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a b s t r a c t

Dengue disease is becoming a huge public health concern around the world as more than one-third of
the world's population living in areas at risk of infection. In an effort to assess host factors interacting
with dengue virus, we identified claudin-1, a major tight junction component, as an essential cell surface
protein for dengue virus entry. When claudin-1 was knocked down in Huh 7.5 cells via shRNA, the
amount of dengue virus entering host cells was reduced. Consequently, the progeny virus productions
were decreased and dengue virus-induced CPE was prevented. Furthermore, restoring the expression of
claudin-1 in the knockdown cells facilitated dengue virus entry. The interaction between claudin-1 and
dengue viral prM protein was further demonstrated using the pull-down assay. Deletion of the
extracellular loop 1 (ECL1) of claudin-1 abolished such interaction, so did point mutations C54A, C64A
and I32M on ECL1. These results suggest that the interaction between viral protein prM and host protein
claudin-1 was essential for dengue entry. Since host and viral factors involved in virus entry are
promising therapeutic targets, determining the essential role of claudin-1 could lead to the discovery of
entry inhibitors with attractive therapeutic potential against dengue disease.

& 2013 Elsevier Inc. All rights reserved.

Introduction

Dengue virus (DENV), a mosquito-transmitted single strand RNA
virus including four serotypes (DENV-1,-2, -3 and -4), belongs to the
genus Flavivirus in the family Flaviviridae. DENV causes a broad
spectrum of clinical manifestations, ranging from mild febrile illness
to life threatening dengue hemorrhagic fever (DHF) and dengue
shock syndrome (DSS) (WHO, 2012). Each year, 2.5 billion people are
under risk of DENV infection, with 50 million infections and 500,000
cases of severe dengue with over 5% case fatality rate (WHO, 2012).
In the past two decades, all four serotypes DENV extended their
distribution geographically and circulated around tropical and sub-
tropical countries, including those in Southeast Asia, the Pacific,
Africa, Eastern Mediterranean and the Americas (Guzman et al.,
2010). Unfortunately, there are no effective antiviral drugs or licensed
vaccine currently available against DENV, and dengue diseases
become a huge public concern (Halstead and Deen, 2002).

The DENV ssRNA genome is approximately 11 kb in length (Kinney
et al., 1997), embedded in a DENV particle which contains three

structural proteins, the capsid (C), envelope (E) and membrane
(M) proteins. M is derived from the precursor M protein (prM) via
cleavage (Perera and Kuhn, 2008). An internal host derived lipid
bilayer encloses an RNA–protein core consisting of genome RNA and C
proteins (Kuhn et al., 2002; Perera and Kuhn, 2008). DENV virions
attach to the host cell surface receptors/co-receptors and enter the cell
via receptor-mediated endocytosis (Lindenbach and Rice, 2003;
Mercado-Curiel et al., 2008; Stiasny et al., 2009; van der Schaar et al.,
2008). Fusion between the viral and cellular membranes requires
reassociation of the E protein on the viral surface to form a number of
fusogenic trimers via an intermediate structure that consists of E
dimers surrounding patches of exposed membrane (Yu et al., 2009;
Zhang et al., 2004). Subsequently, the acidic environment of the
endosomal vesicles triggers conformational changes in E protein,
resulting in fusion of the viral and cellular membranes (Heinz and
Allison, 2003). The nucleocapsid is then released into the cytoplasm,
and the genomic RNA is translated into a single polyprotein prec-
ursor in the order of C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5,
which is processed to three structural and seven non-structural (NS)
proteins. Virus assembly is initiated by forming immature particles in
endoplasmic reticulum (Mackenzie and Westaway, 2001; Yu et al.,
2008). The formation of intracellular prM/E heterodimers occurs
rapidly after translation and is important for the assembly and
secretion of immature virus particles. The ‘pr’ retention prevents
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membrane insertion, suggesting that ‘pr’ is present on the virion in the
trans-Golgi network to protect the progeny virus from fusion within
the host cell (Yu et al., 2009). Duringmaturation, ‘pr’ peptide is cleaved
from prM, and resulting M protein remains in the mature particle as a
transmembrane protein beneath the E protein shell (Yu et al., 2009,
2008; Zhang et al., 2003).

DENV entry is a complicated process requiring specific interac-
tions between multiple cell surface proteins and viral proteins (prM/
M and E). Cell surface proteins serving as receptors/co-receptors are
crucial determinants of tissue tropism during DENV infection. Several
cell surface proteins have been identified as receptors/co-receptors in
different target cells, however, DENV receptors still remains largely
undefined, mainly due to the complexity of different target cells and
different virus serotypes (Bielefeldt-Ohmann et al., 2001; Diamond
et al., 2000). Macrophages, monocytes, and dendritic cells have been
proposed as primary target cells during DENV infection. The binding
of E protein to dendritic cell specific ICAM-3 grabbing non-integrin
(DC-SIGN) triggers the internalization of DENV into the cells (Lozach
et al., 2005; Navarro-Sanchez et al., 2003; Tassaneetrithep et al.,
2003). Meanwhile, the mannose receptor (MR) expressed on macro-
phages has been shown to mediate entry by all four DENV serotypes
via binding to the E protein (Miller et al., 2008). Other cell surface
proteins involved in DENV entry include APO B100 (Guevara et al.,
2010), the chemokine receptors CXCR3 and CXCL10 (Ip and Liao,
2010), and stress proteins related to the heat shock family such as
GRP78/Bip (Jindadamrongwech and Smith, 2004) and heat-shock
protein 70 and 90 (HSP70/90) (Reyes-Del Valle et al., 2005; Reyes-del
Valle and del Angel, 2004). In insect C6/36 cells, prohibitin
(Kuadkitkan et al., 2010) and the 45-kD heat-shock related glyco-
protein (Salas-Benito et al., 2007) have been shown involved in
DENV entry. Nevertheless, the exact cell surface proteins serving as
receptors/co-receptors for DENV entry is still not well defined. In the
present study, we examined and characterized the essential role of
claudin-1 during DENV entry.

Results

Identification of claudin-1 involvement during DENV viral lifecycle:

Virus entry requires the involvement of many host cell surface
factors, including tetraspanin CD 81 (Bartosch et al., 2003;
McKeating et al., 2004; Pileri et al., 1998), tight junction protein
claudin-1 (Evans et al., 2007; Liu et al., 2009) and occludin (Liu et al.,
2009; Ploss et al., 2009), and human scavenger receptor class B type 1
(SR-BI) (Bartosch et al., 2003; Scarselli et al., 2002). To examine the
role of claudin-1 during dengue viral lifecycle, we first established a
stable cell lines with the knockdown of claudin-1 using shRNA
technique. Stable Huh 7.5 cell lines transfected with non-targeting
shRNA (NT-shRNA) served as a control cell line, designated as RK1
cells. Cell line with knockdown of claudin-1 was designated as RK4
cells, and further verified by western blot (Fig. 1A) and immuno-
fluorescent staining (Fig. 1B). The immunofluorescent staining of
RK1 cells showed clearly observable claudin-1 expression along the
cell surface (Fig. 1B, arrow pointed). Claudin-1 expression was
significantly reduced in claudin-1 knockdown cells (designated as
RK4 cells), as claudin-1 expression in most RK4 cells was hardly
observed on the cell surface, or only faint and broken line of
claudin-1 expression observed on the surface of a few cells
(Fig. 1B). There were some background staining in the cytoplasm
in RK4 cells, which were also observed in the RK1 cells, but was not
significantly different. This was further confirmed in our western
blot analysis showing that there was strong claudin-1 expression in
the RK1 control cells, and with less than 10% claudin-1 expression
in the RK4 cells (Fig. 1A).

