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Abstract In this analysis, MHD boundary layer flow and heat transfer of a fluid with variable

viscosity through a porous medium towards a stretching sheet by taking in to the effects of viscous

dissipation in presence of heat source/sink is considered. The symmetry groups admitted by the cor-

responding boundary value problem are obtained by using Lie’s scaling group of transformations.

These transformations are used to convert the partial differential equations of the governing

equations into self-similar non-linear ordinary differential equations. Numerical solutions of these

equations are obtained by Runge-Kutta fourth order with shooting method. Numerical results

obtained for different parameters such as viscosity variation parameter A, permeability parameter

k1, heat source/sink parameter k, magnetic field parameter M, Prandtl number Pr, and Eckert num-

ber Ec are drawn graphically and effects of different flow parameters on velocity and temperature

profiles are discussed. The skin-friction coefficient �f00ð0Þ and heat transfer coefficient �h0(0) are
presented in tables.

� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

Flow of an incompressible viscous fluid and heat transfer phe-

nomena over a stretching sheet have received great attention
during the past decades owing to the abundance of practical
applications in chemical and manufacturing process, such as
polymer extrusion, drawing of copper wires, and continuous
casting of metals, wire drawing and glass blowing. The study

of hydrodynamic flow and heat transfer over a stretching sheet
may find its application to sheet extrusion in order to make flat
plastic sheets. In doing so, it is important to investigate cooling

and heat transfer for the improvement of the final products.
The conventional fluids such as water and air are among the
most widely used fluids as the cooling medium. However, the

rate of heat exchange achievable by the above fluids is realized
to be unsuitable for certain sheet materials. Thus, in recent
years, it has been proposed to alter flow kinematics that it

leads to a slower rate of solidification as compared with water.
Among the techniques to control flow kinematics, the idea of
using magnetic field appears to be the most attractive one both
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Nomenclature

F non-dimensional stream function

F* variable
k permeability of the porous medium
k1 permeability parameter
Pr Prandtl number

M magnetic parameter
Ec Eckert number
Q0 dimensional heat generation/absorption Coeffi-

cient
p, q variables
T temperature of the fluid

T1 free-stream temperature
Tw temperature of the wall of the surface
u,v components of velocity in x and y directions
z variable

Greek symbols
a1, a2, a3, a4,a5, a6, a0, a0 transformation parameters

b0; b00 transformation parameters
g similarity variable
C Lie-group transformations

K the coefficient of thermal diffusivity
k heat source/sink parameter
l* reference viscosity

w stream function
w* transformed stream function
q density of the fluid
h non-dimensional temperature

h*, �h variables
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because of its ease of implementation and also because of its
intrusive nature. The fluid mechanics properties desired for

an outcome of such a process would mainly depend on two
aspects, one is the rate of cooling of liquid used and the other
is the rate of stretching. The rate of cooling and the desired

properties of the end product can be controlled by the use of
electrically conducting fluid and applications of magnetic
fields. The use of magnetic field has been used in the process

of purification of molten metal’s from non-metallic inclusions
(Figs. 1 and 2).

The momentum and heat transfer of boundary layer flow
over a stretching sheet have been applied in many chemical

engineering processes such as metallurgical process, polymer
extrusion process involving cooling of a molten liquid being
stretched into a cooling system. These applications involve

the cooling of continuous strips of filaments by drawing them
through a quiescent fluid. Sakiadis [1] initiated the study of the
boundary layer flow over a stretched surface moving with con-

stant velocity and formulated boundary layer equations for
two-dimensional and axisymmetric flows. Crane [2] investi-
gated the flow caused by the stretching sheet. Sharidan [3]
studied similarity solutions for unsteady boundary layer flow

and heat transfer due to stretching sheet. Carraagher et al.
[4] studied the flow and heat transfer over a stretching surface
when the temperature difference between the surface and an

ambient fluid is proportional to the power of distance from a
fixed point. Many researchers such as Gupta and Gupta [5],
0

Boundary layer

                                     X 

Figure 1 Sketch of the physical problem.
Dutta et al. [6] extended the work of Crane [2] by including
the effect of heat and mass transfer analysis under different

physical situations. Several authors have considered various
aspects of this problem and obtained similarity solutions
(Ishak et al. [7–9], Mahapatra et al. [10], Pal [11,12], Aziz

et al. [13], Abel et al. [14], Mukhopadhyay and Mondal [15],
Zhang et al. [16], Krishnendu [17]). Swati Mukhopadhyay
et al. [18] studied the unsteady two-dimensional flow of a

non-Newtonian fluid over a stretching surface. The casson
fluid model is used to characterize the non-Newtonian fluid
behavior.

