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In this paper, a characterization is given for compact door spaces. We, also, deal with
spaces X such that a compactification K (X) of X is submaximal or door.
Let X be a topological space and K (X) be a compactification of X .
We prove, here, that K (X) is submaximal if and only if for each dense subset D of X , the
following properties hold:

(i) D is co-finite in K (X);
(ii) for each x ∈ K (X) \ D , {x} is closed.

If X is a noncompact space, then we show that K (X) is a door space if and only if X is
a discrete space and K (X) is the one-point compactification of X .

© 2011 Elsevier B.V. All rights reserved.

0. Introduction

A space X is said to be door if every subset of X is either open or closed [5]. In 1987, McCartan [4] has classified door
spaces as follows:

A topological space (X, T ) is door if and only if one of the following properties holds:

– X is discrete.
– X has exactly one accumulation point.
– X has a subset A such that the cardinality of X \ A is � 2 and there exists an ultrafilter U on X such that T = U ∪ {G | G ⊆ A}.

By a submaximal space, we mean a space in which every dense subset is open. Hence, every door space is, clearly,
a submaximal space.

This paper deals, essentially, with compact door spaces and compact submaximal spaces. These kind of spaces seem to
have connection with compactifications with finite remainder.

The first section is devoted to a short study of compactifications which are submaximal.
The main purpose of the second section is the characterization of compact door spaces.
The third section deals with an intrinsic topological characterization of spaces X such that a compactification K (X) of X

is a door space.
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In the fourth section, we are concerned with an example to illustrate the theory: we turn our attention to spaces such
that their Wallman compactifications are submaximal (resp., door), such space will be labeled as w-submaximal (resp.,
w-door).

1. Submaximal spaces and compactifications

First, recall that a compactification of a topological space X is a couple (K (X), e), where K (X) is a compact space and
e : X −→ K (X) is a continuous embedding (e is a continuous one-to-one map and induces a homeomorphism from X
onto e(X)) such that e(X) is a dense subspace of K (X). When a compactification (K (X), e) of X is given, X will be identified
with e(X) and assumed to be dense in K (X).

Let us recall an elementary fact about submaximal spaces.

Theorem 1.1. ([2, Theorem 3.1]) Let X be a topological space. Then the following statements are equivalent:

(i) X is submaximal.
(ii) S \ S is closed, for each S ⊆ X.

(iii) S \ S is closed and discrete, for each S ⊆ X.

Remark 1.2. One may check easily that, if E is a submaximal space and F is a dense subset of E , then F is submaximal.

Proposition 1.3. Let X be a topological space and K (X) be a compactification of X . Then the following statements are equivalent:

(1) K (X) is submaximal.
(2) For each dense subset D of X, the following properties hold:

(i) D is co-finite in K (X);
(ii) for each x ∈ K (X) \ D, {x} is closed.

Proof. (1) �⇒ (2) Let D be a dense subset of X . Then D is dense in K (X). Hence, by [2, Theorem 3.1], K (X) \ D is a closed
discrete subspace of K (X). Thus, {x} is closed, for each x ∈ K (X) \ D . Besides, as K (X) is compact, K (X) \ D is finite; so that
D is co-finite in K (X).

(2) �⇒ (1) Let D be a dense set of K (X). Then D ∩ X is a dense set of X . By hypothesis, K (X) \ (X ∩ D) is finite and for
each x ∈ K (X) \ (X ∩ D), {x} is closed. Consequently, K (X) \ D is closed, as desired. �
Corollary 1.4. Let X be a topological space and K (X) be a compactification of X . If, in addition, K (X) is a T1-space, then the following
statements are equivalent:

(1) K (X) is submaximal.
(2) Each dense subset of X is co-finite in K (X).

Remark 1.5. Following Proposition 1.3, it is clear that, if a compactification K (X) of X is submaximal, then X is submaximal
and the remainder K (X) \ X is a finite closed discrete subspace of K (X).

Before giving an example showing that the converse of the previous remark does not hold, let us recall some elementary
facts.

Let (X, T ) be a T0-space and �T be the ordering defined on X by

x �T y if and only if y ∈ {x}.
The order �T will be called the ordering induced by the topology.

By a chain of elements of X arriving to x, we mean a chain of the type

x0 <T x1 <T · · · <T xn = x.

