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Abstract

We carry out multivariate time series analysis on price indices of individual goods and services collected over the last 35 years in
Japan. Adoption of the complex principal component analysis (CPCA) enables us to have a new insight into dynamic correlation
structure involved in the price data. The CPCA is based on complexification of real data using the Hilbert transformation; lead-lag
relations between individual prices manifest in a form of instantaneous phases of the complex time series. The correlation matrix
in the CPCA is purified by adopting the random matrix theory as a null hypothesis for removal of statistical noises. We identify
four significant eigenmodes for price movement which are free from seasonal variations. Each of them has different characteristics
of dynamical correlations and is shown to be responsive to different economic events.
c© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.
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1. Introduction

In econophysics principal component analysis (PCA) and random matrix theory (RMT) was successfully combined
to detect correlations hidden in financial markets? ? ? , and now the combined method is widely used in analyzing
multivariate time series data of various complex systems? . The RMT serves as a theoretically sound criterion to
determine if eigenmodes of the correlation matrix are statistically significant; this is the critical issue that the PCA
always encounters. However, the PCA assisted by the RMT is not so capable of extracting correlation structures with
lead/lag relations, because it totally depends on the equal-time correlation matrix. Correlations between time series
data are not always present in a simultaneous manner.

In order to explore dynamic correlations in climate data, the complex principal component analysis (CPCA) was
developed by meteorologists? ? ? . The CPCA is based on complexification of real data using the Hilbert transforma-
tion. Lead/lag relations in original data manifest in a form of instantaneous phases of the complex time series thus
constructed. Recently, the RMT has been extended so that it works as a null hypothesis for the CPCA. If time series
data have appreciable autocorrelations, however, the RMT criterion tends to predict more significant modes than it
should do. This is because autocorrelations deceive us by giving rise to spurious cross-correlations for time series
of finite length, especially in the case that their length is comparable with the number of species of data. To over-
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come such limitation of the RMT, the rotational random shuffling (RRS) method was worked out. This is a numerical
method which destroys cross-correlations with autocorrelations preserved in time series data.

Recently, the CPCA assisted by the RMT or the RRS has been applied to various multivariate data including stock
market data? , world-wide financial data of markets and currencies? , and individual prices constituting the consumer
price index (CPI) in Japan? . In this study, we analyze monthly Japanese data of individual prices of consumers
and corporate goods collected for the period of 1980-2014. We like to elucidate dynamic correlation structures in
the economic system such as comovement and lead/lag relations of the prices. The analysis period encompasses
enforcement of consumption tax law (3% in April, 1989), subsequent consumption tax increase (to 5% in April, 1997
and to 8% in April, 2014), sub-prime mortgage crisis (2007-2009), and the Lehman’s bankruptcy (September, 2008).
We expect that they must have acted as shocks on prices. We thereby investigate how these economic events impact
on the price changes of individual goods and services. In fact, the investigation elucidates that each of the significant
eigenmodes for the price dynamics has different characteristics in their reaction to the shocks.

2. Complex Principal Component Analysis

Let us suppose that we have N different time series xμ(t) (μ = 1, · · · ,N) of length T (t = 1, · · · ,T ) . We first derive
complex time series ξμ(t) out of xμ(t) through the relation,

ξμ(t) = xμ(t) + iyμ(t) , (1)

where the imaginary part yμ(t) is Hilbert transform of xμ(t) defined by

yμ(t) = −1
π

∫ ∞
−∞

xμ(u)

t − u
du . (2)

The integration over u in Eq. (??) should be interpreted as Cauchy’s principal integration1. We then construct the
complex correlation matrix C̃ from the complex time series {ξμ(t)}:

C̃ =
1
T
ΞΞ†, (3)

where Ξ denotes N × T data matrix whose component is ξμ(t) and Ξ† is Hermite conjugate of Ξ.
The complex principal component analysis (CPCA) computationally amounts to the eigenvalue problem for C̃.