Knockdown of claudin-1 prevent DENV induced CPE

To investigate whether claudin-1 knockdown could affect DENV-
induced CPE post infection, the dynamics of cell viability in claudin-1
knockdown RK4 cells was examined in comparison with that in the
RK1 control cells after inoculated with DENV-2 at MOI of 1 using the
previously established cell viability assay (Fig. 2A) (Che et al., 2009).
Knockdown of claudin-1 strongly prevented DENV-2 induced CPE as
we observed considerable increase of cell viability in claudin-1
knockdown RK4 cells comparing with that in Rk1 control cells. For
instance, at 96 h.p.i., cell viability in control cells, including both Huh
7.5 and RK1 cells, were decreased to 18% and 15%, respectively. In
claudin-1 knockdown Rk4 cells, cell viabilities were kept at high
level, with about 66% cells viability at 96 h.p.i. (Fig. 2A). DENV-
induced CPE was further examined under the phase contrast micro-
scopic. In control RK1 cells, CPE was observed as early as 96 h.p.i.,
and became more pronounced at 120 h.p.i., respectively (Fig. 2D-b
and -c). In claudin-1 knockdown RK4 cells, CPE was delayed and not
observable at 96 h.p.i., (Fig. 2D-e) and only moderate CPE was
observed at 120 h.p.i. (Fig. 2D-f). This observation further confirmed
that DENV-2 induced CPE was prevented or delayed in claudin-1
knockdown RK4 cells. Furthermore, cell growth in RK4 cells was not
affected due to the knockdown of claudin-1, since the cell growth
rate in RK4 cells and the RK1 cells were identical (data not shown).
The above results indicated that claudin-1 might play an essential
role during DENV infection.

Furthermore, we also examined whether knockdown of claudin-1
could also protect CPEs induced by other DENV serotypes, including
DENV-1, �3 and �4. Claudin-1 knockdown RK4 cells were infected
with different DENV serotypes (DENV-1, DENV-3, DENV-4), and
DENV induced CPE was evaluated at different h.p.i.. Interestingly,
DENV-1 infection could not induce observable CPE in both RK1 and
claudin-1 knockdown RK4 cells (results not shown). Both DENV-3
and DENV-4 induced CPE was inhibited in claudin-1 knockdown RK4

Fig. 1. The knockdown of claudin-1 expression in RK4 stable cell lines. Knockdown
of claudin-1 in Huh 7.5 cells was carried out using claudin-1 specific shRNA,
designated as RK4 cells. Cells tranfected with non-targeting shRNA (NT-shRNA)
served as the control, designated as RK1 cells. (A) Western blot showing the
reduction of claudin-1 expression in RK4 cells in comparison with that in the RK1
control cells and the original Huh 7.5 cells. GAPDH expression was also examined
serving as loading control. (B) The expression of claudin-1 was disrupted in
claudin-1 knockdown RK4 cells in comparison with that in the RK1 cells. Arrow
in RK1 cells pointed to the claudin-1 expression around cells, whereas arrow in the
claudin-1 knockdown RK4 cells showed that caludin-1 was depleted and there
were only very little claudin-1 expression around the cell surface.
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cells with up to 60% and 90% cell viabilities at 96 h.p.i., respectively
(Fig. 2B and C). This was in agreement with the result when claudin-1
knockdown RK4 cells were infected by DENV-2, suggesting a
potential of claudin-1 to serve as a common factor for different
DENV serotypes. Collectively, these results demonstrated that loss
of claudin-1 suppressed and delayed the development of DENV-
induced CPE.

The possible role of claudin-1during DENV replication

Since knockdown of claudin-1 prevent DENV-2 induced CPE, we
examined the dynamics of virus replication in claudin-1 knockdown
RK4 cells in comparisonwith that in the RK1 control cells. Total RNAs
were extracted from infected cells and culture medium at indicated
h.p.i., respectively, followed by analyses of viral genomic RNA using
qRT-PCR. Progeny virus production, expressing as PFU-equivalent
RNA copies, in both cell and supernatant samples were examined in
both RK1 and RK4 cells at 24 h intervals. Interestingly, we observed a
log reduction of progeny virus production (RNA copies) in both cells
and supernatant samples of the claudin-1 knockdown RK4 cells
starting as early as 24 h.p.i., and remained at one log lower up till
96 h.p.i. (Fig. 3A and B). Although the progeny virus titer was lower
in the RK4 knockdown cells, the replication dynamics was similar
between the RK1 control and RK4 cells at different h.p.i.. This result
was also confirmed when we determined the production of infec-
tious progeny viral particles in claudin-1 knockdown RK4 cells using
plaque assays. Similarly, we observed a consistent one to two logs
reduction of virus titer in both cells and culture medium samples
from the RK4 cells, respectively, in comparsion with that in the RK1
control cells (Fig. 3C and D). Similarly, the one-log difference in virus
titer was observed as early as 24 h.p.i., and the virus replication
dynamics kept in the similar fashion in both RK1 and RK4 cells.
Collectively, the above results suggested that the effect of claudin-1
knockdown on DENV lifecycle might occurred before 24 h.p.i..

Similar phenomena were observed in the DENV-3 and -4 replication
dynamics in RK4 knockdown cells (results not shown).

The effect of knockdown of claudin-1 using siRNA depletion

Due to the possible side effects associated with stable selection of
cells expressing shRNA, we further analyzed the effect on DENV viral
lifecycle in claudin-1 depleted cells using transient siRNA-mediated
knockdown method. To deplete claudin-1 transiently, Huh 7.5 cells
were transfected with 100nM human claudin-1 specific siRNA, and
NT-siRNA transfection was utilized as control. The inhibition of
claudin-1 expression was confirmed using western blot analysis
(Fig. 4A). At 48 h post transfection, transfected cells were infected
with DENV-2 at MOI of 1, and viral genomic RNA was determined
using qRT-PCR at 24 h interval post infection. Consistent with the
result in the shRNA knockdown stable cell lines, claudin-1 depleted
cells showed an overall one-log reduction in viral RNA copies, but
with similar virus replication dynamics when compared to that in
the control cells (Fig. 4B). Collectively, both shRNA and siRNA
mediated depletion of claudin-1 had showed similar effect on DENV
replication dynamics as early as 24 h.p.i., further indicating that
claudin-1 might be required for DENV early viral lifecycle.

