
International Journal of Infectious Diseases 32 (2015) 13–22

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Review

Mycobacterium tuberculosis-specific and MHC class I-restricted
CD8+ T-cells exhibit a stem cell precursor-like phenotype in patients
with active pulmonary tuberculosis

Rebecca Axelsson-Robertson a, Ji Hyeon Ju b, Ho-Youn Kim b, Alimuddin Zumla c,
Markus Maeurer a,d,*
a Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
b Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul, South Korea
c Division of Infection and Immunity, University College London, and NIHR Biomedical Research Center at UCLHospital, London, United Kingdom
d Division of Therapeutic Immunology (TIM), F79, Department of Laboratory Medicine (LABMED), Hälsovägen, Karolinska University Hospital Huddinge, SE-
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S U M M A R Y

The nature and longevity of the T-cell response directed against Mycobacterium tuberculosis (MTB) are

important for effective pathogen containment. We analyzed ex vivo the nature of MTB antigen-specific

T-cell responses directed against the MTB secreted antigens Rv0288, Rv1886c, Rv3875, the antigens

Rv2958c, Rv2957, and Rv0447c (intracellular, non-secreted enzymes) in blood from Korean patients

with active tuberculosis (TB). MTB-specific T-cell function was defined by intracellular cytokine

production (interleukin (IL)-2, interferon gamma, tumour necrosis factor alpha, and IL-17) and by

multimer-guided (HLA-A*02:01 and HLA-A*24:02) analysis of epitope-specific CD8+ T-cells, along with

phenotypic markers (CD45RA and CCR7), CD107a, a marker for degranulation, and CD127 co-staining for

T-cell differentiation and homing. Cytokine production analysis underestimated the frequencies of MTB

antigen-specific T-cells defined by major histocompatibility complex (MHC) class I–peptide multimer

analysis. We showed that MTB antigen-specific CD8+ T-cells exhibit a distinct marker profile associated

with the nature of the MTB antigens, i.e., Rv0288, Rv1886c, and Rv3875-reactive T-cells clustered in the

precursor T-cell compartment, whereas Rv2958c, Rv2957, and Rv0447c-reactive T-cells were associated

with the terminally differentiated T-cell phenotype, in the patient cohort. Rv0288, Rv1886c, and Rv3875-

specific CD8+ T-cells were significantly enriched for CD107a+ T-cells in HLA-A*02:01 (p < 0.0001) and

HLA-A*24:02 (p = 0.0018) positive individuals, as compared to Rv2958c, Rv2957, and Rv0447c antigens.

CD127 (IL-7 receptor)-expressing T-cells were enriched in HLA-A*02:01-positive individuals for the

Rv0288, Rv1886c, and Rv3875 specificities (p = 0.03). A high proportion of antigen-specific T-cells

showed a precursor-like phenotype (CD45RA+CCR7+) and expressed the stem cell-associated markers

CD95 and c-kit. These data show that MTB-specific T-cells can express stem cell-like features; this is

associated with the nature of the MTB antigen and the genetic background of the individual.

� 2015 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
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1. Introduction

Mycobacterium tuberculosis (MTB), the aetiological agent of
tuberculosis (TB) affects 8.8 million people and causes an
estimated 1.5 million deaths globally per annum.1 Several
factors such as poor BCG vaccine efficacy, challenges in making
an accurate diagnosis of TB using available diagnostics,
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widespread emergence of drug resistance, poor infection
control measures, and co-infection with HIV, continue to fuel
the TB epidemic.2–5 Critical to determining protective immune
responses is the study of multiple MTB exposures, recurrent MTB
re-infections, as well as simultaneous infections with multiple
MTB strains.6 The immunological consequences of these scenarios
and their impact on memory immune responses have not yet been
examined. A better understanding of protective or ineffective
immune responses in TB may aid the design of biologically
relevant biomarkers to visualize clinically relevant memory
immune responses.
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Different T-cell subsets, including CD4+ and CD8+ T-cells, play a
crucial role in MTB containment,7,8 i.e., by cytokine production or
direct cytotoxicity. Th1 cytokines, interferon gamma (IFN-g) and
tumour necrosis factor alpha (TNF-a), are important for optimal
MTB control.8,9 Polyfunctionality of T-cells, i.e., the ability to
simultaneously produce interleukin 2 (IL-2), IFN-g, and TNF-a, has
previously been linked to immune protection and/or post-
vaccination memory responses in different infectious diseases
including HIV.10 However, in TB, the data available to date are
pointing in different directions.11–14

T-cells recognize, and are activated by, small parts (peptide
stretches) of protein-derived antigens presented via major
histocompatibility complex (MHC) glycoproteins (in humans
called human leukocyte antigen (HLA)) on antigen-presenting
cells (APCs). Many different immunogenic MTB proteins have been
identified by their ability to induce antigen-specific T-cell
responses, usually defined by cytokine production. Such MTB
proteins include the early expressed (secreted) antigens Ag85B
(Rv1886c), TB10.4 (Rv0288), and ESAT-6 (Rv3875).15–19 More
recently, we have identified epitopes and T-cell responses (in both
CD4+ and CD8+ T-cells) provided from (non-secreted) MTB
intracellular enzymes (cyclopropane fatty acid synthase (CFA
synthase; Rv0447c) and two glycosyltransferases (Rv2957 and
Rv2958)19–21), which are preferentially expressed in slow-growing
bacteria, including in Mycobacterium species. Rv0447c is a key
enzyme involved in MTB lipid metabolism, producing factors that
make the cell wall impermeable.22 The two glycosyltransferases
belong to the intermediary metabolism; they are involved in the
formation of phenolic glycolipids and glycosylated p-hydroxy-
benzoic acid methyl esters, constituents of the mycobacterial cell
envelope and MTB virulence factors.23 Rv2958c is also believed to
be involved in the ability of MTB to survive inside macrophages.24

These (non-secreted) proteins may show a different pattern of
immunogenicity compared to the early expressed (secreted) MTB
antigens, yet this has not been formally shown.