The integer n is called the length of the chain; and the supremum (in N ∪ {∞}) of the lengths is called the Krull dimension
of (X, T ) and it is denoted by dimK (X, T ).

An element x of X is said to be of height n – and we write ht(x) = n – if the supremum of the lengths of chains arriving
to x is n. We denote Xn := {x ∈ X | ht(x) = n}, n ∈ N.

Recall that an Alexandroff topology on X is a topology such that any intersection of open sets is open.
Let us recall an elementary construction of Alexandroff spaces (see for instance [3] or [7]). Let X be a set and R be

a quasiorder on X . For each x ∈ X , we let (↓x)R be the set {y ∈ X | yRx} and (x↑)R be the set {y ∈ X | xR y}. Then the family



K. Belaid et al. / Topology and its Applications 158 (2011) 1969–1975 1971
B := {(↓x)R | x ∈ X} is a basis of a topology on X called the Alexandroff topology associated with R; we will denote it by A(R).
Conversely, each Alexandroff topology on a given set X is an A(R), where R is the quasiorder defined on X by

xR y if and only if {y} ⊆ {x}.

Example 1.6. Let L be an infinite set and a /∈ L. Set X := L ∪ {a}, and equip X with the topology T = {∅} ∪ {O ⊆ X: a ∈ O }.
Of course, (X, T ) is an Alexandroff T0-space with Krull dimension 1. Thus, by [1, Proposition 2.2], (X, T ) is submaximal. In
fact, it is straightforward to see that the dense sets of X are exactly the open sets of X .

However, by [1, Proposition 4.4], the one-point compactification of X is not submaximal (since {a} is a dense subset of X
which is not co-compact).

2. Door compact spaces

First, we give some basic facts about accumulation points, door spaces and compact door spaces.

Proposition 2.1. Let (X, T ) be a topological space. Then the following properties hold:

(1) m ∈ X is an accumulation point of X if and only if {m} is not an open set of X .
(2) If X is a door space and m ∈ X is an accumulation point of X , then {m} is a closed set of X (m is a maximal point of X with respect

to the order induced by the topology).
(3) If X is a door space, then dimK (X, T ) � 1.
(4) Suppose that X is a T0-space. Then, any non-minimal point of the ordered set (X,�T ) is an accumulation point of (X, T ).
(5) If X is a door space and x, y are distinct points of X1 , then (↓x) \ {x} = (↓y) \ {y}.
(6) If X is a compact door space, then (x↑) is finite, for each x ∈ X.

Proof. (1) and (2) are straightforward.
(3) See [1, Proposition 2.2].
(4) Let m be a non-minimal point of the ordered set (X,�T ). Hence there exists y such that m ∈ {y} \ {y}. This implies

that m is an accumulation point.
(5) Let x, y ∈ X1 such that x �= y. Suppose that there exists x0 ∈ (↓x) ∩ X0 such that x0 /∈ (↓y). The subset {x0, y} is

neither open nor closed in X . Contradiction, since X is a door space. Therefore (↓x) \ {x} = (↓y) \ {y}.
(6) This follows immediately from [1, Proposition 2.7]. �
To give a characterization of compact door spaces, we need the following lemmas.

Lemma 2.2. Let (X, T ) be a compact door space and Ac be the set of accumulation point(s) of X. If the cardinality of Ac is � 2, then
the following properties hold and are equivalent.

(1) If U is an open set of X such that U ∩ Ac �= ∅, then U is co-finite.
(2) X is finite.

Proof. As (X, T ) has at least two accumulation points, by [4], X has a subset S such that the cardinality of X \ S is � 2
and there exists an ultrafilter U on X such that

T = U ∪ {G: G ⊆ S}. (�)

(1) Let U be an open set such that U ∩ Ac �= ∅. If we suppose that U ⊆ S , then by Equality (�), any subset of U
is open. Hence for each x ∈ U ∩ Ac , {x} is open, contradicting the fact that x is an accumulation point. It follows, by
Equality (�), that U ∈ U . Hence U ∪ {x} ∈ U , for each x ∈ X . Thus, as X is compact, there exist x1, x2, . . . , xn ∈ X such that
X = U ∪ {x1, x2, . . . , xn}. Therefore, U is co-finite.

