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Abstract

In this Letter we consider a correspondence between the holographic dark energy density and Chaplygin gas energy density in FRW universe.
Then we reconstruct the potential and the dynamics of the scalar field which describe the Chaplygin cosmology.
© 2007 Elsevier B.V. Open access under CC BY license.
1. Introduction

The type Ia supernova observations suggests that the uni-
verse is dominated by dark energy (DE) with negative pressure
which provides the dynamical mechanism of the accelerating
expansion of the universe [1–3]. The strength of this accelera-
tion is presently matter of debate, mainly because it depends on
the theoretical model implied when interpreting the data.

An approach to the problem of DE arises from the holo-
graphic principle that states that the number of degrees of free-
dom related directly to entropy scales with the enclosing area
of the system. It was shown by ’t Hooft and Susskind [4] that
effective local quantum field theories greatly overcount degrees
of freedom because the entropy scales extensively for an effec-
tive quantum field theory in a box of size L with UV cut-off Λ.
As pointed out by [5], attempting to solve this problem, Cohen
et al. showed [6] that in quantum field theory, short distance cut-
off Λ is related to long distance cut-off L due to the limit set
by forming a black hole. In other words the total energy of the
system with size L should not exceed the mass of the same size
black hole, i.e. L3ρΛ � LM2

p where ρΛ is the quantum zero-
point energy density caused by UV cut-off Λ and MP denotes
the Planck mass (M2

p = 1/8πG). The largest L is required to
saturate this inequality. Then its holographic energy density is
given by ρΛ = 3c2M2

p/8πL2 in which c is a free dimensionless
parameter and coefficient 3 is for convenience. As an applica-
tion of the holographic principle in cosmology, it was studied
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by [7] that the consequence of excluding those degrees of free-
dom of the system which will never be observed by the effective
field theory gives rise to IR cut-off L at the future event horizon.
Thus in a universe dominated by DE, the future event horizon
will tend to a constant of the order H−1

0 , i.e. the present Hubble
radius. On the basis of the cosmological state of the holographic
principle, proposed by Fischler and Susskind [8], a holographic
model of dark energy (HDE) has been proposed and studied
widely in the literature [9,10]. In HDE, in order to determine
the proper and well-behaved system’s IR cut-off, there are some
difficulties that must be studied carefully to get results adapted
with experiments that claim our universe has accelerated expan-
sion. For instance, in the model proposed by [9], it is discussed
that considering the particle horizon, as the IR cut-off, the HDE
density reads

(1)ρΛ ∝ a−2(1+ 1
c
),

that implies w > −1/3 which does not lead to an accelerated
universe. Also it is shown in [11] that for the case of closed
universe, it violates the holographic bound.

The problem of taking apparent horizon (Hubble horizon)—
the outermost surface defined by the null rays which instanta-
neously are not expanding, RA = 1/H—as the IR cut-off in the
flat universe was discussed by Hsu [12]. According to Hsu’s
argument, employing the Friedmann equation ρ = 3M2

P H 2

where ρ is the total energy density and taking L = H−1 we
will find ρm = 3(1 − c2)M2

P H 2. Thus either ρm or ρΛ behave
as H 2. So the DE results as pressureless, since ρΛ scales like
matter energy density ρm with the scale factor a as a−3. Also,
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taking the apparent horizon as the IR cut-off may result in a con-
stant parameter of state w, which is in contradiction with recent
observations implying variable w [13]. On the other hand, tak-
ing the event horizon, as the IR cut-off, gives results compatible
with observations for a flat universe.

In a very interesting paper Kamenshchik, Moschella, and
Pasquier [14] have studied a homogeneous model based on a
single fluid obeying the Chaplygin gas equation of state

(2)P = −A

ρ
,

where P and ρ are respectively pressure and energy density
in comoving reference frame, with ρ > 0; A is a positive con-
stant. This equation of state has raised a certain interest [15]
because of its many interesting and, in some sense, intriguingly
unique features. Some possible motivations for this model from
the field theory points of view are investigated in [16]. The
Chaplygin gas emerges as an effective fluid associated with
d-branes [17] and can also be obtained from the Born–Infeld
action [18].

In the present Letter, we suggest a correspondence between
the holographic dark energy scenario and the Chaplygin gas
dark energy model. We show this holographic description of the
Chaplygin gas dark energy in FRW universe and reconstruct the
potential and the dynamics of the scalar field which describe the
Chaplygin cosmology.