Antigen-specific T-cells recognizing MTB antigens have been
identified by different immune readouts,1 for example by using
cytokine production, i.e., IFN-g or TNF-a (by intracellular cytokine
staining (ICS), ELISPOT, or ELISA in cell culture supernatant after in
vitro stimulation with defined molecular targets). Alternatively,
epitope-specific T-cells can directly be identified ex vivo, without
the need for functional readouts, using soluble MHC class I–
peptide complexes (i.e., MHC multimers). One advantage of this
approach is the possibility to assess T-cell frequencies without any
in vitro manipulation,25 in combination with cell-surface markers
to determine the phenotype and effector functions of the
pathogen-specific T-cells. Based on the cell-surface markers
CD45RA and CCR7, mature T-cells can be divided into four
different phenotypic compartments. Precursor T-cells express both
CD45RA and CCR7; they replenish the T-cell pool, yet produce only
limited amounts of cytokines. Central memory T-cells
(CD45RA�CCR7+) represent lymph node homing antigen-experi-
enced cells that lack immediate effector functions (except IL-2
production). The third and fourth compartments represent effector
memory T-cells (which have down-regulated both cell-surface
markers) and terminally differentiated effector cells
(CD45RA+CCR7�), which home to anatomical sites of disease.26,27

The latter populations represent T-cell populations producing IFN-
g and TNF-a with cytotoxic potential.28

In the current study, we compared the frequency of MTB
antigen-specific CD8+ T-cells in peripheral blood mononuclear
cells (PBMCs) detected by ICS to the frequency of antigen-specific
T-cells directed to defined MTB epitopes using MHC class I
multimers, in order to evaluate whether antigen-specific T-cells
are possibly being underestimated in active pulmonary TB. We
characterized homing, differentiation, and effector functionality
(CD107a, degranulation), IL-7 receptor (CD127)-mediating surviv-
al signals, as well as c-kit (CD117) and CD95, ‘stem-ness’, in T-cell
populations in association with the MHC class I genetic back-
ground and the nature of the MTB antigens (i.e., intracellular (non-
secreted) enzyme antigens vs. MTB secreted antigens). The results
show in which T-cell compartment MTB-specific T-cells reside; a
crucial information since the lack of effector T-cells (CD45RA+
CCR7�) has been associated with an increased risk of developing
active TB.8

2. Materials and methods

2.1. Patient data

Twelve newly diagnosed patients with active pulmonary TB
(acid-fast and culture-positive) at St. Mary’s Hospital, Seoul, South
Korea were enrolled in the study. Eleven patients were male and one
was female (patient 12), and they ranged in age from 23 to 73 years
(Supplementary Material, Table S1). The samples were obtained
after diagnosis and after drug susceptibility testing (DST), which
were performed in accordance with international guidelines.
Institutional review board (IRB) consent was obtained from the
Catholic Medical Centre, Seoul, South Korea (Ref. XC09FZZZ0046K;
the independent ethics review committee of the Catholic University
Seoul, South Korea) and from the ethics committee in Stockholm
(Ref. 2011/863-31/2; Stockholm City Ethical Council South Com-
mittee). The ethics committees reviewed the study plan, as well as
the patient informed consent forms, which are on file with the
institutions as stipulated. The patients provided written consent,
these papers are on file at the hospital.

Blood samples were drawn from the patients and PBMCs were
isolated. The PBMCs were HLA-typed in South Korea for the alleles
HLA-A*02 and A*24. Three individuals tested positive for HLA-
A*02, three individuals positive for HLA-A*24, and six individuals
double-positive for both alleles were included in order to gauge
MHC class I multimer complexes. We chose to use material from
patients with newly diagnosed active pulmonary TB, since the
clinical definition of the spectrum of latent TB is challenging.

2.2. Selection of epitopes for multimer construction

Epitopes from different well-characterized MTB proteins (Rv3875,
Rv0288, and Rv1886c) for multimer construction were selected
based on (1) previously reported detection of antigen-specific T-cells
(A2-Rv3875AMASTEGNV,29 A2-Rv3875 LLDEGKQSL,

30 A2-Rv0288IMYNY-

PAML,
31 A24-Rv0288IMYNYPAML,

31 A2-Rv1886cKLVANNTRL,
17 A2-

Rv1886cFIYAGSLSA,17 and A24-Rv1886cIYAGSLSAL
17), and (2) MHC

peptide binding data (A24-Rv3875AYQGVQQKW (our own non-pub-
lished data) and A24-Rv3875ELNNALQNL

32). Epitopes from proteins
Rv2957, Rv2958c, and Rv0447c were selected based on high
SYFPEITHI scores,33 which translate into a high likelihood of successful
soluble MHC class I antigen–peptide production (A2-Rv2957SIIIPTLNV

(score = 26), A24-Rv2957PYNLRYRVL (score = 21), A2-Rv2958cALADLPVTV

(score = 30), A24-Rv2958cKYIAADRKI (score = 25), A2-Rv0447cVLAGSVDEL

(score = 31), and A24-Rv0447cKYIFPGGLL (score = 25)).

2.3. Cellular analysis with multimers

Fifteen different MHC class I–peptide multimers were either
purchased or constructed in our laboratory: A2-Rv3875AMASTEGNV,
A2-Rv3875LLDEGKQSL, A2-Rv1886cKLVANNTRL, A24-Rv1886cIYAGSLSAL

