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In this paper, a concept of monotone generalized contraction in partially ordered
probabilistic metric spaces is introduced and some fixed and common fixed point theorems
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Amer. Math. Soc. 132 (2004) 1435–1443] to a more general class of contractive type
mappings in partially ordered probabilistic metric spaces and include several recent
developments.
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1. Introduction

The Banach fixed point theorem for contraction mappings has been generalized and extended in many directions, see e.g.,
[1–7,9–19,22,25,26] and references therein. Recently Nieto and Rodriguez-Lopez [21], Ran and Reurings [24], Petruşel and
Rus [23] presented some new results for contractions in partially ordered metric spaces. The main idea in [20,21,24] involve
combining the ideas of iterative technique in the contraction mapping principle with those in the monotone technique.

Recall that if (X,�) is a partially ordered set and F : X → X is such that for x, y ∈ X, x � y implies F (x) � F (y), then
a mapping F is said to be non-decreasing. The main result of Nieto and Rodriguez-Lopez [20,21] and Ran and Reurings [24]
is the following fixed point theorem.

Theorem 1.1. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that (X,d) is a complete metric space.
Suppose F is a non-decreasing mapping with

d
(

F (x), F (y)
)
� kd(x, y) (1.1)

for all x, y ∈ X, x � y, where 0 < k < 1. Also suppose either
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(a) F is continuous or
(b) if {xn} ⊂ X is a non-decreasing sequence with xn → x in X, then xn � x for all n hold.

If there exists an x0 ∈ X with x0 � F (x0), then F has a fixed point.

The works of Nieto and Rodriguez-Lopez [20,21] and Ran and Reurings [24] have motivated Agarwal et al. [1], Bhaskar
and Lakshmikantham [2] and Lakshmikantham and Ćirić [11] to undertake further investigation of fixed points in the area
of ordered metric spaces. Hence, the following question is bound to arise:

Question 1.2. Is it possible to obtain a probabilistic metric space version of Theorem 1.1 and prove fixed point theorems for
mappings satisfying a more general contraction condition than (1.1).

The purpose of this paper is to give an affirmative answer of Question 1.2. We prove the existence and approximation
results for a wide class of contractive mappings in probabilistic metric space. Our results are an extension and improvement
of the results of Nieto and Rodriguez-Lopez [20,21] and Ran and Reurings [24] to a more general class of contractive type
mappings and include several recent developments.

2. Preliminaries

K. Menger introduced the notion of a probabilistic metric space in 1942 and since then the theory of probabilistic metric
spaces has developed in many directions [27]. The idea of K. Menger was to use distribution functions instead of nonnegative
real numbers as values of the metric. The notion of a probabilistic metric space corresponds to situations when we do not
know exactly the distance between two points, but we know probabilities of possible values of this distance. A probabilistic
generalization of metric spaces appears to be interest in the investigation of physical quantities and physiological thresholds.
It is also of fundamental importance in probabilistic functional analysis.

Throughout this paper, the space of all probability distribution functions (briefly, d.f.’s) is denoted by �+ = {F :
R ∪ {−∞,+∞} −→ [0,1]: F is left-continuous and non-decreasing on R, F (0) = 0 and F (+∞) = 1} and the subset
D+ ⊆ �+ is the set D+ = {F ∈ �+: l− F (+∞) = 1}. Here l− f (x) denotes the left limit of the function f at the point x,
l− f (x) = limt→x− f (t). The space �+ is partially ordered by the usual point-wise ordering of functions, i.e., F � G if and
only if F (t) � G(t) for all t in R. The maximal element for �+ in this order is the d.f. given by

ε0(t) =
{

0, if t � 0,

1, if t > 0.

Definition 2.1. ([27]) A mapping T : [0,1] × [0,1] −→ [0,1] is a continuous t-norm if T satisfies the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (a,1) = a for all a ∈ [0,1];
(d) T (a,b) � T (c,d) whenever a � c and c � d, and a,b, c,d ∈ [0,1].