2. Chaplygin gas as holographic dark energy

Here we consider the Friedmann–Robertson–Walker uni-
verse with line element

(3)ds2 = −dt2 + a2(t)

(
dr2

1 − kr2
+ r2 dΩ2

)
,

where k denotes the curvature of space k = 0,1,−1 for flat,
closed and open universe, respectively. A closed universe with
a small positive curvature (Ωk ∼ 0.01) is compatible with ob-
servations [19,20]. We use the Friedmann equation to relate the
curvature of the universe to the energy density. The first Fried-
mann equation is given by

(4)H 2 + k

a2
= 1

3M2
p

[ρΛ + ρm].

Define as usual

Ωm = ρm

ρcr
= ρm

3M2
pH 2

, ΩΛ = ρΛ

ρcr
= ρΛ

3M2
pH 2

,

(5)Ωk = k

a2H 2
.

Inserting the equation of state (2) into the relativistic energy
conservation equation, leads to a density evolving as

(6)ρΛ =
√

A + B

a6
,

where B is an integration constant.
Now following [21] we assume that the origin of the dark
energy is a scalar field φ, so

(7)ρφ = 1

2
φ̇2 + V (φ) =

√
A + B

a6
,

(8)Pφ = 1

2
φ̇2 − V (φ) = −A√

A + B

a6

.

Then, one can easily derive the scalar potential and kinetic en-
ergy term as

(9)V (φ) = 2a6(A + B

a6 ) − B

2a6
√

A + B

a6

,

(10)φ̇2 = B

a6
√

A + B

a6

.

Now we suggest a correspondence between the holographic
dark energy scenario and the Chaplygin gas dark energy model.
In non-flat universe, our choice for holographic dark energy
density is

(11)ρΛ = 3c2M2
pL−2.

As it was mentioned, c is a positive constant in holographic
model of dark energy (c � 1) and the coefficient 3 is for conve-
nient. L is defined as the following form:

(12)L = ar(t),

here a is scale factor and r(t) is relevant to the future event
horizon of the universe. Given the fact that
r1∫

0

dr√
1 − kr2

= 1√|k| sinn−1(√|k|r1
)

(13)=
⎧⎨
⎩

sin−1(
√|k|r1)/

√|k|, k = 1,

r1, k = 0,

sinh−1(
√|k|r1)/

√|k|, k = −1,

one can easily derive

(14)L = a(t) sinn[√|k|Rh(t)/a(t)]√|k| ,

where Rh is event horizon. Therefore while Rh is the radial size
of the event horizon measured in the r direction, L is the radius
of the event horizon measured on the sphere of the horizon.1

1 As I have discussed in introduction, in non-flat case the event horizon can-
not be considered as the system’s IR cut-off, because if we use Rh as IR cut-off,
the holographic dark energy density is given by

(15)ρΛ = 3c2M2
pR−2

h
.

When there is only dark energy and the curvature, ΩΛ = 1 + Ωk , and c = 1,
we find [22]

(16)Ṙh = 1√
ΩΛ

− 1 = 1√
1 + Ωk

− 1 < 0,
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Since we have

(17)
Ωk

Ωm

= a
Ωk0

Ωm0
= aγ,

where γ = Ωk0/Ωm0, we get Ωk = Ωmaγ and

(18)Ωm = 1 − ΩΛ

1 − aγ
.

Hence, from the above equation, we get

(19)
1

aH
= 1

H0

√
a(1 − ΩΛ)

Ωm0(1 − aγ )
.

Combining Eqs. (14) and (19), and using the definition of ΩΛ,
we obtain

√|k|Rh

a
= sinn−1

[
c
√|γ |

√
a(1 − ΩΛ)

ΩΛ(1 − aγ )

]

(20)= sinn−1(c√|Ωk|/ΩΛ

)
.

Using definitions ΩΛ = ρΛ

ρcr
and ρcr = 3M2

pH 2, we get

(21)HL = c√
ΩΛ

.

Now using Eqs. (14), (21), we obtain2

(23)L̇ = c√
ΩΛ

− 1√|k| cosn
(√|k|Rh/a

)
,

where

(24)
1√|k| cosn

(√|k|x) =
{ cos(x), k = 1,

1, k = 0,

cosh(x), k = −1.

By considering the definition of holographic energy density ρΛ,
and using Eqs. (21), (23) one can find:

(25)ρ̇Λ = −2H

[
1 −

√
ΩΛ

c

1√|k| cosn
(√|k|Rh/a

)]
ρΛ.

Substitute this relation into following equation

(26)ρ̇Λ + 3H(1 + wΛ)ρΛ = 0,

we obtain

(27)wΛ = −
[

1

3
+ 2

√
ΩΛ

3c

1√|k| cosn
(√|k|Rh/a

)]
.

