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In this Letter, we study thermodynamical properties of the apparent horizon in a universe governed
by quasi-topological gravity. Our aim is twofold. First, by using the variational method we derive the
general form of Friedmann equation in quasi-topological gravity. Then, by applying the first law of
thermodynamics on the apparent horizon, after using the entropy expression associated with the black
hole horizon in quasi-topological gravity, and replacing the horizon radius, r+, with the apparent horizon
radius, r̃ A , we derive the corresponding Friedmann equation in quasi-topological gravity. We find that
these two different approaches yield the same result which shows the profound connection between
the first law of thermodynamics and the gravitational field equations of quasi-topological gravity. We
also study the validity of the generalized second law of thermodynamics in quasi-topological cosmology.
We find that, with the assumption of the local equilibrium hypothesis, the generalized second law
of thermodynamics is fulfilled for the universe enveloped by the apparent horizon for the late time
cosmology.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

The most general Lagrangian which keeps the field equations of
motion for the metric of second-order, as the pure Einstein–Hilbert
action, is Lovelock Lagrangian [1]. This Lagrangian is constructed
from the dimensionally extended Euler densities and can be writ-
ten as

L =
m∑

p=0

αpLp, (1)

where αp and Lp are arbitrary constant and Euler density, respec-
tively. In an (n + 1)-dimensional spacetime m = [n/2]. L0 set to
be one, and therefore α0 plays the role of the cosmological con-
stant. Because of the topological origin of the Lovelock terms, the
second-order (Gauss–Bonnet) term does not have any dynamical
effect in four dimensions. Similarly, the cubic interaction only con-
tributes to the equations of motion when the bulk dimension is
seven or greater. In other words, although the equations of motion
of pth-order Lovelock gravity are second-order differential equa-
tions, the pth-order Lovelock term has no contribution to the field
equations in 2p and lower dimensions. Is it possible to construct
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a gravitational action with cubic curvature interactions or higher
which has contribution in five dimension? The answer is positive
and the corresponding theory is called “quasi-topological” gravity
which was recently proposed in Refs. [2–4] with cubic and quartic
terms of Riemann tensor, respectively. This new gravitational the-
ory provides a useful toy model to study a broader class of four
(and higher) dimensional CFT’s, involving three or more indepen-
dent parameters [5]. Various aspects of pth-order quasi-topological
terms which have at most second-order derivatives of the metric
in the field equations for spherically symmetric spacetimes in five
and higher dimensions except 2p dimensions have been investi-
gated [6–9].

Nowadays, it is a general belief that there is a profound connec-
tion between the gravitational field equations and the laws of ther-
modynamics. It was shown that the gravitational field equation of
a static spherically symmetric spacetime in Einstein, Gauss–Bonnet
and more general Lovelock gravity can be recast as the first law
of thermodynamics [10]. The studies were also extended to other
gravity theories such as f (R) gravity [11] and scalar-tensor gravity
[12]. In the cosmological setup, it was shown that the differential
form of the Friedmann equation of Friedmann–Robertson–Walker
(FRW) universe can be transformed to the first law of thermody-
namics on the apparent horizon [13,14]. In the context of brane
cosmology, it was shown that the Friedmann equations on the
brane can be expressed as dE = T dS + W dV on the apparent hori-
zon [15–17]. This procedure also leads to extract an expression for
the entropy at the apparent horizon on the brane, which is useful

http://dx.doi.org/10.1016/j.physletb.2013.05.065
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:mhd@shirazu.ac.ir
mailto:asheykhi@shirazu.ac.ir
http://dx.doi.org/10.1016/j.physletb.2013.05.065
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.physletb.2013.05.065&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


12 M.H. Dehghani et al. / Physics Letters B 724 (2013) 11–16
in studying the thermodynamical properties of the black hole hori-
zon on the brane [15–17].