(2) Suppose that X \ Ac is infinite. Let G ⊂ X \ Ac be such that G and (X \ Ac) \ G are infinite. Let m ∈ Ac ; then, according
to (1), G ∪ {m} is neither open nor closed, which is not possible, since X is a door space. Thus, X \ Ac is finite.

Now, suppose that Ac is infinite. Let D be an infinite proper subset of Ac such that Ac \ D is infinite. Then D is neither
open nor closed, by (1).

Therefore, X is finite. �
Lemma 2.3. Let (X, T ) be a compact door space such that dimK (X, T ) = 1. Then, exactly one of the following statements holds.

(i) There exists a unique element m of X such that the cardinality of (↓m) is � 2.
(ii) There exists a unique element m of X such that the cardinality of (m↑) is � 3.
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Proof. Suppose that neither (i) nor (ii) is satisfied.
Since dimK (X, T ) = 1, there exist a,b ∈ X such that the cardinalities of (↓a) and (↓b) are � 2.
By Proposition 2.1(5), (↓a) \ {a} = (↓b) \ {b}. Let a1 be an element of (↓a) \ {a}. Then the cardinality of (a1↑) is � 3.

As (ii) is not satisfied, there is b1 �= a1 such that cardinality of (b1↑) is � 3.
Let c ∈ (b1↑) \ {b1}. Again, according to Proposition 2.1(5),

(↓a) \ {a} = (↓b) \ {b} = (↓c) \ {c}.
This yields the following inequalities:

a1 < a, a1 < b, b1 < a, b1 < b.

Consequently, the set {a1,b} is neither open nor closed, contradicting the fact that X is a door space.
We conclude that, at least, one of the statements holds. Suppose that property (ii) is satisfied, then there is three pairwise

distinct elements m,a,b ∈ X such m < a and m < b. Then the two elements a, b satisfy the following inequalities |(↓a)| � 2
|(↓b)| � 2, showing that (i) is not satisfied.

Therefore, exactly one of the statements holds. �
Lemma 2.4. Let (X, T ) be a compact door space. If there is a unique element m of X such that (↓m) �= {m}, then m is the unique
accumulation point of X .

Proof. Suppose that there exists an accumulation point m′ distinct from m. Since {m′} is closed, m′ /∈ (↓m). Let x ∈
(↓m) \ {m}. As, m ∈ {m′, x}, the set {m′, x} is not closed; so that it is an open set of X . On the other hand, the fact that
m is the unique element of X such that (↓m) �= {m}, yields m′ /∈ {x}. Thus {m′} = {m′, x} ∩ (X \ {x}). Consequently, {m′} is an
open set, contradicting the fact that m′ is an accumulation point. �
Lemma 2.5. Let (X, T ) be a compact door space. If there exists an element m of X such that |(m↑)| � 3, then X is finite.

Proof. Let a ∈ X . As {m} � {a,m}, the set {a,m} is not closed; and consequently, it is an open set of X . Now, since in
addition (X, T ) is compact, X must be finite. �

In 1976, Lewis and Ohm have introduced the C(m)-topology as follows [6]:
Given an ordered set X and m ∈ X , the C(m)-topology is the topology having the following basis for closed sets:

(i) Finite sets not containing m and closed under specialization.
(ii) Co-finite sets containing m and closed under specialization.

Hence the topology C(m) is the topology having the following basis for open sets:

(i) Finite sets O closed under generization such that m /∈ O .
(ii) Co-finite sets O closed under generization such that m ∈ O .

It is clear that the C(m)-topology is always a compact topology.
Now, we are in a position to give a characterization of compact door spaces.

Theorem 2.6. Let (X, T ) be a T0-space. Then the following statements are equivalent:

(1) (X, T ) is a compact door space.
(2) One of the following properties holds:

(i) X is a finite discrete space (in this case, T = C(m), for any m ∈ X ).
(ii) X is infinite, dimK (X, T ) = 0 and there exists m ∈ X such that T = C(m).

(iii) dimK (X, T ) = 1, X has a unique point m such that |(↓m)| � 2 and T = C(m).
(iv) X is finite, dimK (X, T ) = 1, X has a unique point m such that |(m↑)| � 3 and T = C(m).

Proof. (1) �⇒ (2) By Proposition 2.1(3), dimK (X, T ) � 1.
Suppose that dimK (X, T ) = 0. Then, three cases arise.