If we establish the correspondence between the holographic
dark energy and Chaplygin gas energy density, then using

while we know that in this situation we must be in de Sitter space with con-
stant EoS.

2 Now we see that the above problem is solved when Rh is replaced with L.
According to Eqs. (5), (11), the ratio of the energy density between curvature
and holographic dark energy is

(22)
Ωk

ΩΛ
= sin2 y

c2
,

when there is only dark energy and the curvature, ΩΛ = 1 +Ωk , and c = 1, we
find ΩΛ = 1

cos2 y
, in this case according to Eq. (23) L̇ = 0, therefore, as one

expected in this de Sitter space case, the dark energy remains a constant.
Eqs. (6), (11) we have

(28)B = a6(9c4M4
pL−4 − A

)
.

Also using Eqs. (2), (6), (27) one can write

w = P

ρ
= −A

ρ2
= −A

A + B

a6

(29)= −
[

1

3
+ 2

√
ΩΛ

3c

1√|k| cosn
(√|k|Rh/a

)]
.

Substitute B in the above equation, we obtain following relation
for A:

(30)A = 3c4M4
pL−4

[
1 + 2

√
ΩΛ

c

1√|k| cosn
(√|k|Rh/a

)]
.

Then B is given by3

(34)B = 6c4M4
pL−4a6

[
1 −

√
ΩΛ

c

1√|k| cosn
(√|k|Rh/a

)]
.

Now we can rewritten the scalar potential and kinetic energy
term as following

V (φ) = 2c2M2
pL−2

[
1 +

√
ΩΛ

2c

1√|k| cosn
(√|k|Rh/a

)]

(35)= 2H 2M2
pΩΛ

[
1 +

√
ΩΛ

2c

1√|k| cosn
(√|k|Rh/a

)]
,

(36)φ̇ = cMp

L

√
2

[
1 −

√
ΩΛ

c

1√|k| cosn
(√|k|Rh/a

)]
.

Considering x(≡ lna), we have

(37)φ̇ = φ′H.

Then using Eqs. (21), (36), derivative of scalar field φ with re-
spect to x(≡ lna) is as

(38)φ′ = Mp

√
2ΩΛ

[
1 −

√
ΩΛ

c

1√|k| cosn
(√|k|Rh/a

)]
.

Consequently, we can easily obtain the evolutionary form of the
field

3 As one can see in this case the A and B can change with time. Similar sit-
uation can arise when the cosmological constant has dynamic, see for example
Eq. (12) of [14], according to this equation

(31)A = Λ(Λ + ρm)

therefore, if Λ vary with time [23], A does not remain constant.
In the flat universe case L replace with event horizon Rh , in this case

Eqs. (30), (34) take following simple form respectively

(32)A = 3c4M4
pR−4

h

(
1 + 2

√
ΩΛ

c

)
,

(33)B = 6c4M4
pR−4

h
a6

(
1 −

√
ΩΛ

c

)
.

Substitute the present value for a, ΩΛ and Rh , one can obtain the values of A

and B in present time.
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φ(a) − φ(a0)

(39)=
lna∫
0

Mp

√
2ΩΛ

[
1 −

√
ΩΛ

c

1√|k| cosn
(√|k|Rh/a

)]
dx,

where a0 is the present time value of the scale factor.

3. Conclusions

It is fair to claim that the simplicity and reasonable nature of
HDE provide a more reliable framework for investigating the
problem of DE compared with other models proposed in the lit-
erature [24–26]. For instance the coincidence or “why now?”
problem is easily solved in some models of HDE based on this
fundamental assumption that matter and holographic dark en-
ergy do not conserve separately, but the matter energy density
decays into the holographic energy density [27].

Within the different candidates to play the role of the dark
energy, the Chaplygin gas, has emerged as a possible unification
of dark matter and dark energy, since its cosmological evolution
is similar to an initial dust like matter and a cosmological con-
stant for late times. Inspired by the fact that the Chaplygin gas
possesses a negative pressure, people [28] have undertaken the
simple task of studying a FRW cosmology of a universe filled
with this type of fluid.

In this Letter we have associated the holographic dark energy
in FRW universe with a scalar field which describe the Chap-
lygin cosmology. We have shown that the holographic dark
energy can be described by the scalar field in a certain way.
Then a correspondence between the holographic dark energy
and Chaplygin gas model of dark energy has been established,
and the potential of the holographic scalar field and the dynam-
ics of the field have been reconstructed.
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