Since C̃ is a Hermitian matrix, its eigenvalues are real and furthermore positive definite because of the dyadic form
(??). On the other hand, the components of the eigenvectors are complex. The absolute values and the phases of the
eigenvector components provide us with information on strength of correlations and lead-lag relationships embedded
in multivariate time series. The correlation matrix C̃ is expressible in terms of its eigenvalues and eigenvectors as

C̃ =
N∑
�=1

λ�α�α
†
�
, (4)

where λ� and α� are the �-th eigenvalue and its associated eigenvector, respectively, and we align the eigenvalues in
descending order, that is, λ1 > λ2 > · · · > λN .

We perform a basis conversion of the time series data with the eigenvectors α� which form an orthonormal complete
basis set:

ξ(t) =
N∑
μ=1

ξμ(t)eμ =
N∑
�=1

a�(t)α� , (5)

where
a�(t) = α

†
�
· ξ(t) . (6)

1 In the actual calculations, we used a discretized version of the Hilbert transformation. ?
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We refer to the coefficient a�(t) as mode signal of the �th eigenmode. The mode signals represent temporal behavior
of the eigenmodes. In addition, we define relative mode intensity I�(t) by

I�(t) =
|a�(t)|2∑N
�=1 |a�(t)|2

, (7)

which calculates the fractional contribution of each eigenmode to the overall strength of price fluctuations at each
instant of time; we note the following equality,

ξ(t)† · ξ(t) =
N∑
μ=1

|ξμ(t)|2 =
N∑
�=1

|a�(t)|2 . (8)

3. Random Matrix Theory and Rotational Random Shuffling

It is a crucial issue for the CPCA as well as the PCA how to identify eigenmodes which are statistically significant,
i.e., mode signals representing systemic co-movements in the system under study, not noises. The random matrix
theory (RMT) serves as a sound null hypothesis for such a statical significance test. Arai and Iyetomi extended the
RMT for the CPCA. According to them, the eigenvalue spectrum ρ(λ) of the complex correlation matrix obtained
from random data corresponding to the actual data is given as

ρ(λ) =
Q
2π

√
(λ+ − λ)(λ − λ−)

λ
, (9)

with

λ± =

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 ±
√

1
Q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2

, (10)

where Q = T/(2N) > 1 and the limit of N, T → ∞ with Q kept finite is assumed. We thus see that the eigenvalues
predicted by RMT are confined in [λ−, λ+]. If we find eigenvalues for the actual correlation matrix which are larger
than λ+, we can identify those eigenvalues and associated eigenvectors as representing statistically meaningful corre-
lations. Although the formula (??) is mathematically exact for a random correlation matrix of infinite size, in practice,
it is applicable? to the finite matrices with N � 50.

As remarked in the Introduction, autocorrelations involved in multivariate data reduce the usefulness of the RMT
in removing statistical noises from them. The rotational random shuffling (RRS) method provides? ? us with a null
hypothesis alternative to the RMT in such a case. We impose the periodic boundary condition on each time series to
make a “ring” in the time direction and randomly shuffle the data in a rotational way. The randomization destroys
only cross-correlations preserving autocorrelations. This gives us a robuster null hypothesis than the RMT. However,
we have to numerically compute the eigenvalue spectrum of the complex correlation matrix for the randomized data
in the RRS.

4. Data set

We study the Japanese monthly data of the following four categories of individual prices which were collected for
the period, January 1980 through December 2014:
• Consumer Price Index (CPI)? with 45 items,
• Corporate Goods Price Index (CGPI)? with 23 items,
• Import Price Index (IPI)? with 10 items,
• US Dollar to Japanese Yen Exchange Rate (USD/JPY)? .