Is the inverse procedure also possible? That is starting from the
first law of thermodynamics to extract the general field equations
of gravitational theory. Jacobson [18] was the first who disclosed
that the Einstein field equation can be derived from the relation
between the horizon area and entropy, together with the Clau-
sius relation δQ = T δS . Also, in the cosmological setup, it was
shown that the corresponding Friedmann equations of Einstein,
Gauss–Bonnet and Lovelock gravity can be derived by applying the
energy balance relation −dE = T dS to the apparent horizon of a
Friedmann–Robertson–Walker universe (FRW) with any spatial cur-
vature [19]. Here, −dE is actually just the heat flux δQ in [18]
crossing the apparent horizon within an infinitesimal internal of
time dt . In the framework of Horava–Lifshitz gravity, it was shown
that the corresponding Friedmann equation cannot be derived by
applying the first law of thermodynamics on the apparent horizon
and using the entropy expression for static spherically symmetric
black holes in this gravity theory [20]. The reason of failure seems
to be due to the fact that Horava–Lifshitz gravity is not diffeomor-
phism invariant [21]. Indeed, the action of Horava–Lifshitz gravity
is invariant only under a restricted class of diffeomorphism [22].
This implies that the connection between first law of thermody-
namics and gravitational field equations is not a generic feature of
any theory of gravity.

In this Letter we will address the question on the connection
between thermodynamics and gravity by investigating whether
and how the relation can be found in quasi-topological cosmol-
ogy. This is the first study on the quasi-topological cosmology and
in particular investigating thermodynamical aspects of this grav-
ity theory. For this purpose, we first derive the Friedmann equa-
tions in quartic and higher-order quasi-topological gravity by vary-
ing the action of the quasi-topological gravity. Then, to show the
consistency of this theory with thermodynamics, we extract the
corresponding Friedmann equations by applying the first law of
thermodynamics, dE = ThdSh + W dV , on the apparent horizon of
a FRW universe governed by quasi-topological gravity. Our strat-
egy is to pick up the entropy expression associated with the black
hole horizon in quasi-topological gravity and replacing the black
hole horizon radius r+ by the apparent horizon radius r̃ A . We will
also examine the time evolution of the total entropy, including the
entropy associated with the apparent horizon in quasi-topological
gravity together with the matter field entropy inside the apparent
horizon. We find that, in the late time, the generalized second law
(GSL) of thermodynamics is fulfilled for the universe governed by
quasi-topological gravity.

This Letter is outlined as follows. In the next section, we in-
troduce the action of the quasi-topological gravity and derive the
general form of the Friedmann equation by using the variational
method in this gravity theory. In Section 3, we extract the Fried-
mann equation of quartic quasi-topological cosmology by applying
the first law of thermodynamics, dE = ThdSh + W dV , on the ap-
parent horizon. We also generalize our study to higher-order quasi-
topological theory in this section. We investigate the validity of
GSL of thermodynamics for a universe enveloped by the apparent
horizon in quasi-topological gravity in Section 4. We finish our Let-
ter with conclusions in Section 5.

2. Quasi-topological cosmology

In this section we derive the field equations governing the evo-
lution of the universe in quasi-topological gravity. The most gen-
eral gravitational theory which produces second-order equation of
motion is the i-order Lovelock gravity with action [1]
IG = 1

16πGn+1

∫
dn+1x

√−g

(
−2Λ +

m∑
i=0

αiLi +LM

)
, (2)

where Λ is the cosmological constant, and the αi ’s are Lovelock
coefficients with dimensions (length)2i−2, and Li is the ith-order
Lovelock Lagrangian

Li = 1

2i
δ
μ1μ2···μ2i
ν1ν2···ν2i Rμ1μ2

ν1ν2 · · · Rμ2i−1μ2i
ν2i−1ν2i . (3)

In the action (2), the term proportional to αi contributes to the
equations of motion in dimensions with n � 2i. For example, the
terms associated to i = 3 or higher do not contribute to the field
equations in five dimensions. Recently, a new gravity theory called
quasi-topological gravity has been introduced, which has contri-
bution to the field equations in five dimensions from the i-order
(i � 3) term in Riemann tensor.