(Beckman Coulter, San Diego, CA, USA), A24-Rv3875AYQGVQQKW,
A24-Rv3875ELNNALQNL, A2-Rv2957SIIIPTLNV, A24-Rv2957PYNLRYRVL,
A2-Rv2958cALADLPVTV, A24-Rv2958cKYIAADRKI, A2-Rv0447cVLAGSVDEL,
A24-Rv0447cKYIFPGGLL (Immudex, Copenhagen, Denmark), A2-
Rv0288IMYNYPAML, A24-Rv0288IMYNYPAML, and A2-Rv1886c FIYAGSLSA
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(constructed by us, as described previously25); these were fluores-
cently labelled with streptavidin–phycoerythrin (PE), streptavidin–
allophycocyanin (APC), and fluorescein isothiocyanate (FITC). Cryo-
preserved PBMCs were stained with the multimers at 37 8C for
30 min. Cellular analyses were performed using a FACS Gallios Flow
Cytometer (Beckman Coulter). Multimer-positive events were
recorded in the CD3+CD8+CD4� compartment using the following
antibodies: anti-CD3-PE/Texas red (ECD) (Clone UCHT1) (Beckman-
Coulter), anti-CD8a-APC/Cy7 (Clone SK1) (Becton Dickinson, Franklin
Lakes, NJ, USA), and anti-CD4-Pacific orange (Clone S3.5) (Invitrogen,
Carlsbad, CA, USA). Cells in the CD3+CD8�CD4+ compartment were
excluded from enumeration of CD3+CD8+ multimer+ events. Only
multimer responses were reported that were at least three times
higher than the negative control and for which we could detect more
than an absolute 50 events.

2.4. Analysis of T-cell phenotype

Phenotypic analysis of multimer-positive cells was performed
using the following antibodies: anti-CD45RA-PerCP/Cy5.5 (Clone
HI100) (Biolegend, San Diego, CA, USA) and anti-CCR7- PE/Cy7
(Clone 3D12) (Becton Dickinson). Degranulation marker analysis
was performed using anti-CD107a-Pacific blue (PB) (Clone H4A3)
(Biolegend); for IL-7Ra expression, unconjugated anti-CD127
(Clone R34.34) (Beckman Coulter) was labelled using the Zenon-
Alexa-700 labelling kit (Invitrogen). Analyses of ‘stem cell markers’
were performed using anti-CD95-FITC (Clone LT95) (Thermo
Scientific/Pierce Biotechnology, Rockford, IL, USA), anti-CD95-
Alexa-700 (Clone LT95) (Exbio, Prague, Czech Republic), and anti-
CD117-Brilliant violet 421 (Clone 104D2) (Biolegend). Analysis of
senescence markers was performed using anti-IL-18R-FITC (Clone
H44) (Thermo Fisher Scientific, Waltham, MA, USA), anti-PD-1-PE
(Clone EH12.1), anti-CTLA-4-PE/Cy5 (Clone BNI3) (Becton Dick-
inson), anti-TIM-3-PerCP/eFluor710 (eBioscience, San Diego, CA,
USA), and polyclonal anti-LAG-3-APC (R&D Systems, Minneapolis,
MN, USA).

2.5. Intracellular cytokine staining (ICS)

Cryopreserved cells were incubated for 6 h together with
10 mg/ml secretion inhibitor (brefeldin A) and either only medium,
25 ng/ml phorbol 12-myristate 13-acetate (PMA) and 1 mg/ml
ionomycin (SigmaAldrich, St Louis, MO, USA), or 1 mg/ml peptide
Table 1
Frequencies of MHC class I restricted M. tuberculosis CD8+ T-cells in PBMCs from patie

Patient

1 2 3 4 5 6

Multimera Epitope A*02/A*24 A*24 A*02 A*02 A*24 A

A2 Rv0288 IMYNYPAML 0.1 0.1 0.3 0

Rv1886c KLVANNTRL 4.1 0.9 1.1 0

Rv1886c FIYAGSLSA 0.1 0.1 0.2 0

Rv3875 AMASTEGNV 0.7 0.4 0.7 0

Rv3875 LLDEGKQSL 0.5 0.2 0.2 0

Rv2958c ALADLPVTV 0.1 0.1 0 0

Rv2957 SIIIPTLNV 0.1 0.1 0 0

Rv0447c VLAGSVDEL 0.2 0.1 0.1 0

A24 Rv0288 IMYNYPAML 0.3 0.4 0.3 

Rv1886c IYAGSLSAL 0.3 0.2 0.1 

Rv3875 AYQGVQQKW 0.1 0.1 0.1 

Rv3875 ELNNALQNL 6.5 3.2 2.9 

Rv2958c KYIAADRKI 0.3 1.1 0.3 

Rv2957 PYNLRYRVL 1.5 1.8 1.2 

Rv0447c KYIFPGGLL 0.1 0.4 0.1 

a Frequency of antigen-specific T-cells identified by multimer staining. Peripheral 

incubated with major histocompatibility complex (MHC)-matched MHC class I multime

positive events in the CD3+CD8+ T-cell population; negative gating was performed to ex

cells was performed. Frequencies of CD8+ T-cells directed against the (negative) contr
mixes of overlapping peptides covering the TB proteins Rv3875
and Rv0288 (JPT Peptide Technologies GmbH, Berlin, Germany, and
AERAS Foundation, Rockville, IL, USA). Intracellular cytokine
production was subsequently detected after fixation and perme-
abilization (Beckman Coulter) by flow cytometry analysis in the
CD3+CD8+ compartment, using the following antibodies: anti-
CD3-PE/Texas red (ECD) (Clone UCHT1) (Beckman Coulter), anti-
CD8a-PC/Cy7 (Clone SK1), anti-CD4-PerCP/Cy5.5 (Clone L200),
anti-IFN-g-PE/Cy7 (Clone B27), anti-IL-2-PE (Clone MQ1-17H12),
anti-TNF-a-APC (Clone MAb11) (Becton Dickinson), and anti-IL-
17-FITC (Clone BL168) (Biolegend).

2.6. Statistics

Statistical significance between different T-cell populations was
evaluated using Prism 4.0 (GraphPad Software, La Jolla, CA, USA)
using the Mann–Whitney non-parametric test.