1. X has no accumulation points. In this case, X is clearly discrete. As X is compact, X is finite.
2. X has exactly one accumulation point (say m). Then, it is clear that X is infinite. Let us prove that T = C(m).

Indeed, let O ∈ T .
– Suppose that m /∈ O . Then, clearly, O ∈ C(m).
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– Suppose that m ∈ O . Since X is compact and every point of X distinct from m is open in (X, T ), O is necessarily
co-finite. Thus, O ∈ C(m).

Conversely, let O ∈ C(m). We prove that O ∈ T . It suffices to do this for the elements of the basis of C(m) explained
above.
– Suppose that O is finite and m /∈ O . Then, clearly, O ∈ T , since each point of X distinct from m is open in (X, T ).
– Suppose that O is co-finite and m ∈ O . Since X is a T1-space, X \ O is a closed set of (X, T ). Therefore, O ∈ T .

3. X has more than one accumulation point. In this case, by Lemma 2.2, X is finite. Now as dimK (X, T ) = 0, we see that
X is T1. As X is finite and T1, X must be discrete. But X has accumulation points, so X cannot be discrete. Therefore,
this case cannot happen.

Now, let us suppose that dimK (X, T ) = 1. Then, by Lemma 2.3, two other cases are to be considered.

4. There exists a unique element m of X such that |(↓m)| � 2.
According to Lemma 2.4, m is the unique accumulation point of (X, T ). As in Case 2, one may prove easily that
T = C(m).

5. There exists a unique element m of X such that |(m↑)| � 3. Hence, by Lemma 2.5, X is finite. Thus, the C(m)-topology
on X consists of all subsets of X closed under generization. Consequently, C(m) = A(�T ). On the other hand, since X
is a finite T0-space, we have T = A(�T ). Therefore, C(m) = T .

(2) �⇒ (1) To prove that (X, T ) is a door compact space, let us discuss the following two cases:

1. (X, T ) satisfies one of Properties (i), (ii) and (iii).
Let U be a subset of X . If m /∈ U , then U is open, since {x} is open, for each x ∈ X \ {m}. If m ∈ U , then X \ U is open
and hence U is closed. It follows that (X, C(m)) is a door space (we have already mentioned that the C(m)-topology is
compact).

2. (X, T ) satisfies Property (iv). In this case, each subset U containing m is closed under generization; so it is open. Thus
(X, C(m)) is a door space. �

3. Door spaces and compactifications

In [1], Adams et al. called a topological space X A-door, if its Alexandroff compactification is door, and they give the
following characterization of A-door spaces.

Proposition 3.1. ([1, Proposition 4.3]) Let X be a noncompact space. Then the following statements are equivalent:

(i) X is an A-door space.
(ii) Every subset of X is either an open set or a compact closed set of X .

We are interested in topological spaces X such that some compactification K (X) of X is a door space.

Theorem 3.2. Let X be a noncompact space and K (X) be a compactification of X . Then the following statements are equivalent:

(1) K (X) is a door space.
(2) X is a discrete space and K (X) is the one-point compactification of X .

Proof. (1) �⇒ (2) First, let us first show that there exists m ∈ K (X) such that {m} = K (X) \ X .
By Theorem 2.6, K (X) is equipped with the C(m)-topology with dimK (K (X), C(m)) = 0 or dimK (K (X), C(m)) = 1 and

m is the unique point of K (X) such that (↓m) �= {m}.
Anyway, for each x ∈ K (X) \ {m}, x is a minimal element for the topology induced by the order. As the topology on K (X)

is the C(m)-topology, we deduce that {x} is an open set of K (X), for each x ∈ K (X) \ {m}. It follows that X is a discrete
space. On the other hand, since X is dense in K (X), we deduce that {y} is a non-open set of K (X), for each y ∈ K (X) \ X .
Therefore, K (X) \ X = {m}.

Now, let us show that the topology on K (X) coincides with the one-point compactification of X .
Indeed, let U be an open set of K (X). We consider two cases:

– If m ∈ U , then K (X) \ U is finite. Hence X \ U is a closed compact set of X .
– If m /∈ U , then it is an open set of X .