Viscous dissipation changes the temperature distributions

by playing a role like an energy source, which leads to affected
heat transfer rates. The merit of the effect of viscous dissipa-
tion depends on whether the plate is being cooled or heated.

Heat transfer analysis over porous surface is of much practical
interest due to its abundant applications. The previous studies
are based on the constant physical properties of the fluid.

However, it is known that the physical properties of the fluid
may change significantly with temperature. The increase in
Figure 2 Graphical comparison of the present study with

Mukhopadhyay [32] and Cortel [37].
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temperature leads to the increase in the transport phenomena
by reducing the viscosity across the momentum boundary layer
and due to which the heat transfer rate at the wall is also

affected. Therefore, to accurately predict the flow and heat
transfer rates, it is necessary to take into account the temper-
ature-dependent viscosity of the fluid. The effect of tempera-

ture-dependent viscosity on heat and mass transfer laminar
boundary layer flow has been discussed by many authors
[19–24] in various situations. They showed that when this

effect was included, the flow characteristics might change sub-
stantially compared with the constant viscosity assumption.
Salem [25] investigated variable viscosity and thermal conduc-
tivity effects on MHD flow and heat transfer in visco-elastic

fluid over a stretching sheet. Anjali Devi and Ganga [26] have
considered the viscous dissipation effects on MHD flows past
stretching porous surfaces in porous media. From the preced-

ing investigations, it is observed that the variation in viscosity
with temperature and viscous dissipation is interesting physical
phenomenon in convective fluid flows. A new dimension is

added to the above mentioned study of Mukhopadhyay
et al. [27] by considering the effects of porous media. Flows
through porous media are of principal interest because these

are quite prevalent in nature. Such type of flow finds its appli-
cations in a broad spectrum of disciplines covering chemical
engineering to geophysics. Flow through fluid-saturated por-
ous medium is important in many technological applications,

and it has increasing importance with the growth of geother-
mal energy usage and in astrophysical problems. Several other
applications may also benefit from a better understanding of

the fundamentals of mass, energy, and momentum transport
in porous media, namely cooling of nuclear reactors, under-
ground disposal of nuclear waste, petroleum reservoir opera-

tions, building insulation, food processing, and casting and
welding in manufacturing processes. In certain porous media
applications, working fluid heat generation (source) or absorp-

tion (sink) effects are important. Representative studies
dealing with these effects have been reported by authors such
as Gupta and Sridhar [28], Abel and Veena [29] and Sharma
[30]. The effects of variable viscosity and thermal conductivity

on an unsteady two-dimensional laminar flow of viscous
incompressible conducting fluid past a semi-infinite vertical
porous moving plate taking into account the effect of a

magnetic field in the presence of variable suction are studied
by Seddeek and Salama [31].

Recently Mukhopadhyay et al. [32] studied the effects of

variable viscosity on the boundary layer flow and heat transfer
of the fluid flow through a porous medium towards a stretch-
ing sheet in the presence of heat generation or absorption. In
this paper the magneto hydrodynamic flow and heat transfer

over a heated stretching sheet immersed in a porous media
in the presence of heat source/sink and viscous dissipation
have been considered. Fluid viscosity is assumed to vary as a

linear function of temperature. In the field of fluid mechanics,
most of the researchers try to obtain the similarity solutions in
such cases using the similarity variables. In case of scaling

group of transformations, the group-invariant solutions are
nothing but the well known similarity transformation [33]. A
special form of Lie-group of transformations known as scaling

is used in this paper to find out the full set of symmetries of the
problem and then to study which of them are appropriate to
provide group invariant or more specifically similarity solu-
tions. This method reduces the system of non-linear coupled
partial differential equations governing the motion of the fluid
into a system of coupled ordinary differential equations. In
this paper, by applying Lie’s scaling group transformations

to the problem of boundary layer flow and heat transfer of a
fluid with variable viscosity over a stretching sheet embedded
in a porous medium by taking the effects of viscous dissipation

and heat source /sink in the presence of uniform magnetic field
is analyzed. The system remains invariant due to some rela-
tions among the parameters of the transformations. With this

transformation, a third order and a second order ordinary dif-
ferential equations corresponding to momentum and energy
equations are derived. These equations are solved with the help
of Runge-Kutta fourth order method along with shooting

technique. The effects of the fluid viscosity parameter, Prandtl
number, magnetic parameter, permeability parameter, Eckert
parameter and heat source/sink parameter on velocity and

temperature fields are investigated and analyzed with the help
of graphical representation.