3. Results

3.1. Broad recognition of Mycobacterium tuberculosis-reactive and

MHC class I-specific T-cells in patients with active TB

We constructed multimeric MHC class I–peptide complexes
from six different MTB proteins. We divided the antigens into two
groups based on their MTB expression pattern: (1) early secreted
antigens: ESAT-6 (Rv3875), TB10.4 (Rv0288), and Ag85B
(Rv1886c), and (2) intracellular, non-secreted expressed antigens
associated with slow-growing bacteria: glycosyltransferase 1
(Rv2958c), glycosyltransferase 2 (Rv2957), and CFA synthase
(Rv0447c). The multimers were constructed using two of the most
frequent MHC class I alleles in the Korean population, i.e., HLA-
A*02:01 and A*24:02. Flow-based analysis of PBMCs from all
patients showed the detection of antigen-specific CD8+ T-cells
with frequencies ranging from 0.1% to 6.5% (Table 1). Examples of
flow cytometry staining and the gating strategy are provided in the
Supplementary Material (Figures S1 and S2). The highest
frequency of antigen-specific T-cells was found to be associated
with the MTB antigen Rv0288 (median 0.3% (0.1–0.9%)), followed
by Rv3875 (median 0.3% (0.1–6.5%)) and Rv2958c (median 0.2%
(0–1.1%)). The most frequently detected individual epitopes within
these antigens were A24-Rv3875ELNNALQNL (median 2.9% (1.5–
6.5%)), followed by A24-Rv2957PYNLRYRVL (median 1.3% (0.9–1.8%))
nts with active TB.

 7 8 9 10 11 12

*02 A*02/A*24 A*02/A*24 A*24 A*02/A*24 A*02/A*24 A*02/A*24

.2 0.2 0.6 0.1 0 0.1

.4 0.8 0.7 1.1 1.0 0.2

.1 0.1 0.1 0.2 0.3 0

.6 0.1 0.5 0.5 0.3 0.3

.1 0.1 0.1 0.2 0.1 0.1

 0 0.1 0.2 0 0.1

.1 0 0.1 0 0 0.1

.1 0.1 0.1 0.2 0.2 0.2

0.5 0.9 0.7 0.4 0.4 0.9

0.1 0.1 0 0.1 0.1 0.1

0.1 0.3 0.2 0.2 0.2 0.2

2.5 1.5 1.8 2.9 3.1 1.8

0.4 0.4 0.4 0.4 0.8 0.6

0.9 1.2 1.3 1.7 1.0 1.4

0.2 0.1 0.2 0.2 0.2 0.1

blood mononuclear cells (PBMCs) from individuals with tuberculosis (TB) were

rs and stained for T-cell markers. Results are reported as the percentage multimer-

clude CD4+ T-cells. For cells marked in grey, subsequent phenotypic analysis of the

ol multimers have been deducted.
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and A2-Rv1886cKLVANNTRL (median 0.9% (0.2–4.1%)) (Supplemen-
tary Material Figure S3). We compared the frequencies of antigen-
specific T-cells detected in the two groups of MTB antigens. The
results showed a higher frequency of CD8+ T-cells detecting
epitopes originating from antigens that belonged to the first group
A early secreted MTB antigens (i.e., Rv0288, Rv1886c, and Rv3875)
as compared to the MTB group B antigens (i.e., Rv2958c, Rv2957,
and Rv0447c; intracellular, non-secreted enzymes). Differences in
T-cell frequencies were significant for the allele HLA-A*02:01
(p < 0.0001); however an opposite trend could be seen for the
A*24:02 allele (Figure 1A). The higher frequency of T-cells
recognizing the group A antigens was driven by a few immuno-
dominant epitopes derived from the MTB antigen Ag85B (e.g., A2-
Rv1886cKLVANNTRL).

We studied whether the nature of the restricting MHC allele has
any association with the detection of antigen-specific CD8+ T-cells
(for the antigens used for analysis in the current study). Therefore,
we constructed two different multimers (HLA-A*02:01 and
A*24:02) presenting the identical Rv0288 epitope (IMYNYPAML)
and compared the frequencies of antigen-specific CD8+ T-cells. We
could detect a significantly higher frequency of antigen-specific
Figure 1. Frequency of multimer-positive CD8+ T-cells. (A) Comparison of the

antigen-specific CD8+ T-cells recognizing the MTB antigens of group A (Rv0288,

Rv1886c, and Rv3875) (secreted antigens) restricted by A*02:01 (n = 45) and

A*24:02 (n = 27), and the novel MTB antigens of group B (Rv2958, Rv2957, and

Rv0447) (intracellular, non-secreted enzymes) restricted by A*02:01 (n = 32) and

A*24:02 (n = 27). (B) Individual detection of antigen-specific T-cells specific for the

‘super-epitope’ IMYNYPAML divided per restricting allele A*02:01 (n = 9) (green)

and A*24:02 (n = 9) (blue). (C) Individual detection of total (MTB groups A and B)

antigen-specific T-cells restricted by either A*02:01 (n = 72) or A*24:02 (n = 59).

Each dot represents the staining in a single patient, and the different patients are

shown with different shapes and colours. Significant differences were detected by

comparing the median values using the Mann–Whitney non-parametric test.
cells recognizing the epitope bound to HLA-A*24:02 as compared
to the same epitope presented by HLA-A*02:01 in PBMCs from
patients with the corresponding MHC class I background
(p = 0.0019) (Figure 1B). The same observation was found to be
true for the comparison of the total frequency of antigen-specific T-
cells restricted by HLA-A*24:02 as compared to the epitopes
restricted by HLA-A*02:01 (p < 0.0001) (Figure 1C).

