼
R T

0
_ui dt in V

Dui ¼ 0 on Cu

8>>>>>>>>><
>>>>>>>>>:

ð10Þ
where Dep
ij and Dui are the cumulative plastic strain and displacement fields at the end of one loading cycle over

the time interval [0,T], respectively, and Cu denotes the displacement boundary.
Finally the kinematic shakedown analysis of a structure is formulated as the calculation of shakedown mul-

tiplier ksd, with ksd Æ ti being shakedown limit of the structure.

2.3. Plastic dissipation power for a general yield criterion

Since that the kinematic shakedown analysis is based on displacement modes, the stress terms need to be
expressed in terms of the strain terms (i.e. the plastic dissipation power per unit volume in Eq. (10) should be
expressed in terms of strain fields which can be obtained by using the yield criterion and a plastic flow rule).
The plastic flow rule determines the direction of the plastic strain rate with the following normality relation:
_ep
ij ¼ _l

owðrijÞ
orij

ð11Þ
where w(rij) denotes a plastic potential function that resembles the yield function and _l is a non-negative plas-
tic proportionality factor. In the theory of shakedown analysis, the flow rule is assumed to be associated, i.e.
w(rij) = F(rij). Therefore, the plastic strain rate can be expressed as
_ep ¼ 2 _lPrþ _lQ ð12Þ

By introducing Eq. (12) into the yield criterion (1), the plastic proportionality factor _l can be determined by
the following formulation:
_l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_epÞTP�1 _ep

4þQTP�1Q

s
ð13Þ
Then, the plastic dissipation power for the general yield criterion (1) can be expressed as
Dð_ep
ijÞ ¼ rij _e

p
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2 _l
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q
� 1

2
ð_epÞTP�1Q ð14Þ
The more detailed description about how to deduce the plastic dissipation power for a general yield criterion
can be found in the research of Li and Yu (2005).

As a result, the kinematic shakedown analysis of a structure modelled by the general yield criterion can be
formulated as the following nonlinear mathematical programming problem:
ksd ¼ min
_ep
ij ;Dui
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8>>>>>>>>>><
>>>>>>>>>>:

ð15Þ
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2.4. Removal of the time integration

In order to apply the mathematical programming formulation (15) to a structure, the time integration must
be removed because it would be difficult to calculate the integration along a deformation path. To overcome
this potential difficulty, König’s technique (König, 1979, 1987) is used in this paper.

Due to cyclic loading, the load domain X can be thought of as a load space, the shape of which is a hyper
polyhedron defined by a convex linear combination of load vertices Pk (k = 1,2, . . . , l). It is assumed that if a
structure reaches a state of shakedown under any load vertices, then it will shakedown under the whole load

domain X. The cyclic loading remains constant over a time interval sk
Pl

k¼1sk ¼ T
� �

on each vertex, and the

admissible plastic strain cycles on these vertices can generate plastic strain increment
e
p
k ¼

Z
sk

_ep dt ðk ¼ 1; 2; . . . ; lÞ ð16Þ
Then the cumulative plastic strain at the end of one loading cycle over the time interval [0, T] can be obtained
as follows:
Dep ¼
Xl

k¼1

e
p
k ð17Þ
Finally, the kinematic shakedown analysis of a structure subject to repeated or cyclic loads can be expressed
as the following nonlinear mathematical programming problem:
ksd ¼ min
e

p
k ;Du

Pl

k¼1

R
V

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

p
kð Þ

T
P�1e

p
k

� �
� ð4þQTP�1QÞ

r
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2
e

p
kð Þ

T
P�1Q

� �
dv

s.t.
Pl

k¼1

R
V re

k

	 
T
ep

k dv ¼ 1

Dep ¼
Pl

k¼1

e
p
k ¼ WðDuÞ in V

Du ¼ 0 on Cu

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð18Þ
where W is a linear compatibility differential operator which is defined by Eq. (15)3.
3. Finite element modelling

The displacement-based finite element method is used in this paper to perform the numerical calculation for
the kinematic limit analysis. The structure is first discretized into finite elements Ve (V ¼