2. Mathematical formulations

Consider a steady two-dimensional forced convection flow of a
viscous dissipating incompressible fluid past a heated stretch-

ing sheet immersed in a porous medium in the region y > 0.
Keeping the origin fixed, two equal and opposite forces are
applied along the x-axis which results in stretching of the sheet

and a uniform magnetic field of strength B0 is imposed along
the y-axis. The temperature of the sheet is different from that
of the ambient medium. The fluid viscosity is assumed to vary
with temperature while the other fluid properties are assumed

constants.
The continuity, momentum and energy equations govern-

ing such type of flow are written as
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where u and v are components of velocity respectively in x and
y directions, T is the temperature, j is the coefficient of thermal
diffusivity, Q0 (J s

�1 m�3 K�1) is the dimensional heat genera-

tion (Q0 > 0) or absorption (Q0 < 0) coefficient, cp is the
specific heat, q is the fluid density (assumed constant), l is
the coefficient of fluid viscosity (dependent on temperature),

and k is the permeability of the porous medium.

2.1. Boundary conditions

The appropriate boundary conditions for the problem are
given by

u ¼ cx; v ¼ 0; T ¼ Tw at y ¼ 0;

u! 0; T! T1 as y!1 ð4Þ



970 H. Dessie, N. Kishan
Here c (>0) is constant, Tw is the uniform wall temperature,

T1 is the temperature far away from the sheet.

2.2. Method of solution

We now introduce the following relations for u, v and h as

u ¼ @w
@y

; v ¼ � @w
@x

and h ¼ T� T1
Tw � T1

ð5Þ

where w is the stream function.
The temperature dependent fluid viscosity is given by

(Batchelor [34]),

l ¼ l�ðaþ bðTw � TÞÞ ð6Þ

where l* is the constant value of coefficient of viscosity far
away from the sheet and a, b are constants and b (> 0). We
have used viscosity-temperature relation l = a � bT(b > 0)

which agrees quite well with the relation l ¼ 1
ðb1þb2TÞ

(Saikrishnan and Roy [35]) when second and higher order
terms are neglected.

The viscosity-temperature relation used is l = 1/(b1 + b2T)
which can be written in expanded form as

l ¼ 1

b1
1þ b2
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T2 � . . .
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��� ���x < 1) (Neglecting second and higher order
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. They took in their

study, b1 = 53.41, b2 = 2.43 and so b2
b1
T < 1

l m
gives

0� 6 T 6 23�.
Our viscosity-temperature relation also agrees quite with

the relation l = e�aT (Bird et al. [36]) when second and higher
order terms are neglected in the expansions. Range of temper-
ature i.e (Tw � T1) studied here is (0�23 �C). Coefficient of

viscosity l of a large number of liquids agrees very closely with

the empirical formula given by l ¼ C
ðaþbTÞn where a, b, c, n are

constants depending on the nature of liquid. This agrees well
with n= 1 for pure water with our formulation for fluid
viscosity.

Using the relations (5) in the boundary layer Eq. (2) and in
the energy Eq. (3) we get the following equations
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where A ¼ bðTw � T1Þ; v� ¼ l�

q :

The boundary conditions (4) then becomes

@w
@y
¼ cx;

@w
@x
¼ 0; h ¼ 1 at y ¼ 0:
@w
@y
! 0; h!1 as y!1: ð9Þ
2.3. Scaling group of transformations

Now introduce simplified form of Lie-group transformations

namely the scaling group of transformations (Mukhopadhyay
et al. [19]),

C : x� ¼ xeea1 y� ¼ yeea2

w� ¼ weea3 u� ¼ ueea4

v� ¼ veea5 h� ¼ heea6

ð10Þ

Eq. (10) may be considered as a point-transformation which
transforms coordinates (x, y, w, u, v, h) to the coordinates
(x*, y*, w*, u*, v*, h*). Substituting (10) in (7) and (8), we get,
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The system will remain invariant under the group of transfor-
mations C we would have the following relations among the
parameters, namely

a1 þ 2a2 � 2a3 ¼ 3a2 � a3 � a6 ¼ 3a2 � a3 ¼ a2 � a3

¼ a2 � a3 � a6

and

a1 þ a2 � a3 � a6 ¼ 2a2 � a6 ¼ �a6 ¼ 4a2 � 2a3

¼ 4a2 � 2a3 � a6

These relations give a1 = a3 and a2 = 0 = a6. The boundary
conditions yield a1 = a4, a5 = 0.