3.2. Cytokine production in Mycobacterium tuberculosis-reactive T-

cells

Next, we studied the effector functions of T-cells from patients
with active pulmonary TB in order to test the functionality of MTB-
specific CD8+ T-cells. As a first step, we studied the ability of the
cells to produce cytokines (examples of flow cytometry staining
are provided in the Supplementary Material Figure S4). We could
detect the production of the Th1 cytokines IL-2 (median 21%), IFN-
g (median 9.3%), and TNF-a (median 19%) as a response to
maximal stimulation (PMA/ionomycin) in the CD8+ T-cell popula-
tion. The maximal production of interleukin 17 (IL-17) was low in
CD8+ (median 0.0%) (Figure 2A). We also identified cytokine-
producing MTB-reactive CD8+ T-cells (IL-2, IFN-g, and TNF-a in
the range of 0.11–0.19%) responding to the MTB antigens Rv0288
and Rv3875. TNF-a was found to be the most frequently produced
cytokine in CD8+ T-cells, followed by IL-2 and IFN-g. The
production of IL-17 was low in response to the MTB antigens, as
well as to PMA/ionomycin (Figure 2B). Due to the general low
frequency of cytokine-producing cells, polyfunctionality of the
CD8+ T-cells could not be assessed in this study.
Figure 2. Intracellular cytokine staining (ICS) (n = 6). (A) Percentage of CD8+ T-cells

producing the cytokines IL-17 (circles), IL-2 (squares), IFN-g (triangles), and TNF-a
(diamonds) in response to maximum stimuli (PMA/ionomycin). (B) Percentage of

CD8+ T-cells producing cytokines in response to peptide covering the TB protein

Rv0288 (filled symbols) or Rv3875 (open symbols); each dot represents the mean

value of two replicates. Frequencies from stimulation with only medium (negative

controls) have been subtracted. The black line shows the median value for each

cytokine.
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3.3. CD107a and CD127 expression in CD8+ T-cells differentiates

between the nature of the Mycobacterium tuberculosis target

antigen and MHC class I restriction

Since the frequency of T-cell-producing cytokines in response
to MTB antigens was very low, we continued to investigate other
survival markers and effector functions in MTB-specific T-cells. The
IL-7 receptor a-chain (CD127) is an essential cell-surface receptor
in the generation of CD8+ memory cells, while CD107a is a marker
of degranulation on CD8+ T-cells. The frequency of CD107a-
positive T-cells can be used to gauge ex vivo antigen-specific T-
cells with degranulation properties. Examples of flow cytometry
staining and the gating strategy are provided in the Supplemen-
tary Material (Figure S2). We could detect significantly higher
frequencies of CD107a+ multimer-positive (i.e., MTB epitope
reactive) CD8+ T-cells (p < 0.0001) as compared to total CD8+ T-
cells (Figure 3A). Divided into the two groups of MTB antigens
listed above, we could detect a significantly higher frequency of
CD107a+ (p = 0.0018) CD8+ T-cells responding to the group A
(secreted antigens Rv0288, Rv1886c, and Rv3875) epitopes as
compared to the group B antigens (enzymes, non-secreted
Rv2958c, Rv2957, and Rv0447c). However, we also found higher
frequencies of CD107a-positive T-cells in Rv2958c-, Rv2957-, and
Rv0447c-specific T-cells as compared to CD107a expression on
total CD8+ T-cells (Figure 3B). There was a similar trend for the
marker CD127: a higher frequency of CD127+ MTB antigen-specific
CD8+ T-cells could be found as compared to the total CD8+ T-cell
population (Figure 3C). We identified a higher frequency of CD127-
positive T-cells specific for the group A antigens (early secreted
proteins) in HLA-A*02:01-restricted T-cells (p = 0.03), while for the
Figure 3. Increased frequencies of cells expressing the degranulation marker CD107a (A

versus total CD8+ T-cells (n = 12) (grey). Expression of CD107a (B) and CD127 (D) by CD

(A*02:01 n = 31 and A*24:02 n = 29) (closed symbols) and the MTB antigens of group B 

restricted by A*02:01 (circles) and A*24:02 (squares). Each dot represents an individual m

group. The Mann–Whitney non-parametric test was performed and significant values w
A*24:02-restricted T-cells no differences were detected concerning
CD127 expression and reactivity to early (secreted) antigens and
the intracellular (non-secreted) antigens (Figure 3D).

3.4. Comparison of multimers and ICS: cytokine production analysis

underestimates Mycobacterium tuberculosis-reactive T-cells

Analysis of MTB-specific T-cells showed that we can (1) detect
antigen-specific T-cells directed towards several different MTB
antigens, (2) detect low cytokine production in response to MTB
antigens, and (3) detect indirect effector functions indicated by
CD107a expression (recent degranulation). We compared the CD8+
T-cells, directed to a single epitope in an MTB protein identified by
multimer staining, with T-cells producing cytokines in response to
overlapping peptides covering the identical (full length) protein.
We were able to detect higher frequencies of antigen-specific T-
cells by the use of multimers as compared to intracellular cytokine
production (p < 0.0001) (Figure 4A). For Rv0288, we compared
antigen-specific T-cells recognizing the epitope IMYNYPAML, both
restricted by HLA-A*02:01 and A*24:02, to the production of IL-17,
IL-2, IFN-g, and TNF-a. In both cases, we could detect higher
frequencies of CD8+ T-cells directed to a single epitope as
compared to CD8+ T-cells (from the identical blood sample)
producing cytokines in response to epitopes spanning the entire
target protein (Figure 4B). The frequency of antigen-specific T-cells
by multimer staining for the epitopes from Rv3875 was higher
compared to the frequency of CD8+ T-cells producing cytokines.
For a single epitope (A*24-Rv3875-6ELNNALQNL) we were in fact able
to detect more than 10 times higher frequencies of antigen-specific
T-cells compared to T-cells producing cytokines (Figure 4C).
) and the IL-7 receptor CD127 (C) in antigen-specific CD8+ T-cells (n = 95) (black)

8+ T-cells recognizing the MTB antigens of group A (Rv0288, Rv1886c, and Rv3875)

(Rv2958, Rv2957 and Rv0447) (A*02:01 n = 11 and A*24:02 n = 24) (open symbols)

ultimer in one individual TB patient. The black line shows the median value for each

ere calculated based on the following p-values: *p < 0.05, **p < 0.01, ***p < 0.001.