Claudin-1 was involved in DENV entry

Our results showed that knockdown of claudin-1, using both
shRNA or siRNA techniques, could prevent DENV-2 induced CPE and
reduce DENV-2 progeny virus production. We next sought to inves-
tigate in which viral lifecycle stage claudin-1 was involved. During
HCV infection, claudin-1 was utilized as a co-receptor for virus
internalization (Evans et al., 2007), and our investigation showed that
DENV-2 viral genomic RNA or progeny virus production were one log
lower as early as 24 h.p.i.. Thus, we first examined whether DENV
entry was affected in claudin-1 depleted cells post DENV-2 infection.
Viral genomic RNA (vRNA) from infected cells was evaluated at

Fig. 2. DENV induced CPE and cell viability in different cell lines infected with different serotype of DENV. (A) Cell viability in claudin-1 knockdown RK4 cells, RK1 cells and
Huh 7.5 cells at different h.p.i., after inoculated with DENV-2 at MOI of 1. (B) Cell viability post DENV-3 infection at MOI of 1 in claudin-1 knockdown RK4 cells and RK1 cells.
(C) Cell viability post DENV-4 infection at MOI of 1 in claudin-1 knockdown RK4 cells and RK1 cells. Cell viability was assessed by the cell viability assay as described in the
Methods and Materials. Data in each plot are representative of 3 separate experiments performed in triplicate. (D). Phase contrast images of a time-course of morphological
changes observed in claudin-1 knockdown RK4 cells and RK1 control cells at different hours post DENV-2 infection at MOI of 1. All images were acquired at 100�
magnification.
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different time post infection by focusing on the initial 12 h.p.i. (Fig. 4C).
In comparison to control NT-siRNA cells, depletion of claudin-1
resulted in a significant decrease of DENV virus entry into the cells
in the early stage of infection. At 2 h.p.i., there were only 50% virus
entered into the knockdown cells when comparing with that in
the control cells, and was consistent at 50% lower up to 8 h.p.i.
The difference was even more pronounced at 10 h.p.i. and 12 h.p.i., as
we observed over 60 and 80% reduction of viral genomic RNA in the
knockdown cells, respectively. These results suggested that virus entry
was hampered in claudin-1-depleted cells, suggesting that claudin-1 is
required for efficient DENV entry.

To further confirm the involvement of claudin-1 during virus
entry, we examined whether the entry of DENV-2 into the claudin-1
knockdown RK4 cells could be rescued by restoring claudin-1
expression in the cells. Claudin-1 knockdown RK4 cells were
transiently transfected with plasmid DNA encoding wild-type
human claudin-1. An empty vector was also used as negative
control. In addition, RK1 control cells were also pre-treated with
1 mM compound 6, a known DENV entry inhibitor (Wang et al.,
2009), as a positive control in inhibiting DENV entry. We first
confirmed that claudin-1 was expressed in the transfected cells
using western blot (Fig. 5A). We then confirmed that DENV-2
genomic RNA and progeny virus production in claudin-1 knock-
down cells were reduced in the initial 12 h.p.i., similar to pattern
observed in the claudin-1 depleted cells using siRNA knockdown
(Fig. 5B).

The claudin-1 knockdown RK4 cells, transfected with human
claudin-1 plasmid DNA or empty vector, were inoculated with
DENV-2 (MOI of 1) at 48 h post transfection. Viral genomic RNA was
then quantified at indicated time points using qRT-PCR. Notably, RK4
cells with restored claudin-1 expression showed increased virus entry
into the cells at a level comparable to that in the control RK1 cells
(Fig. 5B). On the other hand, the reduction of DENV virus entry in
claudin-1 knockdown RK4 cells was comparable to that in RK1 cells
treated with entry inhibitor, indicating DENV entry was impaired in
claudin-1 knockdown RK4 cells. Similar phenomena were observed in
the DENV-3 and -4 replication dynamics in RK4 knockdown cells

(results not shown). Taken together, these data strongly suggested that
claudin-1 might be essential for efficient DENV entry.

Interaction of claudin-1 with DENV viral protein

It was proposed that via interacting with viral protein, claudin-1
serves as a receptor for recruiting virions to cell surface during HCV
entry (Cukierman et al., 2009; Evans et al., 2007; Meertens et al.,
2008; Zheng et al., 2007). Since we showed that claudin-1 was also
required for efficient DENV entry, we further analyzed whether
claudin-1 interacted with DENV viral protein. During DENV infected
cells, a larger precursor, PrM of approximately 19 kDa, is synthesized.
DENV prM is further processed and cleaved into ‘pr’ and M proteins.
DENV M is a small, approximately 10 kDa protein found in the
mature virus particle. To determine the possible interaction of
claudin-1 with DENV viral protein, we examined the direct binding
between claudin-1 and viral glycoproteins prM. We used purified
recombinant HIS-tagged prM protein as the bait to fish the protein
extracts prepared from whole cell lysate of Huh 7.5 cells. We
identified claudin-1 as one of the host proteins that interacted with
prM protein (Fig. 6A). This interaction was further verified when
purified GST-tagged claudin-1 efficiently interacted with HIS-tagged
prM protein in the pull-down assay (Fig. 6B). Strikingly, a robust
binding of claudin-1to ‘pr’, M and prM were also observed on our
pull-down assay, however, viral E protein does interact with
claudin-1 (Fig. 6C). This result suggested a direct interaction
between claudin-1and prM, including pr, M and prM proteins.

ECL1 is essential for the interaction between claudin-1 and prM

Previous studies in HCV entry showed that either ECL1 or ECL2 is
essential for the interaction of claudin-1 with viral protein. To further
verify the interaction between prM and claudin-1 and to determine
the essential domains in claudin-1 for the interaction, we constructed
deletion mutants with either ECL1 or ECL2 deleted (Fig. 7A). These
mutant proteins were expressed, purified and protein-protein inter-
action was analyzed using pull-down assays (Fig. 7B). When ECL1 was

Fig. 3. Knockdown of claudin-1 expression affected DENV-2 viral life-cycle and reduced production of infectious progeny virus. Time course analysis of DENV genomic viral
RNA, using qRT-PCR, in RK1 and RK4 cells (A) and supernatant (B) post DENV-2 infection at MOI of 1. Time-course analysis of progeny virus production in RK1 and RK4 cells
(C) and supernatant (D) at different hours post DENV-2 infection as titrated by plaque assays. Results are expressed as mean7S.D. of three separate experiments performed
in duplicate.
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deleted, the interaction between prM and claudin-1ΔECL1 was not
observed as there was no detectable claudin-1ΔECL1 in the pull-down
samples. The deletion of ECL2 did not affect the interaction as claudin-
1ΔECL2 mutation could be pulled down by HIS-tagged prM protein,
similar to that in the full length claudin-1. This result indicated that
ECL1 was essential for the binding of claudin-1 with prM.