SN
e¼1V eÞ. Then, the

displacement velocity and strain rate fields can be interpolated in terms of an unknown nodal displacement
velocity vector
DueðxÞ ¼ N eðxÞDde ð19Þ
DeeðxÞ ¼ BeðxÞDde ð20Þ
where, with reference to the eth finite element, Dde is the nodal cumulative displacement column vector over a
loading cycle, Ne is the interpolation function, and Be is the strain function
Be ¼ ½B1;B2; . . . ;Bm� ð21Þ
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ði ¼ 1; 2; . . . ;mÞ ð22Þ
where m is the nodal number of elements.
By using the Gaussian integration technique, the objective function in Eq. (18) can be discretized as follows:
Xl

k¼1

Z
V

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

p
kð Þ

T
P�1e

p
k

� �
� 4þQTP�1Q
	 
r

� 1

2
e

p
kð Þ

T
P�1Q

� �
dv

¼
Xl

k¼1

XN

e¼1

Z
V e

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

p
ekð Þ

T
P�1e

p
ek

� �
� ð4þQTP�1QÞ

r
� 1

2
e

p
ekð Þ

T
P�1Q

� �
dv

¼
Xl

k¼1

XN

e¼1

XIG
i¼1

ðqeÞijJ ji
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

p
ekð Þ

T
P�1e

p
ek

� �
� 4þQTP�1Q
	 
r

� 1

2
e

p
ekð Þ

T
P�1Q

� �

¼
Xl

k¼1

Xn

r¼1

qrjJ jr
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

p
krð Þ

T
P�1e

p
kr

� �
� 4þQTP�1Q
	 
r

� 1

2
ðep

krÞ
T
P�1Q

� �
ð23Þ
where, with reference to the rth Gaussian integral point, qr is the Gaussian integral weight, jJjr is the deter-
minant of the Jacobian matrix, IG is the number of Gaussian integral points of the finite element e, and n

is the number of Gaussian integral points of the FE-discretized structure.
After the discretization, the normalization condition in Eq. (18) can be rewritten as follows:
Xl
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Z
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p
k dv ¼
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T
e

p
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Meanwhile, the geometric compatibility of cumulative plastic strains in Eq. (18) can be re-written as
Dep
r ¼

Xl

k¼1

e
p
kr ¼ BrDd ðr ¼ 1; 2; . . . ; nÞ ð25Þ
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where Dd is a global nodal cumulative displacement vector of the discretized structure over a loading cycle and
Br is the strain matrix at the rth Gaussian integral point
Br ¼ Be � C e ð26Þ

where Ce is the transformation matrix which can assemble the finite element matrix into the global matrix.

Finally, the finite element modelling of the kinematic shakedown analysis for a general yield criterion can
be expressed as the following nonlinear programming problem:
ksd ¼ min
e

p
kr ;Dd
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8>>>>>>><
>>>>>>>:

ð27Þ
After the displacement boundary condition is imposed by means of the conventional finite element tech-
nique, a minimum optimized upper bound ksd to the shakedown limit multiplier of a structure can be obtained
by solving the above mathematical programming problem. The shakedown limit of the structure is then given
by ksdF.
4. Iterative solution algorithm

The kinematic shakedown analysis of a structure defined by Eq. (27) is a mathematical programming prob-
lem subject to equality constraints. The objective function is nonlinear, continuous but may be non-differen-
tiable which results from the calculation of square root. This causes some difficulties in solving the
programming problem. For a linear non-differentiable programming problem, if the objective function is finite
and continuous in a feasible set, it is not necessary to be differentiable everywhere and an optimal solution can
be obtained (Shapiro, 1979). For a nonlinear programming problem similar to Eq. (27), which was con-
structed to perform limit and shakedown analyses for the von Mises criterion (Zhang et al., 1991; Zhang
and Lu, 1995; Liu et al., 1995; Li et al., 2003), was overcome by means of an iterative algorithm (Zhang
et al., 1991), where a technique based on distinguishing rigid/plastic areas was developed. Based on this tech-
nique, Li and Yu (2005) developed a general iterative algorithm to solve the nonlinear programming problem
for limit analysis of frictional materials. This developed algorithm can be extended to solve the nonlinear
mathematical programming problem (27).
4.1. Minimum optimization strategy