Two typical examples of continuous t-norm are T P (a,b) = ab and T M(a,b) = Min(a,b).
Now t-norms are recursively defined by T 1 = T and

T n(x1, . . . , xn+1) = T
(
T n−1(x1, . . . , xn), xn+1

)
for n � 2 and xi ∈ [0,1], for all i ∈ {1,2, . . . ,n + 1}.

A t-norm T is said to be of Hadžić type if the family {T n}n∈N is equicontinuous at x = 1, that is,

∀ε ∈ (0,1) ∃δ ∈ (0,1): a > 1 − δ ⇒ T n(a) > 1 − ε (n � 1).

T M is a trivial example of a t-norm of Hadžić type, but there exist t-norms of Hadžić type weaker than T M [8].

Definition 2.2. A Menger probabilistic metric space (briefly, Menger PM-space) is a triple (X, F , T ), where X is a nonempty
set, T is a continuous t-norm, and F is a mapping from X × X into D+ such that, if Fx,y denotes the value of F at the pair
(x, y), the following conditions hold:

(PM1) Fx,y(t) = ε0(t) for all t > 0 if and only if x = y;
(PM2) Fx,y(t) = F y,x(t) for all x, y ∈ X, t > 0;
(PM3) Fx,z(t + s) � T (Fx,y(t), F y,z(s)) for all x, y, z ∈ X and t, s � 0.

Definition 2.3. Let (X, F , T ) be a Menger PM-space.
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(1) A sequence {xn}n in X is said to be convergent to x in X if, for every ε > 0 and λ > 0, there exists positive integer N
such that Fxn,x(ε) > 1 − λ whenever n � N .

(2) A sequence {xn}n in X is called Cauchy sequence if, for every ε > 0 and λ > 0, there exists positive integer N such that
Fxn,xm (ε) > 1 − λ whenever n,m � N .

(3) A Menger PM-space (X, F , T ) is said to be complete if and only if every Cauchy sequence in X is convergent to a point
in X .

Definition 2.4. Let (X, F , T ) be a Menger PM space. For each p in X and λ > 0, the strong λ-neighborhood of p is the set

Np(λ) = {
q ∈ X: F p,q(λ) > 1 − λ

}
,

and the strong neighborhood system for X is the union
⋃

p∈V N p where N p = {N p(λ): λ > 0}.

The strong neighborhood system for X determines a Hausdorff topology for X .

Theorem 2.5. ([27]) If (X, F , T ) is a Menger PM-space and {pn}, and {qn} are sequences such that pn → p and qn → q, then
limn→∞ F pn,qn (t) = F p,q(t) for every continuity point t of F p,q.

3. Main results

Definition 3.1. Suppose (X,�) is a partially ordered set and A,h : X → X are mappings of X into itself. We say A is a
h-non-decreasing if for x, y ∈ X ,

h(x) � h(y) implies A(x) � A(y). (3.1)

In the proof of our first theorem we use the following two lemmas:

Lemma 3.2. ([8]) Let (X, F , T ) be a Menger PM space with T of Hadžić-type and {xn} be a sequence in X such that, for some k ∈ (0,1),

Fxn,xn+1(kt) � Fxn−1,xn (t) (n � 1, t > 0).

Then {xn} is a Cauchy sequence.

Lemma 3.3. If F , G ∈ D+ and, for some k ∈ (0,1),

F (kt) � min
{

G(t), F (t)
}
, ∀t > 0,

then F (kt) � G(t), ∀t > 0.

Proof. Suppose, with the view to obtain a contradiction, that there exists t0 > 0 such that G(t0) > F (kt0). Since by as-
sumption F (kt0) � min{G(t0), F (t0)}, it follows that F (kt0) � F (t0). As F is non-decreasing and k < 1, one then has that
F (t) = F (t0) for all kt0 � t � t0. So in fact G(t0) > F (t0). Let m = sup{t > 0: F (t) = F (t0)}. Since F ∈ D+ , it follows that
m < ∞ and choose t1 ∈ (km,m) and t2 ∈ (m, t1/k). Then t2 > m and kt2 < t1 and so we have, as F is non-decreasing and
t1 < m,

F (kt2) � F (t1) � F (t0) < F (t2).