Thus the set reduces to a one parameter group of

transformations:

x� ¼ xeea1 ; y� ¼ y; u� ¼ ueea1 ;

v� ¼ v; w� ¼ weea1 ; h� ¼ h ð13Þ

Expanding by Taylor’s series we get

x� � x ¼ xea1; y� � y ¼ 0;

u� � u ¼ uea1;w
� � w ¼ vea1
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v� � v ¼ 0; h� � h ¼ 0 ð14Þ

In terms of differentials we get.

dx

a1x
¼ dy

0
¼ dw

a1w
¼ du

a1u
¼ dv

0
¼ dh

0
ð15Þ

From the subsidiary equations dx
a1x
¼ dy

0
we get dy = 0 which on

integrations gives

y ¼ gðconstantÞ=ðsayÞ ð15aÞ
From equations dx

a1x
¼ dh

0
we get dh = 0 which on integration

gives us

h ¼ hðgÞ=ðsayÞ ð15bÞ
Also integrating the equations dx

a1x
¼ dw

a1w
we get. w

x
¼ constant i.e

w ¼ xFðgÞðsayÞ ð15cÞ
where F is an arbitrary function of g.

Thus from Eqs. (15a)–(15c) we obtain,

y ¼ g; w ¼ xFðgÞ; h ¼ hðgÞ ð16Þ
Using these transformation Eqs. (11) and (12) becomes

F02 � FF00 ¼ �Av�h0F00 þ v�½aþ Að1� hÞ�F000

� v�

k
½aþ Að1� hÞ�F0 � rB2

0

q
F0 ð17Þ

jh00 þ Fh0 þ Q0

qcp
hþ c2x2

cpðTw � T1Þ
½ðaþ Að1� hÞ�F002 ¼ 0 ð18Þ

The boundary conditions of Eq. (9) becomes

F0 ¼ c; F ¼ 0; h ¼ 1 at g ¼ 0:

F0 ! 0; h! 0 as g!1: ð19Þ
Introducing g = v*cbg*, F ¼ v�a0cb0F�; h ¼ v�a00cb00�h in Eqs. (17)
and (18) we get

a0 ¼ a ¼ 1=2; a00 ¼ 0

b0 ¼ �b ¼ 1=2; b00 ¼ 0

Eqs. (17) and (18) are transformed to

F�02 � F�F�00 ¼ �AF�00�h0 þ ½aþ Að1� �hÞ�F�000

� k1½aþ Að1� �hÞ�F�0 �MF�0 ð20Þ

�h00 þ PrðF��h0 þ k�hþ Ecðaþ Að1� �hÞÞÞF�002 ¼ 0 ð21Þ

where Pr ¼ v�

k
is the Prandtl number and k ¼ Q0

cqcp
is the heat

source/sink parameter, M ¼ rB2
0

qc is the magnetic parameter,

k1 ¼ v�

ck
is the permeability parameter (Cortell [37]),

Ec ¼ c2x2

cpðTw�T1Þ is Eckert number.

Taking F* = f and �h ¼ h Eqs. (20) and (21) finally takes the
following form

½aþ Að1� hÞ�f000 þ ff00 � Af00h0 � f02

� k1½aþ Að1� hÞ�f0 �Mf0 ¼ 0 ð22Þ

1

Pr
h00 þ fh0 þ khþ Ecðaþ Að1� hÞÞf002 ¼ 0 ð23Þ

The boundary conditions of Eq. (19) take the following form

f0 ¼ 1; f ¼ 0; h ¼ 1 at g� ¼ 0;

f0 ! 0; h! 0 as g� ! 1: ð24Þ
3. Numerical method for solution

The set of coupled non-linear governing boundary layer Eqs.
(22) and (23) together with boundary conditions (24) are