The gravity part of the action of the quartic quasi-topological
theory in (n + 1)-dimensions in the absence of cosmological con-
stant is given by [4]

I =
∫

dn+1x (LG +LM), (4)

where LM is the Lagrangian of the matter and

LG =
√−g

16πGn+1
(μ1L1 + μ2L2 + μ3X3 + μ4X4). (5)

In Eq. (5) L1 = R is the Einstein–Hilbert Lagrangian, L2 =
Rabcd Rabcd − 4Rab Rab + R2 is the second-order Lovelock (Gauss–
Bonnet) Lagrangian, X3 is the curvature-cubed Lagrangian [3]

X3 = Rcd
ab Rc

e
d

f Re
a

f
b + 1

(2n − 1)(n − 3)

(
3(3n − 5)

8
Rabcd Rabcd R

− 3(n − 1)Rabcd Rabc
e Rde + 3(n + 1)Rabcd Rac Rbd

+ 6(n − 1)Ra
b Rb

c Rc
a − 3(3n − 1)

2
Ra

b Rb
a R

+ 3(n + 1)

8
R3

)
(6)

and X4 is the fourth-order term of quasi-topological gravity [4]

X4 = c1 Rabcd Rcdef Rhg
ef Rhg

ab + c2 Rabcd Rabcd Ref Ref

+ c3 R Rab Rac Rc
b + c4

(
Rabcd Rabcd)2 + c5 Rab Rac Rcd Rdb

+ c6 R Rabcd Rac Rdb + c7 Rabcd Rac Rbe Rd
e

+ c8 Rabcd Racef Rb
e Rd

f + c9 Rabcd Rac Ref Rbedf

+ c10 R4 + c11 R2 Rabcd Rabcd + c12 R2 Rab Rab

+ c13 Rabcd Rabef Ref
c

g Rdg + c14 Rabcd Raecf R gehf R gbhd, (7)

where the coefficients ci are given by

c1 = −(n − 1)
(
n7 − 3n6 − 29n5 + 170n4 − 349n3 + 348n2

− 180n + 36
)
,

c2 = −4(n − 3)
(
2n6 − 20n5 + 65n4 − 81n3 + 13n2 + 45n − 18

)
,

c3 = −64(n − 1)
(
3n2 − 8n + 3

)(
n2 − 3n + 3

)
,

c4 = −(
n8 − 6n7 + 12n6 − 22n5 + 114n4 − 345n3 + 468n2

− 270n + 54
)
,

c5 = 16(n − 1)
(
10n4 − 51n3 + 93n2 − 72n + 18

)
,

c6 = −32(n − 1)2(n − 3)2(3n2 − 8n + 3
)
,
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c7 = 64(n − 2)(n − 1)2(4n3 − 18n2 + 27n − 9
)
,

c8 = −96(n − 1)(n − 2)
(
2n4 − 7n3 + 4n2 + 6n − 3

)
,

c9 = 16(n − 1)3(2n4 − 26n3 + 93n2 − 117n + 36
)
,

c10 = n5 − 31n4 + 168n3 − 360n2 + 330n − 90,

c11 = 2
(
6n6 − 67n5 + 311n4 − 742n3 + 936n2 − 576n + 126

)
,

c12 = 8
(
7n5 − 47n4 + 121n3 − 141n2 + 63n − 9

)
,

c13 = 16n(n − 1)(n − 2)(n − 3)
(
3n2 − 8n + 3

)
,

c14 = 8(n − 1)
(
n7 − 4n6 − 15n5 + 122n4 − 287n3 + 297n2

− 126n + 18
)
.

The action (4) not only works in five dimensions, but also yields
second-order equations of motion for spherically symmetric space-
times [4].

Our aim here is to derive the corresponding Friedmann equa-
tions of quartic and higher-order quasi-topological gravity. We con-
sider a homogeneous and isotropic FRW universe in (n + 1)-dimen-
sions which is described by the line element

ds2 = −N(t)dt2 + a2(t)

[
dr2

1 − kr2
+ r2 dΩ2

n−1

]
, (8)

where k is the spatial curvature constant with values 1,0 and
−1 correspond to closed, flat and open universe, respectively, and
dΩ2

n−1 represents the line elements of an (n − 1)-dimensional unit
sphere.