In both the two previous cases, U is an open set of the one-point compactification of X .
Conversely, let V be an open set of the one-point compactification of X . Again, two cases are to be considered.
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– Suppose that m ∈ V . Then K (X) \ V is a compact closed set of X . As X is discrete, K (X) \ V is finite; and consequently,
V is an open set of the C(m)-topology on K (X).

– Now, suppose that m /∈ V . By definition of the C(m)-topology on K (X), V is an open set of K (X).

We conclude that the topology of K (X) coincides with the one-point compactification of X .
(2) �⇒ (1) follows immediately from Proposition 3.1. �

4. Example

First, let us recall the construction of Wallman compactification of T1-space (a concept introduced, in 1938, by Wall-
man [8]).

Let P be a class of subsets of a topological space X which is closed under finite intersections and finite unions.
A P -filter on X is a collection F of nonempty elements of P with the properties:

(i) F is closed under finite intersections;
(ii) P1 ⊆ P2, and P1 ∈ F imply P2 ∈ F .

A P -ultrafilter is a maximal P -filter. When P is the class of closed sets of X , then the P -filters are called closed filters.
The points of the Wallman compactification w X of a space X are the closed ultrafilters on X . For each closed set D ⊆ X ,

define D∗ to be the set D∗ = {A ∈ w X | D ∈ A}. Thus C = {D∗ | D is a closed set of X} is a base for the closed sets of
a topology on w X .

Let U be an open set of X . We define U∗ = {A ∈ w X | F ⊆ U for some F in A}. It is easily seen that the class {U∗ | U is
an open set of X} is a base for open sets of the topology of w X . The following properties of w X are frequently useful:

Proposition 4.1. For x ∈ X, let w X (x) = {A | A is a closed set of X and x ∈ A}. Then w X is an embedding of X into w X. Thus, if x ∈ X,
then w X (x) will be identified to x.

Proposition 4.2. If U ⊂ X is open, then w X \ U∗ = (X \ U )∗ .

Proposition 4.3. If D ⊂ X is closed, then w X \ D∗ = (X \ D)∗ .

Proposition 4.4. If U1 and U2 are open in X, then (U1 ∩ U2)
∗ = U∗

1 ∩ U∗
2 and (U1 ∪ U2)

∗ = U∗
1 ∪ U∗

2 .

Remark 4.5. Let F ∈ w X \ X . Let F ∈ F ; then, clearly, the collection of closed sets {G ∩ F | G ∈ F } has the finite intersec-
tion property. Nevertheless,

⋂[G ∩ F : G ∈ F ] = ∅; indeed, if it is not the case, there exists an x ∈ ⋂[G: G ∈ F ]. Hence,
F = w X (x), contradicting the fact that F ∈ w X \ X . It follows that F is a noncompact closed set of X .

We need, also, further new concepts.

Definition 4.6. Let X be a topological space. Let cc̄(X) be the set of all collections H of closed noncompact sets of X
satisfying the following property:

if A, B are distinct elements of H, then A ∩ B = ∅.

The supremum of the cardinalities |H|, when H lies in cc̄(X) will be denoted by dimcc̄(X) and called the closed noncompact
dimension of X .

Remark 4.7. Let X , Y be two disjoint topological spaces. Recall that the free union X + Y is the set X ∪ Y equipped with
the topology whose open sets are U ⊆ X ∪ Y satisfying U ∩ X is open in X and U ∩ Y is open in Y . Then, it is clear that

dimcc̄(X + Y ) = dimcc̄(X) + dimcc̄(Y ).

The following examples show that for each n ∈ N ∪ {∞}, there exists a space X such that dimcc̄(X) = n.

Example 4.8.

(1) A topological space X is compact if and only if dimcc̄(X) = 0.
(2) To construct a space X such that dimcc̄(X) = 1, it suffices to consider a noncompact space X in which two distinct

noncompact closed sets meet. To illustrate that space, we let (X,�) be a totally ordered set with no maximal element.
Equip X with the Alexandroff topology associated with the ordering �. Then, one may check easily that dimcc̄(X) = 1.
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(3) Now, to get a space X such that dimcc̄(X) = n, it suffices to consider n disjoint spaces X1, X2, . . . , Xn such that
dimcc̄(Xi) = 1; and then take X := X1 + X2 + · · · + Xn the free union space. Of course, dimcc̄(X) = n.