This implies F (kt2) � G(t2) (as F (kt2) � min{G(t2), F (t2)}). Since G(t0) > F (t0), we have

G(t0) > F (t0) � F (kt2) � G(t2) � G(t0),

a contradiction. Thus our assumption G(t0) > F (t0) is wrong. The proof is complete. �
Theorem 3.4. Let (X,�) be a partially ordered set and (X, F , T ) be a complete Menger PM-space under a t-norm T of Hadžić-type.
Let A,h : X → X be two self-mappings of X such that A(X) ⊆ h(X), A is a h-non-decreasing mapping and, for some k ∈ (0,1),

F A(x),A(y)(kt) � Min
{

Fh(x),h(y)(t), Fh(x),A(x)(t), Fh(y),A(y)(t)
}
, (3.2)

for all x, y ∈ X for which h(x) � h(y) and all t > 0.
Also suppose that h(X) is closed and

if
{

h(xn)
} ⊂ X is a non-decreasing sequence with h(xn) → h(z) in h(X),

then h(z) � h
(
h(z)

)
and h(xn) � h(z) for all n hold. (3.3)

If there exists an x0 ∈ X with h(x0) � A(x0), then A and h have a coincidence. Further, if A and h commute at their coincidence points,
then A and h have a common fixed point.
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Proof. Let x0 ∈ X be such that h(x0) � A(x0). Since A(X) ⊆ h(X), we can choose x1 ∈ X such that h(x1) = A(x0). Again from
A(X) ⊆ h(X) we can choose x2 ∈ X such that h(x2) = A(x1). Continuing this process we can choose a sequence {xn} in X
such that

h(xn+1) = A(xn) for all n � 0. (3.4)

Since h(x0) � A(x0) and h(x1) = A(x0), we have h(x0) � h(x1). Then from (3.1),

A(x0) � A(x1),

that is, by (3.4), h(x1) � h(x2). Again from (3.1),

A(x1) � A(x2),

that is, h(x2) � h(x3). Continuing we obtain

A(x0) � A(x1) � A(x2) � A(x3) � · · · � A(xn) � A(xn+1) � · · · . (3.5)

Since from (3.4) and (3.5) we have h(xn−1) � h(xn), from (3.2) with x = xn and y = xn+1,

F A(xn),A(xn+1)(kt) � Min
{

Fh(xn),h(xn+1)(t), Fh(xn),A(xn)(t), Fh(xn+1),A(xn+1)(t)
}
.

So by (3.4),

F A(xn),A(xn+1)(kt) � Min
{

F A(xn−1),A(xn)(t), F A(xn−1),A(xn)(t), F A(xn),A(xn+1)(t)
}
,

hence

F A(xn),A(xn+1)(kt) � Min
{

F A(xn−1),A(xn)(t), F A(xn),A(xn+1)(t)
}

(n ∈ N, t > 0).

By Lemma 3.3, it follows that

F A(xn),A(xn+1)(kt) � F A(xn−1),A(xn)(t) (n ∈ N, t > 0).

Now, by Lemma 3.2, {A(xn)} is a Cauchy sequence.
Since h(X) is closed and as A(xn) = h(xn+1), there is some z ∈ X such that

lim
n→∞ h(xn) = h(z). (3.6)

Now we show that z is a coincidence of A and h. Since from (3.3) and (3.6) we have h(xn) � h(z) for all n, then from
(3.2) we have

F A(xn),A(z)(kt) � Min
{

Fh(xn),h(z)(t), Fh(xn),A(xn)(t), Fh(z),A(z)(t)
}

(t > 0).

Letting n → ∞ we get

Fh(z),A(z)(kt) � Min
{

Fh(z),h(z)(t), Fh(z),h(z)(t), Fh(z),A(z)(t)
}

(3.7)

for all t > 0. Therefore,

Fh(z),A(z)(t) � Fh(z),A(z)

(
t

k

)
(t > 0).