We use the variational method for deriving the Friedmann
equation from the action principle. Using metric (8), the La-
grangian of the fourth-order quasi-topological gravity can be writ-
ten as

LG = n(n − 1)

16πGn+1

√−γ an

N(n+3)/2a8

(
−N4b1 + N3b2ȧ2 + 1

3
N2b3ȧ4

+ 1

5
Nb4ȧ6 + 1

7
b5ȧ8

)
, (9)

where γ is the determinant of the metric of t-constant hypersur-
face, bi ’s are

b1 = a6k + a4k2μ̂2l2 + a2k3μ̂3l4 + k4μ̂4l6,

b2 = a6 + 2a4kμ̂2l2 + 3a2k2μ̂3l4 + 4k3μ̂4l6,

b3 = a4μ̂2l2 + 3a2kμ̂3l4 + 6k2μ̂4l6,

b4 = a2μ̂3l4 + 4kμ̂4l6,

b5 = μ̂4l6,

and the dimensionless parameters μ̂ j ’s are

μ̂1 = 1, μ̂2 = (n − 2)(n − 3)

l2
μ2,

μ̂3 = (n − 2)(n − 5)(3n2 − 9n + 4)

8(2n − 1)l4
μ3,

μ̂4 = n(n − 1)(n − 2)2(n − 3)(n − 7)(n5 − 15n4 + 72n3 − 156n2 + 150n − 42)

l6
μ4.

Varying the Lagrangian (9) with respect to N(t), we arrive at

1√−g

δLG

δN
= − n(n − 1)

32πGn+1

1

N(n+6)/2a8

× [
N4b1 + N3b2ȧ2 + N2b3ȧ4 + Nb4ȧ6 + b5ȧ8].

(10)
On the other hand the variation of the Lagrangian of matter with
respect to g00 = −N leads to

1√−g

δLM

δN
≡ T 0

0

2N
= ρ

2N
. (11)

Now, one can absorb N(t) in t coordinate. That is, one can set
N(t) = 1. Using (10) and (11), one obtains

4∑
i=1

μ̂il
2i−2

(
H2 + k

a2

)i

= 16πGn+1

n(n − 1)
ρ. (12)

As in the case of black hole solutions presented in [4], the form of
the field equation (12) allows us to generalize this equation to the
case of mth-order quasi-topological gravity:

m∑
i=1

μ̂il
2i−2

(
H2 + k

a2

)i

= 16πGn+1

n(n − 1)
ρ. (13)

Here, we pause to study the field equations under a small
perturbation around the Friedmann–Robertson–Walker metric. The
authors of [3], examined the linearized equations of motion for
a graviton perturbation around the AdS metric in cubic quasi-
topological gravity, and showed that the linearized graviton equa-
tion in an AdS background is only a second-order equation. Here,
we examine the same fact under a small perturbation around the
FRW metric and find that the linearized field equation is a second-
order equation. This fact is different from the small perturbation
around FRW metric in the new massive gravity [23]. In the lat-
ter case, the linearized field equation contains more than two-
derivative and one may have ghosty vacuum at initial times while
it becomes free of ghosts at later times in the cosmological sce-
nario [23].

3. Friedman equation from the first law

In this section we would like to derive the Friedmann equa-
tion of quasi-topological cosmology by applying the first law of
thermodynamics on the apparent horizon of FRW universe. The
entropy associated with the event horizon of higher dimensional
static spherically symmetric black holes in cubic quasi-topological
gravity has the following form [3,6]

Sh = A

4Gn+1

[
1 + 2(n − 1)

n − 3

μ̂2l2

r2+
+ 3(n − 1)

n − 5

μ̂3l4

r4+

]
, (14)

where n �= 5 and Gn+1 is the (n + 1)-dimensional gravitational
constant. Here A = nΩnrn−1+ is the surface area of the black hole
horizon, and

Ωn = πn/2

Γ (n+2
2 )