Determining the essential amino acids on the ECL1

Early studies showed that amino acids in highly conserved ECL1
motif, W30-GLW51-C54-C64, plays an important role in maintaining

its 3D-structure and are important for HCV entry (Cukierman et al.,
2009). Another amino acid, isoleucine at position 32 (I32), has been
proposed to be involved in ion regulation, and early studies showed
exchange of I32 to M (I32M) impaired HCV entry (Evans et al., 2007).
Cysteine at position 54 and 64 are known to form disulfide bond in
ECL1, which plays an important role in stabilizing ECL1 structure,
suggesting the specific structure of ECL1 is required for robust
binding. To determine the essential amino acids on the ECL1, a panel
of seven point mutations on ECL1 was constructed by alanine
substitution of the aforementioned 6 highly conserved amino acids
on ECL1 motif, plus the exchange of isoleucine with methionine at
position 32. Although ECL2 was not required for prM binding and
not engaged in tight junction barrier regulation, we still selected
8 polar amino acids on ECL2 for alanine substitution, including T137,
Y140, Q146, Y149, T153, N156, Y159, and Q163. Each point mutation
was constructed by site-directed mutagenesis, and the respective
recombinant proteins were expressed and purified as described in
method section. The interaction of these claudin-1 mutants with
prM protein was examined using the pull-down assay. Our results
showed that only C54A, C64A and I32Mmutations on ECL1 impaired
the claudin-1-prM interaction (Fig. 8A), whereas none of the other
mutations on ECL1 and ECL2 showed any effect on claudin-1-prM
interaction (Fig. 8B). Altogether, above data revealed an essential
interface on ECL1 of claudin-1, which might be required for efficient
virus-host interaction.

Discussion

In this study, we showed that claudin-1, the major structural
component of tight junction, was involved in DENV entry by directly
interacting with viral prM protein. Tight junction is an intercellular
junctional structure, which functions as a physical barrier with

Fig. 4. The effect of claudin-1 depletion using claudin-1 specific siRNA. (A). Claudin-1
was depleted in Huh 7.5 cells using claudin-1 specific siRNA. Western blot analysis
confirmed that claudin-1 expression was knockdown at the protein levels in
comparison to scrambled siRNA control. (B) Time-course of DENV progeny virus
production in claudin-1 depleted cells at 24 h interval at different h.p.i. PFU-
equivalent viral RNA copies was determined by qRT-PCR. (C) DENV genomic RNAs
in cell lysate were analyzed using qRT-PCR analysis. Samples were collected every 2 h
in a time course manner for the initial 12 h.p.i.

Fig. 5. Restoring claudin-1 expression in claudin-1 knockdown RK4 cells rescued
DENV infection in the initial 12 h.p.i. Claudin-1 DNA was transfected into the
claudin-1 knockdown RK4 cells. (A). The expression of claudin-1 was restored in
RK4 cells transfected with plasmid DNA containing full length human claudin-1.
(B). Time-course analysis of virus entering into the cells in the initial 12 h.p.i. in
cells with or without human claudin-1transfection. Compound 6 at 1mM was used
as a positive control.
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extremely small openings, allowing the passage of nano-sized or
even smaller molecules and restricting the penetration of macro-
materials and microbes (Lorenza González-Mariscal and Bautista).
Disruption of tight junction contributes to pathogenesis. Extensive

disruptions in tight junctions integrity and altered expression and
distribution of claudins have been observed in infections of enter-
opathogenic Escherichia Coli (EPEC) (Guttman et al., 2006; Yuhan
et al., 1997), H. pylori infection (Fedwick et al., 2005), S. flexneri
(Sakaguchi et al., 2002), rotavirus (Dickman et al., 2000; Nava et al.,
2004; Obert et al., 2000), influenza virus (Armstrong et al., 2012),
and HIV-1 virus (Andras and Toborek, 2011). On the other hand,
pathogens, especially viruses, have evolved strategies to utilize tight
junction to gain access into cells. Clostridium perfringens enterotoxin
binds directly to the second extralcellular loop on claudin-3, -4 to
gain access into cells (Fujita et al., 2000; Sonoda et al., 1999;
Takahashi et al., 2005; Van Itallie et al., 2008). claudin-1, -6, -9 and
occludin (Benedicto et al., 2009; Liu et al., 2009; Ploss et al., 2009)
have been reported as co-receptors for HCV entry (Evans et al., 2007;
Meertens et al., 2008; Zheng et al., 2007). Our data showed that
depletion of claudin-1 expression hampered DENV-2 entry, reduced
progeny virus production and prevent DENV-2 induced CPE. These
results strongly suggested that claudin-1 was utilized by DENV-2 to
facilitate its entry, which is in agreement with the observation
during the entry of other viruses, including HCV (Gao et al., 2010;
Harris et al., 2010; Liu et al., 2009; Meertens et al., 2008).

Claudin-1 has been shown to serve as a co-receptor for HCV
entry, and deletion of ECL1 or mutation of in highly conserved
amino acid W30-GLW51-C54-C64 on ECL1 motif hampered the HCV
entry (Cukierman et al., 2009). The present study also identified
ECL1 as the essential domain for its interaction with DENV prM
protein. However, we only identified C54 and C64 as the essential
amino acids, but not W30, G, L, and W51. We also identified I32 as
the essential amino acid for binding activity. Prior studies sug-
gested that ECL1 regulates the paracellular permeability and ion
selectivity, while ECL2 is required for interactions between differ-
ent claudin isoforms which is the linkage between adjacent cells
(Van Itallie and Anderson, 2006). The two cysteines may form an
intracellular disulfide bond in ECL1 (Li et al., 2013), a proposed key
determinant in pore formation. The disulfide bonds between the
two cysteines are critical in maintaining proper folding and
stability (Doig and Williams, 1991; Taniyama et al., 1991). Notably,
these two cysteines are conserved among all claudin isoforms and
are critical in regulating tightness function (Krause et al., 2008;

Fig. 6. The interaction between claudin-1 and DENV viral proteins. (A) Direct
interaction between purified HIS-tagged prM and wild type claudin-1 from cell
lysate or semi-purified GST-tagged claudin-1 via pull-down assay. Semi-purified
HIS-tagged prM protein was used as the bait. The input lane indicates wt claudin-1
in the original cell lysate, and the control lane showed that no wt claudin-1 was
pulled down using empty nickel chelate beads. (B). Direct interaction between
purified HIS-tagged prM and purified GST-tagged claudin-1 via pull-down assay.
Purified HIS-tagged prM protein was used as the bait. The input lane indicates
purified GCT-tagged claudin-1 input, and the control lane showed that no purified
claudin-1 was pulled down using empty nickel chelate beads. (C).The semi-purified
HIS-tagged claudin-1 interacted with semi-purified GST-tagged prM, M and pr, but
not the GST-tagged E protein. Input lane indicates the original semi-purified HIS-
tagged claudin-1. GST protein was used as negative control. For the above
experiment, claudin-1 was detected by western blot analysis using anti-claudin-1
antibody.