From here we get

Fh(z),A(z)(t) � Fh(z),A(z)

(
t

kn

)
→ 1 as n → ∞, for all t > 0,

concluding that Fh(z),A(z)(t) = 1 for all t > 0. Then, by (PM1), A(z) = h(z). Thus we proved that A and h have a coincidence.
Suppose now that A and h commute at z. Set w = h(z) = A(z). Then

A(w) = A
(
h(z)

) = h
(

A(z)
) = h(w).

Since from (3.3) we have h(z) � h(h(z)) = h(w) and as h(z) = A(z) and h(w) = A(w), from (3.2) we get

F w,A(w)(kt) = F A(z),A(w)(kt) � Min
{

Fh(z),h(w)(t), Fh(z),A(z)(t), Fh(w),A(w)(t)
}
, (3.8)

that is,

F A(z),A(w)(kt) � F A(z),A(w)(t),

hence, similarly as above, A(w) = A(z). Since A(z) = h(z) = w , we have

A(w) = h(w) = w.

Thus we proved that A and h have a common fixed point. �
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Remark 3.5. Note A is h-non-decreasing can be replaced by A is h-non-increasing in Theorem 3.4 provided h(x0) � A(x0) is
replaced by A(x0) � h(x0) in Theorem 3.4.

Corollary 3.6. Let (X,�) be a partially ordered set and (X, F , T ) be a complete Menger PM-space under a t-norm T of Hadžić-type.
Let A : X → X be a non-decreasing self-mapping of X for which there exists k ∈ (0,1) such that

F A(x),A(y)(kt) � Min
{

Fx,y(t), Fx,A(x)(t), F y,A(y)(t)
}

for all x, y ∈ X with x � y and all t > 0. Also suppose either

(i) if {xn} ⊂ X is a non-decreasing sequence with xn → z in X, then xn � z for all n hold or
(ii) A is continuous.

If there exists an x0 ∈ X with x0 � A(x0), then A has a fixed point.

Proof. Taking h = I (I = the identity mapping) in Theorem 3.4, then (3.3) reduces to the hypothesis (i).
Suppose now that A is continuous. Since xn+1 = A(xn), for all n � 0, and xn → z, then

A(z) = A( lim
n→∞ xn) = lim

n→∞ A(xn) = z. �
Theorem 3.7. Let (X,�) be a partially ordered set and (X, F , T M) be a complete Menger PM-space. Let A,h : X → X be two self-
mappings of X such that A(X) ⊆ h(X), A is a h-non-decreasing mapping and, for some k ∈ (0,1),

F A(x),A(y)(kt) � Min
{

Fh(x),h(y)(t), Fh(x),A(x)(t), Fh(y),A(y)(t), Fh(x),A(y)((1 + q)t), Fh(y),A(x)(1 − q)t)
}

(3.9)

for all x, y ∈ X for which h(x) � h(y) and all t > 0,q ∈ (0,1).
Also suppose that

if
{

h(xn)
} ⊂ X is a non-decreasing sequence with h(xn) → h(z) in h(X),

then h(z) � h
(
h(z)

)
and h(xn) � h(z) for all n hold. (3.10)

and that h(X) is closed. If there exists an x0 ∈ X with h(x0) � A(x0), then A and h have a coincidence. Further, if A and h commute at
their coincidence points, then A and h have a common fixed point.

Proof. As in the proof of the preceding theorem, starting with x0 ∈ X be such that h(x0) � A(x0), we can choose a sequence

A(x0) � A(x1) � A(x2) � A(x3) � · · · � A(xn) � A(xn+1) � · · · . (3.11)

Since h(xn−1) � h(xn), it follows that

F A(xn),A(xn+1)(kt) � Min
{

Fh(xn),h(xn+1)(t), Fh(xn),A(xn)(t), Fh(xn+1),A(xn+1)(t),

Fh(xn),A(xn+1)

(
(1 + q)t

)
, Fh(xn+1),A(xn)

(
(1 − q)t

)}
,

and thus

F A(xn),A(xn+1)(kt) � Min
{

F A(xn−1),A(xn)(t), F A(xn−1),A(xn)(t), F A(xn),A(xn+1)(t), F A(xn−1),A(xn+1)

(
(1 + q)t

)
,1

}
.