solved numerically by using Runge-Kutta fourth order tech-
nique along with shooting method. First of all, the higher
order non-linear differential Eqs. (22) and (23) are converted

into simultaneous linear differential equation of first order
and they are further transformed into initial value problem
by applying the shooting technique. The resultant initial value
problem is solved by employing Runge-Kutta fourth order

method. The step size Dg = 0.001 is used to obtain the numer-
ical solution with six decimal accuracy as criterion of conver-
gence. The above mentioned third order and second order

equations are written in terms of first order equations as
follows:

f0 ¼ z

z0 ¼ p

p0 ¼ ½z2�fpþApqþk1 ½aþAð1�hÞzþMz�
½aþAð1�hÞ�

9>=
>; ð25Þ

h� ¼ q

q0 ¼ �Prðfqþ khþ Ecðaþ Að1� hÞÞp2

�
ð26Þ

With boundary conditions

fð0Þ ¼ 0; f0ð0Þ ¼ 1; hð0Þ ¼ 1 ð27Þ

In order to integrate (25) and (26) as initial value problem we
require a value for p(0) i.e. f00(0) and q(0) i.e h0(0) but no such
values are given in the boundary. The suitable guess values for

f00ð0Þ and h0(0) are chosen and then integration is carried out.
We compare the calculated values for f0 and h at g = 7 (say)
with the given boundary condition f0(7) = 0 and h(7) = 0
and adjust the estimated values f00ð0Þ and h0(0) to give a better

approximation for the solution. Different values of g (such as
g = 2.5, 3, 6, 7, etc.) are taken in our numerical computations
so that numerical values obtained are independent of g chosen.

We take the series of values for f00ð0Þ and h0(0) and apply the
fourth order Runge-Kutta method with different step-sizes
(g = 0.01, 0.001, etc.) so that the numerical results obtained

are independent of Dg. The above procedure is repeated until
we get the results up to the desired degree of accuracy 10�6.
4. Results and discussion

The computations have been carried out for various governing
flow parameters such as the viscosity parameter A, permeabil-

ity parameter k1, heat source/sink parameter k, the Prandtl
number Pr, magnetic parameter M and Ecket number Ec.
For illustrations of the results the numerical values are plotted
in figures for dimensionless velocity profile and temperature

profiles. In order to access the accuracy of the method the
results are compared in case of uniform viscosity and in
absence of suction/blowing with Coretell [37] and Mukhopad-

hyay et al. [32] which are given in Table 1. The results are in
good agreement with them. The values of skin friction coeffi-
cients –f00(0) and the wall temperature gradient –h0(0) are tab-

ulated in Tables 2 and 3. It is evident from the tables that
increasing the viscosity parameter A the skin-friction coeffi-
cients �f00(0) and temperature gradient �h0(0) values increases.
The effect of permeability parameter k1 increases the values of



Figure 3a Velocity profiles for different values of viscosity

parameter A in case of porous medium and in presence of heat

source/sink.

Table 3 The skin-friction coefficient �f00ð0Þand the wall

temperature gradient �h0ð0Þ values with a= 1, A= 1,

k1 = 0.1, k ¼ 0:1.

Pr M Ec �f00 (0) �h0ð0Þ
0.5 0.5 0.03 1.321475 0.234260

0.71 0.5 0.03 1.336319 0.300060

2.0 0.5 0.03 1.411710 0.690783

7.0 0.5 0.03 1.520871 1.519640

10.0 0.5 0.03 1.551378 1.855747

100.0 0.5 0.03 1.705436 6.01850

7.0 1.0 0.03 1.716043 1.449542

7.0 2.0 0.03 2.033797 1.333874

7.0 3.0 0.03 2.297985 1.233453

7.0 5.0 0.03 2.738661 1.094953

7.0 0.5 0.0 1.528324 1.643503

7.0 0.5 0.3 1.453475 0.440350

7.0 0.5 0.7 1.352794 �1.035274
7.0 0.5 0.9 1.302211 �1.711866
7.0 0.5 1.0 1.276931 �2.034022

Figure 3b Temperature profiles for different values of viscosity

parameter A in case of porous medium and in presence of heat

source/sink.

Table 2 The skin-friction coefficient �f00ð0Þ and the wall

temperature gradient �h0ð0Þ values with a= 1 and Pr = 0.71,

M= 0.5, Ec= 0.03.