Fig. 7. Effect of ECL1 or ECL2 deletion on the interaction between Claudin-1 and
prM (A) Illustration of the construction of claudin-1 ECL1 and/or ECL2 domain
deletion mutants with HIS-tagged. (B) Protein–protein interaction between GST-
tagged prM and HST-tagged claudin-1 ECL1 or ECL2 deletion mutations, analyzed
using pull-down assay. The HIS-tagged claudin-1 ECL1 mutant cannot pull-down
HIS-tagged prM protein, whereas there is no effect when ECL2 was deleted.

Fig. 8. The interaction between HIS-tagged prM and point mutations of claudin-1.
Mutagenesis in both ECL1 and ECL2 were shown with critical residues in the ECL1
and ECL2 of claudin-1 being replaced by alanine. In both figures, the input lane
indicates the initial full-length claudin-1 used for the assay. The input for other
deletion and mutation proteins were the same as the full-length claudin-1, hence,
were not shown here. (A). The interaction of point mutation in ECL1 domain with
GST-tagged prM protein was analyzed. The HIS-claudin-1 ECL1 and ECL2 deletion
mutation were included as positive and negative controls. Top panel showed the
amount of input proteins for full-length protein, ΔECL1, ΔECL2 and each mutation,
while the bottom panel showed the actually pull down. (B). The interaction of point
mutation in ECL2 domain with GST-tagged prM protein was analyzed. The HIS-
claudin-1 ECL1 and ECL2 deletion mutation were included as positive and negative
controls. Top panel showed the amount of input proteins for full-length protein,
ΔECL1, ΔECL2 and each mutation, while the bottom panel showed the actually
pull down.
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Wen et al., 2004). Studies using claudin-153-80 peptide, which
contains C54 and C64, showed disrupted barrier function both
in vitro and in vivo (Mrsny et al., 2008). In addition, introduction of
I32M into ECL1 also disrupted protein binding. This is in agree-
ment with Evans et al., when introduction of M32I into claudin-7
could render T293 cells partially permissive to HCVpp (Evans et al.,
2007), whereas the wt claudin-7 expression on T293 failed to
render it permissive. It is known that residue I32 may be involved
in regulating the cation passage in tight junction. Since ECl2 was
not involved in the interaction between prM and claudin-1, and it
was not surprised that deletion of ECL2 or point mutation on ECL2
has no effect on the claudin-1 binding activity.

It is interesting that up to 30% dengue virus secreted from
mammalian or insect cells are immature virus particles, with
intact prM protein on the virus particle surface (Murray et al.,
1993; Rodenhuis-Zybert et al., 2010; Wang et al., 1999; Zybert
et al., 2008). In the immature virus, prM and E form heterodimers,
protruding from virus surface as 60 trimeric spikes. The pr peptide
caps the fusion loop of E protein, prevent the low-pH driven
conformational change and pre-membrane fusion before virus
release (Heinz and Allison, 2003; Lindenbach and Rice, 2003).
The ‘pr’ peptide caps the fusion loop of E protein and prevent
conformational change of E protein which is required for subse-
quent membrane fusion (Yu et al., 2008; Zybert et al., 2008). This is
evidenced by inefficient infectivity and high percentage of imma-
ture progeny virus in both mammalian and insect cells. Recently, it
has been reported that during entry step, the pr-capped fusion
loop of E protein could be cleaved by furin, allowing conforma-
tional change and fusion of E protein, which renders immature
virus infectious (da Silva Voorham et al., 2012; Rodenhuis-Zybert
et al., 2011). In the present study, our data provide supporting
evidence that immature particles can also interact with claudin-1
protein on the cell surface, and might be capable to entry into the
target cells via this interaction. This result is also in agreement
with the conclusion of Gao et al. that prM is required for an
efficient entry(Gao et al., 2010). Further investigations will be
needed to explore how immature virus particles interact with cell
surface proteins to entry the target cells, and to understand
whether claudin-1 is able to trigger the endocytosis or only plays
a role in mediating virus attachment.

Viral entry is initiated by virus attachment, followed by rolling
over the cell surface until endocytosis occurs. Apically resided
tight junctions provide an ideal “trap” for the viruses. It is possible
that the interaction between cell surface protein claudin-1 and
viral prM/M could help to concentrate viruses at tight junction.
These locally concentrated viruses may promote contact with
other cell surface proteins served as receptors/co-receptors,
including direct binding between HCV and claudin-1 ECL1
(Cukierman et al., 2009; Evans et al., 2007), HCV and occludin
(Benedicto et al., 2009; Liu et al., 2010; Liu et al., 2009; Ploss et al.,
2009), and between Clostridium perfringens enterotoxin and ECL2
on claudin-3 and -4 (Fujita et al., 2000; Takahashi et al., 2005;
Van Itallie et al., 2008). Nevertheless, our data present here
provided new evidence on the interaction between claudin-1
and prM during DENV entry, expanding our knowledge to under-
stand in the essential role of claudin-1 for DENV infection.

Material and method

Cells and viruses

Cells were maintained in Dulbecco's modified Eagle's medium
(DMEM) (Gibco BRL, Grand Island, NY) supplemented with 100 U/ml
penicillin-streptomycin (P/S) (Invitrogen, Carlsbad, CA), 5% or 10%
fetal bovine serum (FBS) (Invitrogen, Carlsbad, CA) for BSR and

Huh 7.5, respectively. Cells were incubated at 37 1C, with 5% CO2

and 80–95% humidity. Dengue virus serotype-1 (DENV-1) strain
Hawaii, serotype-2 (DENV-2) strain 16681, serotype-3 (DENV-3)
strain H87, serotype-4 (DENV-4) strain H241 were used in the
current study. Virus stocks were prepared by inoculating Huh
7.5 cell monolayers at a multiplicity of infection (MOI) of 0.4.
At 96 h post infection (h.p.i.), supernatants were collected and
saved. Infected cells were harvested by gentle scraping, followed by
three rapid freeze-thaw cycles in a dry-ice/ethanol bath. Cell debris
was removed by centrifugation at 2000g for 10 min. Viral super-
natant was collected, combined, aliquoted and stored at -80 1C.
Virus titer was determined using a plaque assay on BSR monolayers
in 24-well plates.