According to the mathematical programming theory, an equality constraint can be introduced into an opti-
mization problem by means of the Lagrangean method (Himmelblau, 1972) which is used in this paper to
remove the constraints from the normalization condition (27b) and the geometric compatibility (27c). As a
result, an unconstrained minimum optimization problem can be obtained as follows:
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where k and Lr are Lagrangean multipliers.
According to the Kuhn–Tucker stationarity conditions (Himmelblau, 1972), the following formulation can be

obtained for solving the kinematic shakedown analysis problem (27) by applying oL
oe

p
kr
¼ 0; oL

oDd
¼ 0; oL

ok ¼ 0; oL
oLr
¼ 0

to Eq. (28)
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ð29Þ
It is quite difficult to directly solve the set of equations (29) because it is nonlinear and also non-differen-
tiable. An iteration technique can be used to overcome this difficulty and it will be discussed in detail in Section
4.3. In order to perform this iteration technique, the set of equations (29) need to be re-expressed as follows:
ðHkrÞICPe
p
kr � kre

kr þ ðqrjJ jrÞ
�1

Lr � 1
2
P�1Q ¼ 0 ðk ¼ 1; 2; . . . ; l; r ¼ 1; 2; . . . ; nÞ ðaÞ
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r¼1
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qrjJ jrðre
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Tep
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8>>>>>>>>>>><
>>>>>>>>>>>:

ð30Þ
where Hkr is the coefficient matrix which is defined by
ðHkrÞICP ¼
1

2
P�1ð4þQTP�1QÞðzkrÞ�1

ICP ð31Þ
and the subscript ‘ICP’ indicates that an variable is an iteration control parameter. The parameter zkr is de-
fined by
zkr ¼
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By solving the set of Eqs. (30), the variable e
p
kr can be calculated and the shakedown load multiplier can be

determined as
ksd ¼
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4.2. Iterative strategy

Although the unknown fields can be determined by solving the set of Eqs. (30), it is quite difficult to directly
solve Eq. (30) because the equations are nonlinear and not smooth. This is because that the objective function
in the kinematic shakedown analysis (27) which corresponds to the plastic dissipation power, is nonlinear and
not smooth. To overcome the difficulties which may arise from an unsmooth objective function (27a), all of
non-differentiable areas need to be identified where the first part of the plastic dissipation power becomes zero

(i.e. zkr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððep

krÞ
T
P�1e

p
krÞ � ð4þQTP�1QÞ

q
¼ 0Þ. All non-differentiable areas can be found by an iterative tech-

nique and will be regarded as a constraint introduced into the mathematical programming by means of the
penalty function method. The iteration starts with the hypothesis that there is no non-differentiable area in
the whole structure. By means of a step-by-step technique, all non-differentiable areas will finally be found.
The detailed iterative solution algorithm is described as follows:
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• Step 0: initializing the nonlinear objective functionThe iteration starts from the hypothesis that the plastic
strain rate is non-zero everywhere in the structure and the non-differentiable area does not exist at this step,
which can guarantee the iterative process will monotonically decrease towards the exact solution (Huh and
Yang, 1991; Li and Yu, 2005). The iteration seed can be chosen as
ðzkrÞ0 ¼ 1 ðk ¼ 1; 2; . . . ; l; r ¼ 1; 2; . . . ; nÞ ð34Þ
where the subscript ‘‘0’’ denotes that the variables is determined at step 0. Then one can obtain
ðHkrÞ0 ¼
1

2
P�1 4þQTP�1Q

	 

ð35Þ
Accordingly, the set of Eqs. (30) becomes linear and the objective variable ðep
krÞ0 can be calculated at this

step. Then, the initial shakedown load multiplier (ksd)0 can be determined by the following formulation:
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• Step h + 1 (h = 0,1,2, . . .): distinguishing the non-differentiable areas to revise the objective functionBased

on the computational results at the iteration step h, the value of zkr ðzkr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððep

krÞ
T
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p
krÞ � ð4þQTP�1QÞ

q
Þ

needs to be calculated at every Gaussian integral point to check whether it is in a non-differentiable. Then
the Gaussian integral point set I will be subdivided into two subsets: a subset (IE)h+1 where the objective
function is not differentiable, and a subset (IP)h+1 where the objective function is differentiable
I ¼ ðIEÞhþ1 [ ðIP Þhþ1 ð37aÞ

ðIEÞhþ1 ¼ r 2 I ;
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It should be mentioned that the subsets (IE)h+1 and (IP)h+1 will automatically change during the iteration.
At the beginning of the iteration (Step 0), the subset (IP)h+1 is set equal to I while the subset (IE)h+1 is set
equal to a null set. Moreover, considering that there is a limitation of storage for a computer and that any
attempt to evaluate the gradient of a square root near a zero argument would cause computational over-
flow, a small real number f (f! 0) is needed in a computer program to distinguish the differentiable and

non-differentiable regions. In other words, a region with zkr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððep

krÞ
T
P�1ep

krÞ � ð4þQTP�1QÞ
q

< f can be
regarded as non-differentiable.