, Γ

(
n + 2

2

)
=

(
n

2

)(
n − 2

2

)
!. (15)

We further assume the entropy expression (14) is also valid for the
apparent horizon of the FRW universe in quasi-topological grav-
ity. Replacing the horizon radius r+ with the apparent horizon
radius r̃ A , the entropy expression (29) can be written

Sh = nΩn

4Gn+1
r̃n−1

A

[
1 + β

r̃2
A

+ γ

r̃4
A

]
, (16)

where we have defined

β = 2(n − 1)
μ̂2l2, γ = 3(n − 1)

μ̂3l4. (17)

n − 3 n − 5
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Taking differential form of relation (16), we have

dS = ∂ S

∂ r̃ A
dr̃A

= nΩn

4Gn+1

[
(n − 1)r̃n−2

A + β(n − 3)r̃n−4
A + γ (n − 5)r̃n−6

A

]
dr̃A .

We rewrite the line element of the FRW metric as

ds2 = habdxadxb + r̃2dΩ2
n−1, (18)

where x0 = t , x1 = r, r̃ = a(t)r, and hab = diag(−1,a2/(1 − kr2))

represents the two dimensional metric. The dynamical apparent
horizon, a marginally trapped surface with vanishing expansion, is
determined by the relation hab∂ar̃∂br̃ = 0. It is a matter of calcula-
tion to show that the radius of the apparent horizon for the FRW
universe becomes [24]

r̃ A = 1√
H2 + k/a2

. (19)

The temperature associated with the apparent horizon is defined
as Th = κ/2π , where κ = 1

2
√−h

∂a(
√−hhab∂br̃) is the surface grav-

ity. It is easy to show that the surface gravity at the apparent
horizon of FRW universe can be written as

κ = − 1

r̃ A

(
1 −

˙̃r A

2Hr̃A

)
. (20)

Since for ˙̃r A < 2Hr̃A , we have κ < 0, which leads to the negative
temperature, thus one may, in general, define the temperature on
the apparent horizon as Th = |κ |/2π . In addition, since we as-
sociate with the apparent horizon a temperature, thus one may
expect that the apparent horizon have a kind of Hawking radiation
just like a black hole event horizon. This issue was previously ad-
dressed [25], by showing the connection between temperature on
the apparent horizon and the Hawking radiation. This study gives
more solid physical implication of the temperature associated with
the apparent horizon.

The energy conservation law ∇μT μν = 0 leads to the continuity
equation in the form

ρ̇ + nH(ρ + p) = 0. (21)

The next quantity we need to have is the work density. In our case
it can be calculated as in [24]

W = −1

2
T μνhμν = 1

2
(ρ − p). (22)

The work density is regarded as the work done when the appar-
ent horizon radius changes from r̃ A to r̃ A + dr̃A . Then, we suppose
the first law of thermodynamics on the apparent horizon of the
universe in quasi-topological gravity holds and has the form

dE = ThdSh + W dV , (23)

where Sh is the entropy associated with the apparent horizon in
quasi-topological cosmology given in Eq. (16). The term W dV in
the first law comes from the fact that we have a volume change
for the total system enveloped by the apparent horizon. For a
pure de Sitter space, ρ = −p, and the work term reduces to the
standard −pdV , thus we obtain exactly the standard first law of
thermodynamics, dE = T dS − pdV .

Assuming the total energy content of the universe inside an
n-sphere of radius r̃ A is E = ρV , where V = Ωnr̃n

A is the volume
enveloped by an n-dimensional sphere. Taking differential form of
the total energy, after using the continuity equation (21), we ob-
tain
dE = ρnΩnr̃n−1
A dr̃A + Ωnr̃n

Aρ̇ dt

= ρnΩnr̃n−1
A dr̃A − nHΩnr̃n

A(ρ + p)dt. (24)

Substituting Eqs. (17), (22) and (24) in the first law (23) and us-
ing the definition of the temperature associated with the apparent
horizon, we get the differential form of the Friedmann equation in
cubic quasi-topological gravity as

1

8πGn+1r̃ A

[
n − 1

r̃2
A

+ β(n − 3)

r̃4
A

+ γ (n − 5)

r̃6
A

]
dr̃A = H(ρ + p)dt.