Plasmids construct

Vector pGEX-4T3 (Amersham Pharmacia, Piscataway, NJ) and
pTriEx-4 (Novagen, Madison, WI, USA) were used for expression of
recombinant proteins with GST tag or HIS tag, respectively. To
obtain HIS tagged recombinant proteins, full length prM, pr, and M
genes were cloned into Bam HI and Eag I REN (restriction enzyme)
sites. Claudin-1gene was cloned into the Bam HI and Xho I REN
sites on pTriEx-4 vector. To obtain GST tagged recombinant
proteins, full length prM, pr, and M genes were cloned into Bam
HI and Eag I REN sites; and claudin-1 was introduced into BamH I
and Xho I REN sites on pGEX-4T3 vector, respectively. Deletion
mutations (dECL1, dECL2) and point mutations were constructed
using PCR-mediated overlap extension method to delete or mutate
respective genes with sets of primers for each deletion/point
mutation described in the following (Table 1) (Heckman and
Pease, 2007). The sequence of each construction was confirmed
by sequencing analysis at Heflin sequencing center at University of
Alabama at Birmingham.

siRNA transfection

The siRNA is targeting nucleotides 5'-AAGTGAAGAGTA-
CATGGCTGC-3' of claudin-1. The control or scrambled siRNA has
a target sequence of 5'-GCGCGCTTTGTAGGATTCG-3'. Double-
stranded siRNAs were constructed by in vitro transcription with
a Silencer siRNA construction kit (Ambion, Austin, Tex.). Transfec-
tion of siRNA was performed using Oligofectamine (Invitrogen,
Carlsbad, Calif.). Two days after transfection of siRNA, the cells
were infected with DENV with MOI of 1.0.

Stable expression of shRNA using a lentiviral vector

The stable cell lines expression of different shRNAs were
established using a lentiviral as described previously (Waninger
et al., 2004). Briefly, the target sequences for claudin-1 and the
scrambled shRNA were introduced into the U6 promoter/hairpin
shRNA expression cassettes using the U6 promoter in pSilencer
(Ambion). The cassettes were inserted into the pHIV-7-Puro
vector, respectively. VSV-G-pseudotyped lentivirus was packaged
using the lentivirus support kit (Invitrogen). Huh 7.5 cells were
transduced by standard methods and subjected to selection with
puromycin (0.6 mg/ml) for 10 days.

Plaque assay

Virus titer was determined using a plaque assay as described
previously(Che et al., 2009). Briefly, BSR cells were seeded in
24-well plate and were inoculated with 10-fold serially-diluted
virus. After inoculation, cells were incubated in 37 1C for 4 h for
adsorption. The inoculum was removed and cells were washed
with PBS twice. An overlay of 1% low-melting-point agarose
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(Invitrogen, Carlsbad, CA) in DMEM supplemented with 1% FBS and
1% P/S was added to the cells. After the agarose overlay solidified, the
plates were returned to 37 1C and incubated for 5 days. Cells were
fixed in 4% (vol/vol) formaldehyde in PBS for 1 h and stained with
crystal violet (0.5% wt/vol in 25% methanol). Plaques were counted
and analyzed using Quantity One software (Bio-Rad, Hercules, CA).

RNA purification and quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from supernatant and cell pellet from
DENV infected cultures using TRIzol reagent (Invitrogen, Carlsbad,
CA) following the manufacturer's protocol. The One Step SYBR Ex
Taq RT-PCR Kit (Takara, Clontech Laboratories, Inc., Mountain
View, CA), designed for single step real-time RT-PCR using SYBR
Green I detection, was utilized following the manufacturer's
protocol. In brief, the 25 ml PCR mixture included 12.5 ml 2�
buffer (including dNTP mixture, Mg2þ and SYBR green I), 0.5 ml
(2.5 unit) Ex Taq, 0.5 ml RTase mix, 0.5 ml 10 mM (final

concentration 0.2 mM) forward primer (CTTAGGGTGGCAGGCTG-
TT), 0.5 ml 10 mM (final concentration 0.2 mM) reverse primer
(CAGGGGAAGCTGGGTTGAC), 0.5 ml ROX reference dye II, 2.5 ml
RNA sample, and 7.5 ml H2O (Takara Bio Inc). The ten-fold serial
dilutions of DENV-2 total RNA (103–107 copies/ml), prepared from
DENV-2 stocks with known viral titer, were used as a reference for
standard curve calculation. The mixtures were incubated in a 96-
well optical plate (Applied BioSystems,), and qRT-PCR was carried
out using StepOne Plus Real-Time PCR system (Applied Biosys-
tems, Foster City, CA), following manufacturer's protocol. RT-PCR
reaction performed as followings: reverse transcription was car-
ried out by incubating mixture at 42 1C for 30 min and 95 1C for
5 min, followed by 40 PCR cycles: 95 1C for 10 s, 60 1C for 30 s, and
completed by incubation at 95 1C for 15 s. The reaction was then
incubated at 60 1C for 1 min and 95 1C for 15 s for melt curve. After
the reaction, amplification curve and melting curve were verified,
the standard curve established. The Ct value for each sample was
determined by default threshold settings of the software.

Table 1
List of primers used for construction of claudin-1 deletion and point mutants.

Primer ID Sequence Vector

Forward primer for prM CGCGGATCCGTTCCATTTAACCACACGCAAT Vector pTriEx-4
Reverse primer for prM TAACGGCCGTTATGTCATTGAAGGAGC
Forward primer for pr ATTCGGCCGCACAGCTGTATACACGTGCA
Reverse primer for pr TAACGGCCGTTATCTTTTTTCTCTTCTATGTTC
Forward primer for M CGCGGATCCGTCAGTGGCACTCGTTCCACA
Reverse primer for M GCGGGATCCACGAGCTCAGATATCGTTGAGGA

Forward primer for prM CGCGGATCCTTCCATTTAACCACACGTAA pGEX-4T3
Reverse primer for prM TAACGGCCGTTATGTCATTGAAGGAGTGACAG
Forward primer for pr CGCGGATCCTTCCATTTAACCACACGTAA
Reverse primer for pr TAACGGGCCGTTATCTTTTTTCTCTTCTATGTTC
Forward primer for M CGCGGATCCTCAGTGGCACTCGTTCCACAT
Reverse primer for M TAACGGCCGTTATGTCATTGAAGGAGTGACAGC
Forward primer for CLDN1/dEL1/dEL2 CGCGGATCC ATGGCCAACGCGGGGCTGCA
Reverse primer for CLDN1/dEL1/dEL2 CCGCTCGAG TCACACGTAGTCTTTCCCGCT
Reverse primer for fragment dEL1 TCCGTGCCCACCACTGGGGCAGGGCAGTGC
Forward primer for fragment dEL1 TGCCCCAGTGGACCCGTGCCTTGATGGTGGT
Reverse primer for fragment dEL2 TCGGACTGGTGCTGTGGCAACTAAAATAG
Forward primer for fragment dEL2 TGCCACAGCAGGTCAGGCTCTCTTCACTGG