A k1 k �f00ð0Þ �h0

0.0 0.0 0.0 1.224751 0.413244

1.0 0.0 0.0 1.307859 0.422576

4.0 0.0 0.0 1.546828 0.436481

5.0 0.0 0.0 1.622843 0.438771

10.0 0.0 0.0 1.981813 0.443167

0.0 0.1 0.0 1.264914 0.406634

1.0 0.1 0.0 1.355174 0.412845

0.0 0.0 0.1 1.224751 0.300687

0.0 0.1 0.1 1.264914 0.291309

0.1 0.1 0.1 1.336319 0.300640

0.1 0.1 0.0 1.355174 0.412844

0.1 0.1 �0.1 1.368797 0.499333

0.1 0.1 �0.2 1.379581 0.571603

0.1 0.1 �0.5 1.403208 0.743580

0.1 0.1 �1.0 1.429350 0.959301

Table 1 The skin-friction –f00 (0) and the wall temperature gradient �h0ð0Þ for two values of k1 with a= 1, A = 0, k = 0, Pr= 1,

M= 0 and Ec = 0.

k1 �f00ð0Þ �h0ð0Þ
Coretel [35] Mukhopadhyay [31] Present study Coretel [35] Mukhopadhyay [31] Present study

1 1.414213 1.414213 1.414214 0.500000 0.500001 0.500008

2 1.732051 1.732051 1.732051 0.447552 0.447553 0.447558
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–f00(0) and decreases the values of �h0(0). In case of sink

(k < 0), the values of –f00(0) and �h0(0) decreases with the
increase of k, whereas its values increases in case of source
ðk > 0Þ. It can also note that from Table 2 with the increases

of Pr the values of and �h0(0) increases. The effect of the mag-
netic parameter M is to increase the values of skin-friction
coefficient �f00(0) while the effect of magnetic parameter is to
reduce the temperature gradient �h0(0). The effect of Eckert
number Ec is to reduce the values of skin-friction coefficient
�f00ð0Þ and the temperature gradient coefficient –h0(0).

Figs. 3a and 3b illustrate the effects of the temperature-
dependent fluid viscosity parameter A on velocity and temper-
ature profiles respectively. It is observed that the velocity

profiles increases with the increase in viscosity parameter A.



Figure 4a Velocity profiles for different values of permeability k1
in case of uniform viscosity and in absence of heat source/sink.

Figure 4b Velocity profiles for different values of permeability k1
in case of variable viscosity and in absence of heat source/sink.

Figure 5a Temperature profiles for different values of perme-

ability parameter k1 in case of uniform viscosity and in absence of

heat source/sink.

Figure 5b Temperature profiles for different values of perme-

ability parameter k1 in case of variable viscosity and in absence of

heat source/sink.
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The effects of the viscosity to reduce the temperature are
noticed from Fig. 3b. Figs. 4 and 5 are plotted to the velocity

profile f0 and temperature profiles h, respectively, for different
values of permeability parameter k1. The effect of k1 leads to
decrease the velocity profile f0 in case of uniform viscosity
and variable viscosity. From the Fig. 5 it can be seen that

the temperature profiles increases with increase in permeability
parameter k1 in both case of variable and uniform viscosity.

The effects of magnetic field parameter M on velocity and

temperature profiles are shown in Fig. 6a–c. The effects of
magnetic field are to reduce the velocity profiles, while it
increases the temperature profiles. Because of the application

of transverse magnetic field in an electrically conducting fluid,
a resistive force similar to a drag force is produced, which is
Lorentz force. The presence of Lorentz force retards the force

on the velocity field and therefore the velocity profiles
decreases with the effect of magnetic field parameter. This
force has the tendency to slow down the fluid motion and
the resistance offered to the flow. Therefore, it is possible for
the increase in the temperature. It is also noticed that the
thermal boundary layer thickness increases in the presence of
a magnetic field. Figs. 7a and 7b depicts the velocity and tem-

perature profiles to the effects of the Prandtl number on
momentum and heat transfer. It can be noticed from these fig-
ures that the fluid velocity decreases with increasing Prandtl

number. An increase in Prandtl number reduces the thermal
boundary layer thickness. Prandtl number signifies the ratio
of momentum diffusivity to thermal diffusivity. It can be

noticed that as Pr decreases, the thickness of the thermal
boundary layer becomes greater than the thickness of the
velocity boundary layer according to the well-known relation

dT/d @ 1/Pr where dT the thickness of the velocity thermal
boundary layer and d the thickness of the velocity boundary
layer, so the thickness of the thermal boundary layer increases
as Prandtl number decreases and hence temperature profile



Figure 6a Velocity profiles for different values of magnetic

parameter M in case of non-porous, uniform viscosity and in

absence of heat source/sink.