Remark 4.9. Let X be a T1-space. If F is a closed noncompact set of X , then F lies in an ultrafilter F such that
⋂{G | G ∈

F } = ∅ (that is, F ∈ w X \ X ).

Proposition 4.10. Let n ∈ N and X be a T1-space. Then the following statements are equivalent:

(1) dimcc̄(X) = n.
(2) |w X \ X | = n.

Proof. Of course, if n = 0, then the equivalence is straightforward. Let us suppose that n ∈ N \ {0}.
(1) �⇒ (2) Suppose that w X \ X contains n + 1 distinct elements, say for instance F1, . . . , Fn+1.
Since F1 �= F2, there exists F1 ∈ F1 such that F1 /∈ F2. Hence, there is an F2 ∈ F2 such that F1 ∩ F2 = ∅.
Suppose that, for i � n, there exist F1, F2, . . . , Fi pairwise disjoint, with F j ∈ F j . Let us show that there are

G1, G2, . . . , Gi, Gi+1 pairwise disjoint, with G j ∈ F j . Indeed, since Fi+1 �= F j for 1 � j � i, there exist H j ∈ Fi+1 and R j ∈ F j
such that H j ∩ R j = ∅. For 1 � j � i, set G j := R j ∩ F j . Consider Gi+1 := H1 ∩ H2 ∩· · ·∩ Hi . Then G1, G2, . . . , Gi+1 are pairwise
disjoint, and G j ∈ F j , for each 1 � j � i + 1.

Thus, there exist pairwise disjoint G1, G2, . . . , Gn+1 such that Gi ∈ Fi . Since, in addition each Gi is noncompact (see
Remark 4.5), dimcc̄(X) � n + 1, a contradiction. Therefore, |w X \ X | � n.

On the other hand, let F1, F2, . . . , Fn be pairwise disjoint noncompact closed sets of X . Then, there exist F1, F2, . . . , Fn ∈
w X \ X , such that Fi ∈ Fi , by Remark 4.9. Since Fi ∩ F j = ∅, for each i �= j, we deduce that Fi �= F j . Consequently,
|w X \ X | � n.

(2) �⇒ (1) Straightforward. �
Now, we are in a position to give a characterization of w-submaximal spaces.

Proposition 4.11. Let X be a T1-space. Then the following statements are equivalent:

(1) X is a w-submaximal space.
(2) X is a submaximal space and dimcc̄(X) is finite.

Proof. (1) �⇒ (2) Follows immediately from Remark 1.5.
According to Corollary 1.4, it suffices to prove that each dense subset of X is co-finite in w X . Indeed, let D be a dense

subset of X . As X is submaximal, D is co-finite discrete in its closure. On the other hand, by Proposition 4.10 dimcc̄(X) is
finite means that |w X \ X | is finite. Thus, D is co-finite in w X . �
Acknowledgement

The authors thank the referee for his excellent report improving both the presentation and the mathematical content of
this paper.

References

[1] M.E. Adams, K. Belaid, L. Dridi, O. Echi, Submaximal and spectral spaces, Math. Proc. R. Ir. Acad. 108A (2008) 137–147.
[2] G. Bezhanishvili, L. Esakia, D. Gabelaia, Some results on modal axiomatization and definability for topological spaces, Studia Logica 81 (2005) 325–355.
[3] E. Bouacida, O. Echi, E. Salhi, Topologies associées à une relation binaire et relation binaire spectrale, Boll. Unione Mat. Ital. B (7) 10 (1996) 417–439.
[4] S.D. McCartan, Door spaces are identifiable, Proc. Roy. Irish Acad. Sect. A 87 (1987) 13–16.
[5] J.L. Kelly, General Topology, D. Van Nostrand Company, Inc., Princeton, NJ, 1955.
[6] W.J. Lewis, J. Ohm, The ordering of Spec R , Canad. J. Math. 28 (1976) 820–835.
[7] A.K. Steiner, The lattice of topologies: structure and complementation, Trans. Amer. Math. Soc. 122 (1966) 379–398.
[8] H. Wallman, Lattices and topological spaces, Ann. of Math. (2) 39 (1938) 112–126.


	Submaximal and door compactiﬁcations
	0 Introduction
	1 Submaximal spaces and compactiﬁcations
	2 Door compact spaces
	3 Door spaces and compactiﬁcations
	4 Example
	Acknowledgement
	References