Figure 4. Comparison of the frequency of cytokine-producing CD8+ T-cells and antigen-specific T-cells. (A) Comparison of the total frequency of CD8+ antigen-specific T-cells

(n = 24) (striped) and CD8+ T-cells producing cytokines (IL-2, IFN-g, and TNF-a) (n = 36) (chequered). The Mann–Whitney non-parametric test was performed and significant

values were calculated based on the following p-values: *p < 0.05, **p < 0.01, ***p < 0.001. (B) Comparison of CD8+ T-cells recognizing the IMYNYPAML epitope from the TB

protein TB10.4 restricted by A*02:01 (n = 4), and A*24:02 (n = 4) and CD8+ T-cells producing IL-17 (n = 6), IL-2 (n = 6), IFN-g (n = 6), and TNF-a (n = 6) in response to

stimulation with peptides covering the whole Rv0288 sequence. (C) Comparison of CD8+ T-cells recognizing multimers A2-Rv3875AMASTEGNV (n = 4), A2-Rv3875LLDEGKQSL

(n = 4), A24-Rv3875AYQGVQQKW (n = 4), A24-Rv3875ELNNALQNL (n = 4), and CD8+ T-cells producing IL-17 (n = 6), IL-2 (n = 6), IFN-g (n = 6), and TNF-a (n = 6) in response to

stimulation with peptides covering the whole Rv3875 sequence. Each dot represents the staining in a single patient and the different patients are shown with different shapes.
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3.5. Phenotypic analysis of antigen-specific T-cells shows that a

majority of the Mycobacterium tuberculosis-reactive T-cells reside in

the precursor T-cell compartment

We could detect a median of approximately 15% (5–81%) of cells
with a precursor phenotype, approximately 30% (9–74%) of T-cells
cells with a terminal differentiated phenotype, 4.6% (0.4–10%) with
central memory phenotype, and 26% (6–65%) with an effector
memory phenotype (the gating strategy and representative staining
from raw data are provided in the Supplementary Material
Figure S2). However, the patient-to-patient differences were high,
most likely due to the large age differences between the patients (age
range 23–73 years). Within the antigen-specific T-cell compart-
ments, we could detect significantly higher percentages of MTB-
specific T-cells with a precursor phenotype (p = 0.02) and a trend
towards a higher percentage of central memory cells and lower
percentages of terminally differentiated cells and effector memory
cells (Figure 5A). We could also detect an increase in the percentage of
precursor T-cells recognizing the group A (secreted) antigens as
compared to the group B (non-secreted) antigens. This situation was
mirrored in the opposite recognition pattern concerning terminally
differentiated CD8+CD45RA+CCR7� T-cells. The differences were
significant for the A*02:01-restricted T-cells (p = 0.02 respective
0.04), yet it was also possible to detect a similar trend for the A*24:02-
restricted cells (Figure 5B and 5C). For the other two phenotypic
subsets (central memory and effector memory), no significant
differences could be detected (Supplementary Material Figure S5).

3.6. Stem cell marker c-kit and CD95 expression in Mycobacterium
tuberculosis-specific T-cells with a precursor-like phenotype

We could identify a high frequency of antigen-specific T-cells
with a precursor-like phenotype; these T-cells were examined in
greater detail, i.e., using the cell-surface markers CD95 (FAS
receptor) and c-kit (the gating strategy and representative staining
are provided in the Supplementary Material Figure S2). We were
able to detect a significant number of CD95-positive T-cells in MTB
antigen-specific T-cells compared to CD95 expression in the total
CD8+ T-cell compartment expressing a precursor phenotype
(CD45RA+CCR7+) (p = 0.03) (Figure 6A). This was due to T-cells
recognizing antigens provided from the early (secreted) MTB
proteins Rv0288, Rv1886c, and Rv3875 (group A) as compared to
(non-secreted) antigens associated with cellular metabolism
(p = 0.02) (Figure 6B). For the c-kit marker, we could detect an
upregulation of c-kit on MTB antigen-specific T-cells recognizing
individual MHC class I–peptide antigens, yet we could not identify
statistically robust differences. A trend towards higher expression
of c-kit+ on T-cells in response to group A compared to group B
antigens could be detected as well (Figure 6C and 6D). The c-kit-
positive cells were further analyzed for expression of senescence
markers (PD-1, CTLA-4, TIM-3, and LAG-3), as well as the
expression of the IL-18R in PBMCs from five TB patients. We
could not detect a stronger expression of these senescence markers
on CD45RA+CCR7+c-kit+ T-cells. The same PBMCs were also tested
for their ability to produce cytokines (IL-2, TNF-a, IFN-g) in
response to stimulation with either PMA/ionomycin or peptides
derived from the MTB protein Rv0288. The results show that CD8+
T-cells produced cytokines in response to maximal stimulation, yet
this was not found to be true for the CD45RA+CCR7+c-kit+ T-cells,
which hardly produced any cytokines at all (representative data
are provided in the Supplementary Material Figure S6).

4. Discussion

Antigen-specific CD8+ T-cells have recently been a focus of
attention in human TB, especially in the context of anti-TNF-a



Figure 5. Frequencies of total CD8+ T-cells in different T-cell compartments. (A) Total CD8+ T-cells (n = 12) vs. antigen-specific CD8+ T-cells (n = 95) belonging to the different

phenotypic compartments: precursor (CD45RA+CCR7+), central memory (CD45RA�CCR7+), effector memory cells (CD45RA�CCR7�), and terminally differentiated cells

(CD45RA+CCR7�). Comparison of the frequencies of the antigen-specific CD8+ T-cells recognizing the MTB antigens of group A (Rv0288, Rv1886c, and Rv3875) and the MTB

antigens of group B (Rv2958, Rv2957, and Rv0447) restricted by A*02:01 (n = 31 vs. n = 11) and A*24:02 (n = 29 vs. n = 24) belonging to the (B) precursor (CD45RA+CCR7+) and

(C) terminally differentiated (CD45RA+CCR7�) compartments. Each dot represents the staining in a single patient and the different patients are shown with different shapes.