Figure 6b Temperature profiles for different values of magnetic

parameter in case of non-porous, uniform viscosity and in absence

of heat source/sink.

igure 6c Temperature profiles for different values of magnetic

arameter in presence of porous medium variable viscosity and

eat source/sink.

Figure 7a Velocity profiles for different values of Prandtl

number Pr in presence of porous medium, variable viscosity and

heat source/sink.
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decreases with increase in Prandtl number (Abel et al. [38]). In
heat transfer problems, the Prandtl number controls the
relative thickening of momentum and thermal boundary

layers. When Prandtl number is small, it means that heat
diffuses quickly compared to the velocity (momentum), which
means that for liquid metals, the thickness of the thermal

boundary layer is much bigger than the momentum boundary
layer. Hence Prandtl number can be used to increase the rate
of cooling in conducting flows. Fig. 8 is the graphical represen-

tation of the dimensionless temperature profiles for different
values of heat source/sink parameter k. From the figure it is
noticed that the temperature profiles decreases for increasing

of the heat sink (k < 0Þ, and due to increase in heat source
ðk > 0Þ the temperature increases so that the thickness of
thermal boundary layer reduces for the increases of heat sink
parameter but it decreases with heat source parameter
F

p

h

ðk > 0Þ. This result is very much significant for the flow where
heat transfer is given prime important. In Figs. 9a and 9b the
effects of viscous dissipation parameter i.e. the Eckert number

Ec on the velocity and temperature profiles exhibited respec-
tively. The Eckert number expresses the relationship between
the kinetic energy in the flow and the enthalpy. It embodies

the conversion of kinetic energy into internal energy by work
done against the viscous fluid stresses. It can be seen from fig-
ures the effect of viscous dissipation leads to increase temper-

ature profiles in case of presence /absence of heat source/sink
parameter. Interestingly, it also noticed that the thermal



Figure 7b Temperature profiles for different values of Prandl

number Pr in presence of porous medium, variable viscosity and

heat source/sink.

Figure 9a Temperature profiles for different values of Eckert

number Ec in absence of porous medium and heat source/sink.

Figure 9b Temperature profiles for different values of Eckert

number Ec in presence of porous medium variable viscosity and in

presence of heat source/sink.

Figure 8 Temperature profiles for different values of heat

source/sink k in case of porous medium and variable viscosity.
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boundary layer thickness is more in presence of viscous
dissipation.

5. Conclusions

The present study gives the numerical solution for MHD

effects on the boundary layer flow and heat transfer with a var-
iable fluid viscosity on flow past a heated stretching sheet
embedded in porous medium in presence of heat source/sink

and viscous dissipation. Efficient method of Lie group analysis
is used to solve the governing equations of motion. This pro-
cedure helps in removing the difficulties faced in solving the
equations arising from the non-linear character of the partial

differential equations. The scaling symmetry group is very
essential procedure to comprehend the mathematical model
and to find the similarity solutions for such type of flow which

have wider applications in the engineering disciplines related to
fluid mechanics. The main findings of this investigation can be
summarized as follows.

(i) The effect of transverse magnetic field on a viscous
incompressible conducing fluid flow is to suppress the

velocity fluid which in turn causes the enhancement of
the temperature field. The effect of magnetic field is to
decrease both dimensionless velocity profiles and also
skin-friction coefficient values.

(ii) Due to the internal heat sink ðk < 0Þ the thermal bound-
ary layer increases, whereas it decreases with heat source
(k > 0). The temperature dependent fluid viscosity plays

a significant role in shifting the fluid away from the wall.
An increase in Eckert number Ec enhances the tempera-
ture profiles, where as an increase in Prandtl number Pr

decrease the temperature profiles.
(iii) The effect of viscosity parameter A is to increase the

velocity profiles and the reverse phenomenon is observed
in temperature profiles.

(iv) The velocity profiles decreases with the increase in per-
meability parameter k1 while temperature profiles
increases with the increase in permeability parameter k1.
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