(25)

Using the continuity equation (21), we obtain[
n − 1

r̃3
A

+ β(n − 3)

r̃5
A

+ γ (n − 5)

r̃7
A

]
dr̃A = −8πGn+1

n
dρ. (26)

Integrating (26) yields

1

r̃2
A

+ μ̂2l2

r̃4
A

+ μ̂3l4

r̃6
A

= 16πGn+1

n(n − 1)
ρ, (27)

where an integration constant has been absorbed into the energy
density ρ . Substituting r̃ A from Eq. (19) we obtain

H2 + k

a2
+ μ̂2l2

(
H2 + k

a2

)2

+ μ̂3l4
(

H2 + k

a2

)3

= 16πGn+1

n(n − 1)
ρ. (28)

In this way we derived the (n + 1)-dimensional Friedmann equa-
tion governing the evolution of the universe in cubic-order quasi-
topological gravity by applying the first law of thermodynamics on
the apparent horizon.

The above analysis can be extended to higher-order quasi-
topological gravity. The entropy associated with spherically sym-
metric black hole solutions in quartic-order of quasi-topological
gravity is given by [4]

Sh = A

4Gn+1

[
μ̂1 + 2(n − 1)

(n − 3)

μ̂2l2

r2+
+ 3(n − 1)

(n − 5)

μ̂3l4

r4+

+ 4(n − 1)

(n − 7)

μ̂4l6

r6+

]
. (29)

The extension to higher-order quasi-topological black holes is quite
straightforward and can be written in the compact form

Sh = A

4Gn+1

m∑
i=1

i
(n − 1)

(n + 1 − 2i)

μ̂il2i−2

r2i−2+
. (30)

Using the same formalism as we have done in this section, we
obtain the general form of the Friedmann equation as

μ̂1

(
H2 + k

a2

)
+ μ̂2l2

(
H2 + k

a2

)2

+ μ̂3l4
(

H2 + k

a2

)3

+ μ̂4l6
(

H2 + k

a2

)4

+ · · · = 16πGn+1

n(n − 1)
ρ (31)

or in a compact form as

∞∑
i=1

μ̂il
2i−2

(
H2 + k

a2

)i

= 16πGn+1

n(n − 1)
ρ. (32)

Which is compatible with the field equation derived through the
use of the variation of the action.
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4. GSL in quasi-topological gravity

Next, we examine the time evolution of the total entropy. For
this purpose, we take the time derivative of Eq. (31) and get[

1

r̃3
A

+ 2μ̂2l2

r̃5
A

+ 3μ̂3l4

r̃7
A

+ 4μ̂4l6

r̃9
A

+ · · ·
]
˙̃r A = − 8πGn+1

n(n − 1)
ρ̇. (33)

Using the continuity equation (21) and solving for ˙̃r A we obtain

˙̃r A = 8πGn+1

(n − 1)
H(ρ + p)

×
[

1

r̃3
A

+ 2μ̂2l2

r̃5
A

+ 3μ̂3l4

r̃7
A

+ 4μ̂4l6

r̃9
A

+ · · ·
]−1

. (34)

Calculating Th Ṡh ,

Th Ṡh = 1

2π r̃ A

(
1 −

˙̃r A

2Hr̃A

)
n(n − 1)Ωn

4Gn+1
r̃n+1

A

×
[

1

r̃3
A

+ 2μ̂2l2

r̃5
A

+ 3μ̂3l4

r̃7
A

+ 4μ̂4l6

r̃9
A

+ · · ·
]
˙̃r A, (35)

and substituting ˙̃r A from Eq. (34) in it, we obtain

Th Ṡh = nΩnr̃n
A Hρ(1 + w)