The Mann–Whitney non-parametric test was performed and significant values were calculated based on the following p-values: *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 6. Expression of the ‘stem cell markers’ CD95 and c-kit. (A) Expression of CD95 on antigen-specific (n = 42) vs. total CD8+CD45RA+CCR7+ T-cells (n = 11). (B)

Comparison of the frequencies of the antigen-specific CD8+CD45RA+CCR7+ T-cells recognizing the MTB antigens of group A (Rv0288, Rv1886c, and Rv3875) (n = 30) and the

MTB antigens of group B (Rv2958, Rv2957, and Rv0447) (n = 12). (C) Expression of c-kit on the naı̈ve (CD45RA+CCR7+) total CD8+ T-cells (n = 11) and antigen-specific CD8+ T-

cells (n = 42). (D) c-kit on antigen-specific T-cells recognizing the MTB group A proteins (Rv0288, Rv1886c, and Rv3875) (n = 30) and proteins Rv2958, Rv2957, and Rv0447

(n = 12) belonging to the CD8+CD45RA+CCR7+ compartment. Each dot represents the staining in a single patient and the different patients are shown with different shapes.

The Mann–Whitney non-parametric test was performed and significant values were calculated based on the following p-values: *p < 0.05, **p < 0.01, ***p < 0.001.
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treatment. This treatment leads not only to TNF-a reduction, but
also to depletion of terminally differentiated (CD45RA+ CCR7�)
CD8+ T-cells,8 which links T-cell phenotype to a clinically relevant
endpoint: higher risk of developing active TB.

This study did not address the evaluation of the diagnostic
potential of the MHC class I–peptide multimers, since we did not
include PBMCs from patients with latent TB, or from uninfected
and/or from non-MTB exposed individuals. Instead, we evaluated
ex vivo detection, characterization, and functional analysis
(cytokine production and degranulation) of antigen-specific
CD8+ T-cells directed against a broad panel of 15 different MHC
class I–peptide complexes17,31,34,35 presenting epitopes from six
different MTB proteins presented by the most common Asian MHC
class I alleles (HLA-A*02:01 and A*24:02)36 in patients with active
pulmonary TB.

Although some MHC class I presented MTB epitopes (A2-
Rv1886cKLVANNTRL, A24-Rv3875ELNNALQNL, and A24-Rv2957PYNL-

RYRVL) were found to be associated with a more prominent CD8+
T-cell response, we could not identify a dominant CD8+ T-cell
response directed towards a single MTB epitope as described for
viral pathogens (e.g., Epstein–Barr virus, cytomegalovirus, or HIV)
(reviewed in Yewdell and Bennink37). The MTB response, at least
restricted by HLA-A*02:01 and HLA-A*24:02, was characterized by
a low frequency of MTB antigen-specific T-cells in blood from 12/
12 individuals (with active pulmonary TB). However, since the lung
is the actual site of infection, the immunological profile and
recognition pattern might differ between lung lymphocytes and
the PBMCs used in this study, as reported previously.30 Immuno-
dominant CD8+ T-cell responses have been described for other
infectious diseases where CD8+ T-cells are important, e.g., in HIV-
directed immune responses restricted by HLA-B27 and HLA-B57.38

The preferential use of these MHC class I restricting elements is
associated with T-cell polyfunctionality, increased avidity of the
cognate TCR (T-cell receptor) –MHC–peptide recognition, and
enhanced T-cell clonal turnover.39 Most of the HLA-A*02:01 MTB
epitopes have been analyzed concerning their biochemical
interaction with MHC class I molecules,17,31 and have not shown
aberrant low MHC class affinity or off-rates as compared to viral
epitopes. We hypothesize that the low frequency of MTB-reactive
T-cells, restricted by HLA-A*02:01 and A*24:02, is rather reflecting
the available T-cell receptor repertoire in patients with active TB
and not the intrinsic biochemical characteristics of MHC class I
MTB peptide complexes. In addition, we cannot rule out T-cell
cross-recognition of CD8+ T-cells directed against the frequently
recognized epitope A24-Rv3875ELNNALQNL from CD8+ T-cells
recognizing ‘self-epitopes’ or epitopes derived from other patho-
gens (e.g., the A24-Rv3875ELNNALQNL exhibits high (89%) identity
with the same amino acid stretch present in Streptococcus

agalactiae and Helicobacter winghamensis; the latter pathogen is
associated with gastroenteritis40). Since some of the presented
epitopes express single nucleotide polymorphism between differ-
ent clinical isolates,41 we cannot rule out that the infected
individuals’ MTB isolates affected the antigen-specific T-cell
recognition. However, we do not have the detailed DNA sequences
of the individual MTB isolates available.

Th1 cytokines, i.e., IL-2, IFN-g, and TNF-a, play a central role in
cellular immunity and the control of active TB. However, the
frequencies and impact of single cytokine-producing T-cells, as
well as polyfunctional CD4+ and CD8+ cells, tend to vary between
different studies. Latently infected individuals, exposed household
contacts, and active TB cases seem to have different cytokine
profiles: T-cells from patients with active TB appear to produce
higher amounts of cytokines including TNF-a and IFN-g in CD4+
and CD8+ T-cell compartments. IL-2, on the other hand, seems to
be more frequently produced in blood from household con-
tacts14,42,43 in response to MTB antigens. In the current study, we
were able to detect a low, yet clearly distinguishable, cytokine
production in response to stimulation with the MTB antigens
Rv0288 and Rv3875. The frequencies were lower than, or
approximately in the same range as, those identified in response
to different MTB proteins in other studies (purified protein
derivative (PPD),13 PPD/Rv3874/Rv3875,44 Rv1886c/Rv3875/
Rv2031c14).

On the other hand, we were able to identify higher frequencies
of antigen-specific T-cells by use of MHC class I multimers in the
same blood samples, compared to T-cells producing cytokines.
Either these T-cells are non-functional or they exert a different
immune effector function. Based on the up-regulation of the
degranulation marker CD107a, these functions might include
cytotoxicity. The discrepancy between cytokine-producing cells
(IFN-g) and cytolytic cells has previously been reported in the
context of HIV, where CD8+ T-cells tend to exhibit either one of
these functions, but rarely both together.45 These results imply a
potential underestimation of antigen-specific cells if T-cell tests
are based solely on the detection of Th1 cytokines, with a risk of
overlooking T-cells expressing a different cytokine profile or
cytotoxic functions.