Forward primer for CLDN1/dEL1/dEL2/point mutations CGCGGATCCAATGGCCAACGCGGGGCTGCA pTriEx-4
Reverse primer for CLDN1/dEL1/dEL2/point mutations CCGCTCGAGTCACACGTAGTCTTTCCCGCT
Reverse primer for CLDN1-W30A GGAGTAAATCCTAGCCTGGGGCAGGGCAGTGCTGACGATG
Forward primer for CLDN1-W30A CAGGCTAGGATTTACTCCTATGCCGGCGACAACATCGTGACC
Reverse primer for CLDN1-G49A CATCCACAGAGCCTCGTACATGGCCTGGGCGGTCACGATGTTGTC
Forward primer for CLDN1-G49A ATGTACGAGGCTCTGTGGATGTCCTGCGTGTCGCAGAGCAC
Reverse primer for CLDN1-L50A GGACATCCAAGCCCCCTCGTACATGGCCTGGGCGGTCACGATG
Forward primer for CLDN1-L50A TACGAGGGGGCTTGGATGTCCTGCGTGTCGCAGAGCACCGGGC
Reverse primer for CLDN1-W51A GCAGGACATAGCCAGCCCCTCGTACATGGCCTGGGCGGTCACGATG
Forward primer for CLDN1-W51A GAGGGGCTGGCTATGTCCTGCGTGTCGCAGAGCACCGGGCA
Reverse primer for CLDN1-C54A CTGCGACACAGCGGACATCCACAGCCCCTCGTACATGGCCT
Forward primer for CLDN1-C54A TGGATGTCCGCTGTGTCGCAGAGCACCGGGCAGATCCAGTG
Reverse primer for CLDN1-C64A AAAGACTTTAGCCTGGATCTGCCCGGTGCTCTGCGACACGC
Forward primer for CLDN1-C64A CAGATCCAGGCTAAAGTCTTTGACTCCTTGCTGAATCTGAG
Reverse primer for CLDN1-I32M ATAGGAGTAGATCCTCCACTGGGGCAGGGCAGTGCTGACGATGGC
Forward primer for CLDN1-I32M CAGTGGAGGATGTACTCCTATGCCGGCGACAACATCGTGAC
Reverse primer for CLDN1-T137A ATACCATGCAGCGGCAACTAAAATAGCCAGACCTGCAAGAA
Forward primer for CLDN1-T137A TTAGTTGCCGCTGCATGGTATGGCAATAGAATCGTTCAAGA
Reverse primer for CLDN1-Y140A TCTATTGCCAGCCCATGCTGTGGCAACTAAAATAGCCAGAC
Forward primer for CLDN1-Y140A ACAGCATGGGCTGGCAATAGAATCGTTCAAGAATTCTATGA
Reverse primer for CLDN1-Q146A ATAGAATTCAGCAACGATTCTATTGCCATACCATGCTGTGG
Forward primer for CLDN1-Q146A AGAATCGTTGCTGAATTCTATGACCCTATGACCCCAGTCAA
Reverse primer for CLDN1-Y149A CATAGGGTCAGCGAATTCTTGAACGATTCTATTGCCATACC
Forward primer for CLDN1-Y149A CAAGAATTCGCTGACCCTATGACCCCAGTCAATGCCAGGTA
Reverse primer for CLDN1-T153A ATTGACTGGAGCCATAGGGTCATAGAATTCTTGAACGATTC
Forward primer for CLDN1-T153A GACCCTATGGCTCCAGTCAATGCCAGGTACGAATTTGGTCAGGC
Reverse primer for CLDN1-N156A GTACCTGGCAGCGACTGGGGTCATAGGGTCATAGAATTCTT
Forward primer for CLDN1-N156A ACCCCAGTCGCTGCCAGGTACGAATTTGGTCAGGCTCTCTT
Reverse primer for CLDN1-Y159A ACCAAATTCAGCCCTGGCATTGACTGGGGTCATAGGGTCAT
Forward primer for CLDN1-Y159A AATGCCAGGGCTGAATTTGGTCAGGCTCTCTTCACTGGCTGG
Reverse primer for CLDN1-Q163A GAAGAGAGCAGCACCAAATTCGTACCTGGCATTGACTGGGG
Forward primer for CLDN1-Q163A GAATTTGGTGCTGCTCTCTTCACTGGCTGGGCTGCTGCTTC
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Cell viability assay

Cell viability was determined using CellTiter-Glo (CTG) Lumi-
nescent cell viability assay (Promega, Madison, WI) as described
previously (Che et al., 2009). Briefly, cells were seeded at 5000
cells/well in 96-well black plates with clear bottom using DMEM
supplemented with 1% FBS, 1% P/S. After incubated overnight, cells
were inoculated with DENV at designated MOI as noted in the text.
The plates were then incubated at 37 1C with 5% CO2 for 120 h to
allow the development of CPE. Cell viability was measured at
120 h.p.i. using CTG reagent (Promega, Madison, WI) by adding
equal volume (100 ml/well) of CTG reagent into each well. After
5 min incubation, relative luminescent signals were measured
using Synergy 2 plate reader (BioTek Instruments Inc., Winooski,
VT). Luminescent signal was normalized to that of control cells,
and the percentages of cell viability were determined accordingly.

Protein sample preparation

Cell monolayers, with or without DENV infection, were washed
twice with PBS and lysed on ice using lysis buffer (50 mM Tris, pH
7.4, 250 mM NaCl, 5 mM EDTA, 50 mM NaF, 1 mM Na3VO4, 1%
Nonidet P40 (NP40), 0.02% NaN3, 1% Triton X-100) (Invitrogen,
Carlsbad, CA) supplemented with 1 mM PMSF and 1� protease
inhibitor mixture (Sigma-Aldrich, St. Louis, MO). The cell lysate
was further incubated for 30 min on ice and vortex at 10 min
interval. After centrifugation at 14,000g for 20 min at 4 1C, cell
debris was discarded and supernatant was collected, aliquoted and
stored in �80 1C. Protein concentration was determined using
Bradford assay (Sigma-Aldrich, St. Louis, MO) prior to sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

Western blot analysis

Protein samples were boiled in 1� loading buffer for 5 min
prior to load into the SDS-PAGE gel. Proteins were separated in 10%
SDS-PAGE at 150 V for 40 min. After transferred onto a PVDF
membrane using Mini Trans-Blot cell (Bio-Rad, Hercules, CA), the
membranes were blocked using 5% non-fat milk for 1 h at room
temperature. Immunoblot analysis was performed using primary
antibodies specific against each protein. Mouse monoclonal anti-
bodies (mAbs) specifically against claudin-1 (D-4) was purchased
from Santa Cruz biotechnology (Santa Cruz, CA). GAPDH, GST tag
and HIS tag mAbs were purchased from GenScript (Piscataway, NJ).
Goat anti-mouse IgG-HRP and rabbit anti-goat IgG-HRP were
purchased from KPL Inc. (Gaithersburg, Maryland) and Southern
Biotechnology Associates (Birmingham, AL), respectively. The ECL
reagent (Millipore, Billerica, MA) was used for luminescence
detection.