(
1 −

˙̃r A

2Hr̃A

)
, (36)

where we have defined the equation of state w = p/ρ , as usual.
Since T � 0, we have ˙̃r A � 2Hr̃A , thus the sign of Eq. (36) de-
pends on w . If w � −1, then Ṡh � 0 and the second law of ther-
modynamics is fulfilled. However, some astrophysical evidences
show that our universe is currently accelerating and in particu-
lar the equation of state parameter can cross the phantom line,
i.e. w < −1, indicating that the second law of thermodynamics,
Ṡh � 0, does not hold. Nevertheless, as we shall see below, the GSL
of thermodynamics, Ṡh + Ṡm � 0, is still preserved throughout the
history of the universe. In order to verify the GSL of thermody-
namics, we have to study the time evolution of the total entropy
including the entropy Sh associated with the apparent horizon to-
gether with the matter field entropy Sm inside the apparent hori-
zon. The entropy of the universe inside the horizon can be related
to its energy and pressure by Gibbs equation [26]

TmdSm = d(ρV ) + pdV = V dρ + (ρ + p)dV

= Ωnr̃n
A dρ + (ρ + p)nΩnr̃n−1

A dr̃A, (37)

where Tm is the temperature of the matter field inside the ap-
parent horizon. We assume the temperature of the perfect fluid
inside the apparent horizon scales as the temperature of the ap-
parent horizon Th . Thus, we suppose the temperature Tm = Th .
We limit ourselves to the assumption of the local equilibrium hy-
pothesis, that the energy would not spontaneously flow between
the horizon and the fluid, the latter would be at variance with the
FRW geometry. Therefore, from the Gibbs equation, we get

Tm Ṡm = nΩnr̃n−1
A (ρ + p)˙̃r A − nΩnr̃n

A H(ρ + p), (38)

where we have used the continuity equation (21). Adding Eqs. (36)
and (38), after substituting ˙̃r A from Eq. (34), we obtain

Th( Ṡh + Ṡm) = 4πGn+1

n − 1
AH(ρ + p)2r̃3

A

×
[

1 + 2μ̂2l2

r̃2
+ 3μ̂3l4

r̃4
+ 4μ̂4l6

r̃6
+ · · ·

]−1

. (39)

A A A
Expanding the r.h.s. of the above equation for the late time where
r̃ A � l, we arrive at

Th( Ṡh + Ṡm) = 4πGn+1

n − 1
AH(ρ + p)2r̃3

A

×
[

1 − 2μ̂2l2

r̃2
A

− 3μ̂3l4

r̃4
A

− 4μ̂4l6

r̃6
A

+ · · ·
]
. (40)

The expression in the bracket, in the late time cosmology is pos-
itive which indicate that Ṡh + Ṡm � 0. This implies that for the
late time cosmology, the GSL of thermodynamics is fulfilled in the
universe governed by quasi-topological gravity, regardless of the
nature of the energy content of the universe.

5. Conclusions

In this Letter we investigated the thermodynamical properties
of the apparent horizon in quasi-topological gravity. We first de-
rived the Friedmann equation governing the evolution of the uni-
verse in quartic and higher-order quasi-topological gravity by vary-
ing the corresponding action of quasi-topological gravity. Then, by
applying the first law of thermodynamics, dE = ThdSh + W dV on
the apparent horizon of FRW universe, we extracted the Fried-
mann equation of quartic and higher-order quasi-topological grav-
ity. Here E = ρV is the total energy inside the apparent horizon
and Th and Sh are the temperature and entropy associated with
the apparent horizon, respectively. The entropy expression depends
on the gravity theory and it is generally accepted that the ap-
parent horizon entropy in each gravity theory has the same ex-
pression as the entropy of black hole horizon, but replacing the
black hole horizon radius r+ with the apparent horizon radius
r̃ A . We found that the result obtained by the first law is ex-
actly coincides with the ones derived from the action principle.
We also studied the time evolution of the total entropy, includ-
ing the entropy associated with the apparent horizon together
with the matter field entropy enveloped by the apparent horizon.
Our study implies that, with the assumption of the local equilib-
rium hypothesis, the GSL of thermodynamics is preserved for the
late time cosmology in the universe governed by quasi-topological
gravity.
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