Once a non-differentiable region is found, the objective function in Eq. (27) will be modified by removing
the calculation for this non-differentiable region. The constraint, that the value of zkr ðzkr ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðep

krÞ
T
P�1e

p
kr

� �
� ð4þQTP�1QÞ

r
Þ is equal to zero, can be introduced into the mathematical programming

problem by the penalization function method. Then, the coefficient matrix Hkr at this iteration step will be
updated as
ðHkrÞhþ1 ¼
bP�1 r 2 ðIEÞhþ1

1
2
P�1ð4þQTP�1QÞðzkrÞ�1

ICP r 2 ðIP Þhþ1

(
ð38Þ
where b is the penalization factor which is used to introduce the non-differentiable area as a constraint into the
programming problem. In practice, the typical value of b is from 106 to 1012.

By solving the linearizied set of Eqs. (30), the objective variables e
p
krð Þhþ1 can be calculated. Then the shake-

down load multiplier (ksd)h+1 can be determined by
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The above iterative process is repeated until the following convergence criteria are satisfied:
jðksdÞhþ1 � ðksdÞhj
jðksdÞhþ1j

6 g1

kDdhþ1 � Ddhk
kDdhþ1k

6 g2

8>>><
>>>:

ð40a; bÞ
where g1 and g2 are computational error tolerances.
The above iterative process leads to the shakedown load multiplier ksd through a monotonically decreasing

convergence sequence and a minimum optimal upper bound to the shakedown multiplier can be obtained.

4.3. Solution of linearized equations

By means of the foregoing iteration technique, the set of Eqs. (30) is linearized at each step of iteration and
then solved. However, the linearized set of equations cannot be directly solved to obtain the values of all vari-
ables because it is involved in solving a set of implicit equations. Additional manipulations are needed to elim-
inate the difficulty from the implicit feature. Based on the linearization by means of the proposed iterative
algorithm, the set of Eqs. (30) can be solved by the following strategy:

(a) Subtract the equation sets (30a) corresponding to a vertex, say m, from all the other equations to a vertex
(k) to obtain
e
p
kr ¼ ðHkrÞ�1

ICPfkre
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mr þ ðHmrÞICPe
p
mrg ð41Þ
(b) Substitute Eq. (41) into Eq. (30d), then the latter becomes
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(c) Substitute Eq. (42) into Eq. (30a) first and subsequently, this into Eq. (30b) to obtain
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(d) Substitute Eq. (42) into Eq. (30c) which thus becomes
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Finally, by solving the linear set of Eqs. (43) and (44), the variables Dd and k can be obtained. Then, the
remaining unknown variable ep

kr in Eq. (42) can be calculated and the shakedown load multiplier can be deter-
mined by means of Eq. (33).
5. Applications

The proposed numerical method is now applied to the shakedown analysis of some typical soil structures
subjected to cyclic loads. Both the Mohr–Coulomb and the Drucker–Prager yield criteria are used to model
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the plastic behavior of frictional materials. Finite elements with a reduced Gaussian integration strategy are
adopted in the numerical implementation.

5.1. A pavement under moving loads

Pavements are civil engineering structures built for the purpose of allowing wheeled vehicles to operate
safely and economically. The vehicles include cars and trucks on highway pavements, aircraft on airport run-
ways and taxiways, mobile cranes on port and container terminal pavements together with locomotives and
rolling stock on railways. By means of shakedown analysis, the effect of moving loads on the pavements can be
revealed and the shakedown condition can also be effectively determined. Sharp and Booker (1984) were
among the first to suggest that the shakedown theory may be applied to the design of pavement structures
subjected to repeated loading. They developed a semi-analytical approach for determining the shakedown
loads based on the static shakedown theorem. Instead, Collins and Cliffe (1987) used the kinematic shakedown
theorem to perform shakedown analysis for a pavement subjected to cyclic loads and an upper bound to the
shakedown limit can be calculated. Recently, Yu (2005) proposed an analytical solution for shakedown limits
of a cohesive-frictional half-space under moving surface loads, where the static shakedown theorem was used
and the Mohr–Coulomb yield criterion was assumed. Therefore, a lower bound to the shakedown limit can be
obtained.