DNA transfection and rescue assay

Plasmids DNA were purified using PureLink quick plasmid
midi-prep kit (Invitrogen, Carlsbad, CA), and concentration was
quantified using Synergy 2 plate reader (BioTek Instruments Inc.,
Winooski, VT). For transfection, cells were seeded in 24-well plates
at 80% confluence and transfected with 2 μg DNA/well using
lipofectamine 2000 (Invitrogen, Carlsbad, CA), as described in
manufacture's manual. After incubation at 37 1C for 6 h, transfect-
ing medium was replaced with DMEM supplemented with 5% FBS.
After incubated at 37 1C for another 48 h, cells were inoculated
with DENV-2 at MOI of 1, or treated with compound 6 at
concentration of 1 mM prior to inoculation. Cells were harvested
and total RNA was extracted using TRIzol reagent at time points
noted in the text, followed by qRT-PCR analysis for viral genomic
RNA level as described above.

Indirect immunofluorescent assay (IFA)

Huh 7.5 cells with or without shRNA knockdown were seeded
on chamber slides (Millipore, Billerica, MA). At desired time, cells
were washed in PBS twice and fixed in 3.7% formaldehyde (Sigma-
Aldrich, St. Louis, MO) at room temperature for 20 min. After being
washed three times, cells were permeabilized in 0.2% Triton X-100
in PBS for 20 min. After blocking in 1% BSA in PBS for 1 h, cells
were incubated with 200 ml anti-claudin-1 mAb (1:100) for 3 h.
After three brief washes in 0.2% BSA in PBS, cells were incubated in
goat anti-mouse IgG conjugated polyclonal antibody (1:500) for
1 h. Cells were then washed 5 times and mounted with cover slip
using mounting medium (Vector Laboratories, Burlingame, CA),
and examined using a Nikon fluorescence inverted microscope
(Nikon, Tokyo, Japan).

Expression and purification of GST- and HIS-tagged recombinant
proteins

The E. coli strain Rosetta (DE3) LysS (Novagen, Madison, WI) was
transformed with pTriEx-4 or pGEX-3T4 expression plasmids by
heat-shock method. Cells were cultured at 37 1C in LB medium
supplemented with 100 mg/ml AMP until OD600 reached 0.6. To
induce protein expression, 1 mM isopropylβ-D-thiogalactopyrano-
side (IPTG) was added into culture medium, followed by 4 h of
culture at 30 1C. Cells were harvested by centrifuge at 6000g for
30 min at 4 1C, washed in PBS once and stored in �80 1C until
purification. To purify HIS-tagged proteins, cells were re-suspended
in ice-cold HIS-lysis buffer for HIS-tagged proteins (20 mM phos-
phate buffer pH 7.4, 10 mM imidazole, 0.5% Triton x-100, 250 mM
NaCl). Cells were disrupted on ice using a sonic dismembrator
(Fisher Scientific Company, Pittsburgh, PA). Cell debris was removed
by spin at 1000g for 20 min at 4 1C. The inclusion bodies were
collected by centrifugation at 8000g for 40min at 4 1C and resus-
pended in 8 M urea buffer (8 M urea, 40 mM phosphate buffer,
10 mM imidazole, pH 7.4) with gentle rocking at 4 1C for 2 h.
Suspension was centrifuged again at 8000g for 1 h at 4 1C, and
supernatant with resolubilized proteins was collected and incubated
with pre-equilibrated nickel chelate beads (GE Healthcare, Piscat-
away, NJ) for 2–3 h at 4 1C.

To purify GST-tagged proteins, supernatant was collected using
GST-lysis buffer for GST-tagged proteins (1% Sarkosyl, 4.3 mM
Na2HPO4, 1.47 mM KH2PO4, 0.137 M NaCl, 2.7 mM KCl, pH 7.3).
After removal of the cell debris, supernatants were diluted 100�
using GST-wash buffer for GST-tagged proteins (4.3 mM Na2HPO4,
1.47 mM KH2PO4, 0.137 M NaCl, 2.7 mM KCl, 0.5% Triton x-100, pH
7.3), followed by incubation with pre-equilibrated Glutathione
Sepharose 4B beads (GE Healthcare, Piscataway, NJ) for 4 h at 4 1C.

To further purify the HIS- and GST-tagged proteins, HIS and GST
affinity beads were used (Bio-Rad, Hercules, CA). After incubate
the affinity beads with the respective protein samples, the beads
were loaded onto an empty column and proteins were purified
following the manufacture's instruction. Briefly, beads were
washed 5–10 times with 2 column volume (CV) of HIS-wash
buffer for HIS-tagged proteins (20mM phosphate buffer pH 7.4,
250 mM NaCl, 50 mM imidazole), or GST-wash buffer for GST-
tagged protein as described previously. Semi-purified proteins
were eluted and collected in fifteen 1 ml fractions, using HIS
elution buffer (20 mM phosphate buffer, 350 mM imidazole pH
7.4) for HIS-tagged proteins or GST elution buffer (10 mM reduced
glutathione in 50 mM Tris–HCl, pH 8.0) for GST-tagged proteins.
Fractions containing target proteins were analyzed using SDS-
PAGE. Target proteins were then pooled from identified fractions
and dialyzed against 20 mM phosphate buffer, 300 mM NaCl, 20%
glycerol, at 4 1C overnight, using dialysis tubing with cut-off value
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of 10 kDa. Dialysis product was then aliquoted and stored at
�80 1C.

Pull-down assay

Total protein concentration of each purified recombinant pro-
tein was determined by Bradford assay (Sigma-Aldrich, St. Louis,
MO). For in vitro pull-down assays, 12 mg of purified GST-prM was
incubated with 1 mg purified HIS-tagged claudin-1 or its deletion
mutations or point mutations in GST binding buffer (4.3 mM
Na2HPO4, 1.47 mM KH2PO4, 0.137 M NaCl, 2.7 mM KCl, pH 7.3) at
4 1C with gentle rocking for overnight. A 50 ml pre-equilibrated
Glutathione Sepharose 4B beads was added to the mixture and
incubated for 4 h at 4 1C with gentle rocking. Subsequently, the
binding mixture was loaded into micro-spin columns (Thermo-
Pierce, Rockford, USA). Unbound proteins were removed by
6 washes of 500 ml GST binding buffer. The protein–protein
complexes bound to Glutathione Sepharose 4B beads were eluted
in 50 ml 1� GST elution buffer (10 mM reduced glutathione in
50 mM Tris–HCl, pH 8.0) by spin at 14,000g for 2 min. To analyze
the pull-down result, 30 ml of each elution was subjected to SDS-
PAGE analysis followed by immunoblotting with anti-claudin-1
monoclonal antibody (Santa Cruz, CA).

Statistical analysis

All data were analyzed using the GraphPad Prism program
(GraphPad Software, San Diego, CA) and Microsoft Excel. Two-
tailed Student's t tests were used to calculate p values.
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