Since by (PM3),

F A(xn−1),A(xn+1)

(
(1 + q)t

)
� Min

{
F A(xn−1),A(xn)(t), F A(xn),A(xn+1)(qt)

}
,

we have

F A(xn),A(xn+1)(kt) � Min
{

F A(xn−1),A(xn)(t), F A(xn),A(xn+1(t), F A(xn),A(xn+1)(qt)
}
.

Letting q → 1 we get

F A(xn),A(xn+1)(kt) � Min
{

F A(xn−1),A(xn)(t), F A(xn),A(xn+1)(t)
}
.

Now, as in the proof of the preceding theorem, it follows that {A(xn)} is a Cauchy sequence.
Since h(X) is closed and as A(xn) = h(xn+1), there is some z ∈ X such that

lim
n→∞ h(xn) = h(z). (3.12)

Now we show that z is a coincidence of A and h. As h(xn) � h(z) for all n,
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F A(xn),A(z)(kt) � Min
{

Fh(xn),h(z)(t), Fh(xn),A(xn)(t), Fh(z),A(z)(t), Fh(xn),A(z)
(
(1 + q)t

)
, Fh(z),A(xn)

(
(1 − q)t

)}
. (3.13)

Letting n → ∞ we get

Fh(z),A(z)(kt) � Min
{

Fh(z),h(z)(t), Fh(z),h(z)(t), Fh(z),A(z)(t), Fh(z),A(z)
(
(1 + q)t

)
, Fh(z),h(z)

(
(1 − q)t

)}
(3.14)

for all t > 0. Therefore,

Fh(z),A(z)(t) � Fh(z),A(z)

(
t

k

)
(t > 0).

Hence we get A(z) = h(z), proving that A and h have a coincidence.
Suppose now that A and h commute at z. Set w = h(z) = A(z). Then

A(w) = A
(
h(z)

) = h
(

A(z)
) = h(w).

Since h(z) � h(h(z)) = h(w) and as h(z) = A(z) and h(w) = A(w), we get

F w,A(w)(kt) = F A(z),A(w)(kt)

� Min
{

Fh(z),h(w)(t), Fh(z),F (z)(t), Fh(w),F (w)(t), Fh(w),A(z)
(
(1 + q)t

)
, Fh(z),A(w)

(
(1 − q)t

)}
= F A(z),A(w)

(
(1 − q)t

)
. (3.15)

Letting q → 0 we get

F A(z),A(w)(kt) � F A(z),A(w)(t),

hence A(w) = A(z). Since A(z) = h(z) = w , we conclude that

A(w) = h(w) = w,

that is, A and h have a common fixed point. �
Corollary 3.8. Let (X,�) be a partially ordered set and (X, F , T M) be a complete Menger PM-space. Let A : X → X be a non-
decreasing self-mapping of X such that, for some k ∈ (0,1),

F A(x),A(y)(kt) � Min
{

Fx,y(t), Fx,A(x)(t), F y,A(y)(t), Fx,A(y)

(
(1 + q)t

)
, F y,A(x)

(
(1 − q)t

)}
(3.16)

for all x, y ∈ X for which x � y and all t > 0, q ∈ (0,1). Also suppose either

(i) if {xn} ⊂ X is a non-decreasing sequence with xn → z in X then xn � z for all n hold or
(ii) A is continuous.

If there exists an x0 ∈ X with x0 � A(x0), then A has a fixed point.

Proof. Taking h = I (I = the identity mapping) in Theorem 3.7, then (3.10) reduces to the hypothesis (i).
Suppose now that A is continuous. Since xn+1 = A(xn), for all n � 0, and xn → z, then

A(z) = A( lim
n→∞ xn) = lim

n→∞ A(xn) = z. �
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[8] O. Hadžić, E. Pap, Fixed Point Theory in PM Spaces, Kluwer Academic Publ., 2001.
[9] N. Hussain, Common fixed points in best approximation for Banach operator pairs with Ćirić type I-contractions, J. Math. Anal. Appl. 338 (2008)
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[18] D. Miheţ, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems 159 (2008) 739–744.
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