In this section, a plane strain model is assumed for a pavement under moving loads, as shown in Fig. 1,
where p (0 6 p 6 pmax) is normal load with trapezoidal load distribution applied to the pavement from a
repeated loading, p0 ð0 6 p 6 pmax

0 Þ is the peak value of p, and q is shear force due to the friction between mov-
ing wheel and the pavement. Therefore, the relation between p and q can be defined as
q ¼ lp ð45Þ

where l is the frictional coefficient.

The size of the simulated region is determined as: L = 10 m, H = 4 m, B = 1.0 m, and a = 0.5 m, where L

and H denote the length and height of the simulated region, respectively, and B and a are the size of trape-
zoidally loading area. The selected body is discretized with 1750 eight-node quadrilateral finite elements as
shown in Fig. 2, and the convergence tolerances adopted in the numerical simulation are g1 = g2 = 10�3.
The Mohr–Coulomb yield criterion is assumed to model the plastic behavior of the material with the elastic
module E = 100 MPa and the Poisson’s ratio m = 0.3. In order to simulate the moving of loads on the pave-
ment, it is assumed that the failure mode varies only along the depth and is same along the horizontal
direction.

First, in order to verify the validity of the proposed numerical method, a pavement without surface friction
is considered, i.e. the coefficient of surface friction is equal to zero (l = 0). Therefore, there is only the normal
loading p applied to the pavement and no shear force (q = 0). By means of the proposed numerical method,
the results of the dimensionless shakedown limits ksd ðksd ¼ pmax

0 =cÞ with the variation of soil internal friction
Fig. 1. A 2-D model for a pavement under moving loads.



Fig. 2. A typical mesh for a pavement.
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angle are presented in Fig. 3, where c and u are the internal frictional angle and cohesion of material, respec-
tively. It can be drawn that the shakedown limits obtained by the proposed method are closer to those upper
bounds provided by Collins and Cliffe (1987), and a little larger than those lower bounds obtained by Sharp
and Booker (1984) and Yu (2005).

The interactive effects of the internal frictional angle and the frictional coefficient of pavement surface on
the shakedown limits are shown in Figs. 4 and 5. It can be concluded that for a pavement under moving loads,
both the frictional angle of materials and the surface frictional coefficient of pavement have a significant effect
on the shakedown condition of pavement. For a pavement subjected to compressive forces, the shakedown
limits increase significantly with the rising of the frictional angle of materials, while they decrease rapidly with
the rising of the surface friction coefficient.
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To further show the failure mechanism of a pavement under moving loads, a typical failure mode is plotted
in Fig. 6. From the visualized result, it can be drawn that for a pavement under moving loads, the failure of the
body is due to plastic sliding in the surface layer. Therefore, the strength of the surface layer of a pavement is
more important to the shakedown condition.

The relation between the iterative convergence sequences ksd and the iterative step k is shown in Fig. 7 (for
the cases l = 0, u = 30� and l = 0.5, u = 30�). The numerical results show that the efficiency and numerical
stability of the proposed algorithm are fairly high and that the amount of computational effort is very small.



Fig. 6. The failure mode of a pavement (l = 0.0, u = 30�).
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Fig. 8. The geometry of a tunnel.
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Table 1
The geometry size of a tunnel (m)

L B a H H1 H2 H3

25 8 4 30 15 3.5 2.5
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5.2. A tunnel under both static and cyclic loads

A tunnel is another important structure of civil engineering which plays a more and more important role in
the transport of big cities. How to evaluate the effect of moving trams on the stability and shakedown condi-
tions of tunnels is a complex problem for the engineering design and maintenance. By means of the proposed
method, the shakedown limit and condition of a tunnel can be determined. Both static loads from ground
buildings and upper soils and cyclic loads from moving trams are considered.