The totally 79 items as shown in Tables ?? and ?? were combined into a set of multivariate time series data with
length of 420 months. Assuming the prices basically obey geometric brownian motion, we took the first difference of
logarithm of the time series. The preprocessed data passed the unit root test for stationarity. However, some items such
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Table 1. List of items and their abbreviations for CPI in the middle-level classification.
ID Abbreviation Item
1 CPI-CER Cereals
2 CPI-FSF Fish & seafood
3 CPI-MET Meats
4 CPI-DPE Dairy products & eggs
5 CPI-VSW Vegetables & seaweeds
6 CPI-FRU Fruits
7 CPI-OFS Oils, fats & seasonings
8 CPI-CAC Cakes & candies
9 CPI-CFD Cooked food
10 CPI-BEV Beverages
11 CPI-ALB Alcoholic beverages
12 CPI-MOH Meals outside the home
13 CPI-REN Rent
14 CPI-REM Repairs & maintenance
15 CPI-ELE Electricity
16 CPI-GAS Gas
17 CPI-OFL Other fuel & light
18 CPI-HDG Household durable goods
19 CPI-IFN Interior furnishings
20 CPI-BED Bedding
21 CPI-DUT Domestic utensils
22 CPI-NDG Domestic non-durable goods
23 CPI-DSR Domestic services
24 CPI-CLO Clothes
25 CPI-SSU Shirts, sweaters & underwear
26 CPI-FTW Footwear
27 CPI-OCL Other clothing
28 CPI-SCL Services related to clothing
29 CPI-MHF Medicines & health fortification
30 CPI-SAP Medical supplies & appliances
31 CPI-MSR Medical services
32 CPI-PUT Public transportation
33 CPI-PRT Private transportation
34 CPI-COM Communication
35 CPI-SCF School fees
36 CPI-TBS School textbooks & reference books for study
37 CPI-RDG Recreational durable goods
38 CPI-REG Recreational goods
39 CPI-BRM Books & other reading materials
40 CPI-RSR Recreational services
41 CPI-PCS Personal care services
42 CPI-TAR Toilet articles
43 CPI-PEE Personal effects
44 CPI-TBC Tobacco
45 CPI-OMS Other miscellaneous

as Vegetables & seaweeds and Cloths have significant seasonal components in their prices’ fluctuations. To address
this issue, we also prepared seasonally adjusted data by taking year-to-year change of the original time series. The
procedure is the most primitive way to remove seasonal components from time series data. As its side effect, however,
12-month moving average is inevitably brought into the analysis.

A more detailed analysis was carried out in the previous paper? , using price data of 830 items at small-level
classification in Japan. We distinguish this work from the previous one by carefully treating seasonal variations and
investigating relationship between price dynamics and external shocks.

5. Results and Discussion

We computed eigenvalues of the complex correlation matrix C̃ constructed from the price data with and without
seasonal adjustment. In Fig. ?? we show the results in a form of the probability distribution. The left panel of Fig. ??
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Table 2. List of items and their abbreviations for GCPI and IPI in the middle-level classification together with US Dollar to Japanese Yen Exchange
Rate.
ID Abbreviation Item

CGPI
46 CGPI-FBT Food, beverages, tobacco & feedstuffs
47 CGPI-TET Textile products
48 CGPI-LWD Lumber & wood products
49 CGPI-PAP Pulp, paper & related products
50 CGPI-CHE Chemicals & related products
51 CGPI-PEC Petroleum & coal products
52 CGPI-PLA Plastic products
53 CGPI-CSC Ceramic, stone & clay products
54 CGPI-IRS Iron & steel
55 CGPI-NFM Nonferrous metals
56 CGPI-MET Metal products
57 CGPI-GPM General purpose machinery
58 CGPI-PDM Production machinery
59 CGPI-BOM Business oriented machinery
60 CGPI-ECD Electronic components & devices
61 CGPI-EME Electrical machinery & equipment
62 CGPI-ICE Information & communications equipment
63 CGPI-TPE Transportation equipment
64 CGPI-MIP Other manufacturing industry products
65 CGPI-AFF Agriculture, forestry & fishery products
66 CGPI-MIN Minerals
67 CGPI-EGW Electric power, gas & water
68 CGPI-SCW Scrap & waste

IPI
69 IPI-FFS Foodstuffs & feedstuffs
70 IPI-TET Textiles
71 IPI-MET Metals & related products
72 IPI-LWD Wood, lumber & related products
73 IPI-PEC Petroleum, coal & natural gas
74 IPI-CHE Chemicals & related products
75 IPI-GBM General purpose, production & business oriented machinery
76 IPI-ELE Electric & electronic products
77 IPI-TPE Transportation equipment
78 IPI-OPG Other primary products & manufactured goods
79 USD/JPY US Dollar to Japanese Yen Exchange Rate

shows the top 6 largest eigenvalues exceeds the upper limit λ+ of the eigenvalue distribution of the RMT for the original
data. The right panel of the figure confirms the top 4 largest eigenvalues are beyond λ+ for the seasonally adjusted
data. The eigenvectors associated with those eigenvalues are regarded as manifestation of statistically meaningful
correlations among individual prices.