Much of the current work related to the identification of
antigen-specific immune responses in different settings (active-
latent MTB, TB in children, HIV co-infected individuals, and TB
vaccine settings) has to a high degree focused on a limited number
of very well-studied MTB proteins (e.g., Rv0288, Rv1886c, and
Rv3875), while MTB codes for more than 4000 different proteins. In
this study, we compared differences between these well-studied
antigens and three recently identified immunogenic proteins,
which are rather expressed in slow-growing bacterial species and
are not secreted. The novel epitopes identified in these proteins
might not be exclusively present in mycobacteria, but may also
occur in other slow-growing bacteria and amoebas, e.g., Strepto-

myces sp and Dictyostelium sp; cross-recognition of epitopes might
therefore occur, in particular since the CFA synthase from these
species shows a high homology to the MTB-derived CFA synthase
(56% respective 37%) and at least one of the Rv0447c-derived
epitopes (Rv0447c KYIFPGGLL) perfectly matches an epitope derived
from Streptomyces sp and Dictyostelium sp. More work may be
needed to elucidate how multiple exposures, co-infection with
other pathogens, or even harmless commensals shape the immune
reactivity pattern in patients exposed to MTB, in particular since
CD8+ T-cells directed against these (non-secreted) MTB targets
reside in the terminally differentiated T-cell subset. The fact that
differences are more profound for epitopes restricted by the allele
HLA-A*02:01 than A*24:02 could be explained either by intrinsic
peptide-specific properties or intra allele-specific differences. In
general, the fact that the frequencies of antigen-specific T-cells
were higher, restricted by the allele HLA-A*24:02, may reflect the
success of this allele in antigen presentation and subsequently the
high frequency of this allele in the Korean population.36

Recent studies detecting MTB-reactive T-cells in blood from
children and active and/or latently infected adult individuals, have
shown the phenotype of antigen-specific CD8+ T-cells in patients
with TB seems to be highly variable.12,17,29,42,43,46,47 However,
somewhat surprisingly, many of these studies reported high
frequencies of antigen-experienced T-cells with a precursor-like
phenotype.12,43,46,47 In line with these findings, we could also
detect that the majority of the MTB-specific cells belonged to the
precursor compartment (CD45RA+CCR7+). Several mechanisms
may apply, e.g., increased lymphopoiesis, as well as activated cells
reverting back to a ‘naı̈ve’-like phenotype without actually being
precursor cells.26,43 Recent studies have also identified antigen-
experienced human T-cell populations to viral (influenza and
cytomegalovirus) and tumour antigens, bearing many character-
istics of precursor T-cells including CD45RA+CCR7+CD127+. At the
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same time, these cells express memory and stem cell-like markers
such as CD95+ and/or c-kit and have the ability to differentiate into
diverse subsets of memory and effector cells.48,49 CD95 (Fas
receptor) is a receptor with both pro- and anti-apoptotic
characteristics, depending on the cellular context, and it is also
involved in the modulation of T-cell activation.50 c-kit, on the other
hand, is expressed mainly on different types of hematopoietic
progenitor cells and plays a role in cell survival, proliferation, and
differentiation.51 The increased frequencies of antigen-specific
naı̈ve cells (CD45RA+CCR7+) expressing the CD95 and c-kit cell-
surface described in the current report, suggest that these
precursor-like cells belong to a stem cell memory compartment.
The higher than average expression of the IL-7 receptor molecule
CD127 (described here) would also be in the line with these
observations. Other investigators52 argued that the c-kit-positive
stem cell memory T-cells identified by Turtle et al.49 represent, in
fact, a subset of effector-type cells, since they produce IFN-g,
express the senescence marker KLRG1, exhibit shorter telomere
length, and tested negative for the phenotypic markers CD45RA
and CCR7. A considerable frequency of the c-kit-positive T-cells in
the current study, however, expressed both of the phenotypic
markers (CD45RA/CCR7), while they did not express other
senescence markers, nor did they produce cytokines in response
to maximal stimulation. Therefore, we suggest that these T-cells
belong to a different T-cell compartment as compared to the c-kit+
T-cells described by Turtle and co-workers. Identification of these
multipotent precursor-like memory cells in TB could be highly
relevant, particularly in the development of novel or improved TB
vaccines; the clinical relevance of CD45RA+CCR7+c-kit MTB-
specific T-cells will need to be further examined in longitudinal
studies in patients responding to MTB treatment and by evaluating
household contacts of index persons (who have likely been
exposed to MTB, yet are protected).

The higher frequencies of antigen-specific CD8+ T-cells directed
against the secreted antigens (at least in HLA-A*02:01-mediated
responses) could reflect a dominant response to actively multi-
plying MTB. In addition, we could identify differences concerning
the phenotype between the two groups of antigens (early
expressed secreted antigens vs. non-secreted enzymes), in contrast
to data reported by Lindestam Arlehamn et al. in regard to MTB-

specific CD4+ T-cell responses in latently infected individuals.53

The dominant immune recognition, as well as the T-cell phenotype
(i.e., lower frequency of terminally differentiated effector cells)
could indicate that the T-cell response directed against secreted
MTB antigens is less functional and that the (secreted) antigens
may act as decoy antigens to subvert cellular immune responses, as
previously suggested by Baena and Porcelli.54

To summarize, we detected ex vivo MHC class I-restricted and
MTB antigen-specific T-cells. The frequencies of these cells were
associated with the nature of the antigen (secreted versus non-
secreted), with the MHC restricting element, and with T-cell
effector and homing functions including T-cells with stem cell-like
features. Ex vivo identification of multimer-reactive T-cells
showed that functional T-cell assays underestimate the frequency
of MTB-reactive T-cells (at least in patients with active, not yet
treated, pulmonary TB). Manipulation of MTB-restricted T-cells
towards a precursor phenotype may hold the key to future targeted
therapies aimed at expanding long-term immune effector T-cells.
The data also call for a more detailed examination of potentially
MTB cross-reactive T-cells induced by other pathogens or
mycobacteria other than tuberculosis (MOTT).
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