A typical geometry of tunnel is presented in Fig. 8, where p1 is a static load to simulate the ground building
and upper soils while p2 ð0 6 p2 6 pmax

2 Þ is a cyclic load to simulate the moving trams. In this simulation, an
unsupported tunnel in frictional soils is considered to be analyzed. The geometry size of tunnel is listed in
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Fig. 10. Shakedown limit domain of a tunnel.

Fig. 9. A FEM mesh of a tunnel.
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Table 1. The plane strain model is used and the Drucker–Prager yield criterion is assumed to model the plastic
behavior of soil materials. In the plane strain model, the strength parameters u0 and c0 in the Drucker–Prager
criterion is determined by
u0 ¼
tguffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 12tg2u
p ð46Þ

c0 ¼
3cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 12tg2u
p ð47Þ
A typical mesh of tunnel is plotted in Fig. 9 for the finite element simulation. The selected body is discret-
ized with 1660 eight-node quadrilateral finite elements. The convergence tolerances adopted in the numerical
simulation are g1 = g2 = 10�3. The Drucker–Prager material is assumed with the elastic module E = 100 MPa
and the Poisson’s ratio m = 0.3. The numerical results of the shakedown limits of a tunnel under both static
loads and cyclic loads are presented in Figs. 10 and 11, where the dimensionless shakedown limits kðiÞsd is
Fig. 12. Failure mode of a tunnel (p1:p2= 1:1, u = 5�).



Fig. 13. Failure mode of a tunnel (p1:p2 = 1:2, u = 5�).

Fig. 14. Failure mode of a tunnel (p1:p2 = 1:5, u = 5�).
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defined by kðiÞsd ¼ pmax
i =c, and c and u are the internal frictional angle and cohesion of material, respectively.

From the numerical results, it can be concluded that for an unsupported tunnel, both upper loads and moving
trams have a significant effect on the shakedown condition.

To further show the shakedown modes of an unsupported tunnel, some typical failure modes of a tunnel
are presented in Figs. 12–14. From the visualized results, it can be seen that as the ratio of the upper loads to
the moving trams varies, the failure modes of a tunnel are changed significantly. When the upper loads are
larger, the plastic areas develop in the upper layered soil of a tunnel and a plastic sliding occurs there which
results in the collapse of structure. If the moving loads from the trams are larger, the plastic areas develop in
the bottom of a tunnel to form a plastic sliding and finally the structure fail. The visualized results are very
useful for the supporting design of a tunnel.

As a special case of shakedown analysis, limit analysis is to calculate the plastic limit load of a structure
subject to static loads (e.g. for this example, both p1 and p2 are static, not cyclic). By means of the developed
numerical method, the difference between shakedown limit and plastic limit load is presented in Figs. 15 and
16. From the numerical results, it can be drawn that repeated or cyclic loading are more dangerous to the sta-
bility of structures than static loading, and the shakedown domain must be smaller than the limit domain.

6. Conclusions

A novel general numerical method has been developed to perform the kinematic shakedown analysis for fric-
tional materials by means of a nonlinear programming technique in conjunction with the displacement-based
finite element method. The proposed method is the extension of the nonlinear programming technique applied
to the numerical limit analysis (Li and Yu, 2005). By using an associated flow rule, the dissipation work based
on a general yield criterion is explicitly expressed in terms of the kinematically admissible velocity. The yield
surface does not need to be linearized which can reduce the number of constraints and therefore computational
costs. König’s technique is used to remove the difficulty from the integration along a deformation path. Then,
based on the mathematical programming theory, the finite element model of the kinematic shakedown analysis
is proposed as a nonlinear programming problem subject to a small number of equality constraints. The numer-
ical examples show that the proposed iterative algorithm has the advantages of high computational accuracy
and good numerical stability. By means of the proposed method, an upper bound to the shakedown limit of a
structure under cyclic loads can be calculated and the possible failure mechanisms can also be obtained.

It is well known that for many soil materials which are often modelled by the Mohr–Coulomb or Drucker–
Prager yield criterion, the plastic flow rule is non-associated. However, the classical shakedown theory is based
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on the assumption of an associated flow rule. Therefore, in this paper, the associated flow rule is still used for
frictional materials. This may overestimate the bearing-capacity of structures. Under this condition, the kine-
matic shakedown analysis still provides an overestimated upper bound to shakedown limit while the static
shakedown analysis cannot guarantee to necessarily get a lower bound to the actual shakedown limit.
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