Also we carried out the CPCA on the same data but with the RRS preprocessing (sampled 1000 times). Figure
?? compares the eigenvalue distributions with the corresponding results as given in Fig. ??. The spillover of the
eigenvalues across λ+ indicates the data have appreciable autocorrelations. Clearly, the isolated peak around λ = 4.5
in the left panel of Fig. ?? arises from seasonal components involved in some of the price fluctuations, which well
mimic cross-correlations; we observe no such a peak in the right panel of Fig. ??. Parallel (rank-by-rank) comparison
of the actual eigenvalues with those obtained with the RRS identifies the same number of significant eigenmodes as
counted in each panel of Fig. ??.

In Table ?? we spell out similarity between the two sets of eigenvectors. The one is a set of the significant
eigenvectors α� (� = 1, · · · , 6) obtained for the original data and the other, that of the significant eigenvectors α̃m

(m = 1, · · · , 4) for the seasonally adjusted data. The similarity is measured by calculating the inner product of α�
and α̃m for all pairs. The first 2 eigenvectors in the two sets are in excellent agreement with each other. The 4th
eigenvector α4 moderately agrees with α̃3. Similarity between α5 and α̃4 is rather marginal; α5 is also partly similar
to α̃3. On the other hand, the remainder in the set {αm}, α3 and α6, have no notable counterparts in the set {α̃m}. To
understand the reason, we calculated power spectrum of the mode signals associated with α� (� = 1, · · · , 6) as shown
in Fig. ??. We observe the third and the sixth mode signals have large peaks corresponding to seasonal variations. We
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Table 3. Similarity between the statistically significant eigenvectors α� (� = 1, · · · , 6) obtained for the original data and those α̃m (m = 1, · · · , 4)
for the seasonally adjusted data. The coefficient |α∗

�
· α̃m |2 is listed for each pair as a similarity measure. The third and the sixth eigenmodes in the

original data have no counterparts in the seasonally adjusted data.

�\m 1 2 3 4
1 0.926 0.008 0.004 0.002
2 0.006 0.934 0.002 0.004
3 0.000 0.018 0.054 0.019
4 0.020 0.002 0.483 0.170
5 0.001 0.001 0.251 0.286
6 0.010 0.002 0.030 0.101

thus see that α3 and α6 mainly describe seasonal components of fluctuations in the original price data, not involved in
the seasonally adjusted data.

Let us delve into the significant eigenmodes in the original data which are free from seasonal variations, that is,
the first, the second, the fourth, and the fifth eigenmodes. The eigenvector components of those modes are plotted on
complex plane in Fig. ??.
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Fig. 3. Power spectral density of the mode signal a�(t) of the statistically significant eigenmodes (� = 1, · · · , 6) obtained for the original data.
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Fig. 5. Temporal accumulation of the relative mode intensity for the significant eigenmodes which are free from seasonal components. The vertical
dotted lines signify prominent economical events for Japan: (a) Consumption tax law enforcement in April 1989 (3%); (b) and (c) Consumption
tax rate increase in April 1997 (to 5%) and in April 2014 (to 8%); (d) Plaza Accord in September 1985; (e) Record high of the yen in September
1995; (f) Surge of the yen in October 1998 due to the Asian currency crisis; (g) Bankruptcy of Lehman Brothers in September 2008; (h) and (i)
Great revision of public utility charges in April 1980 and in April 1986.

The panel in Fig. ?? for the eigenvector components of the first eigenmode clearly demonstrates a collective motion
of individual prices with a narrow band of variation of their phases; many of the same category items move coherently.
This indicates dynamics of individual prices are mutually connected, not just random fluctuations. Furthermore, Table
?? shows the phase θ and the absolute value of each component of the first eigenvector on the complex plane. Broadly
speaking, the items of IPI occupy a leading position and rise/fall of their prices gradually propagates to items of CGPI
and finally to those of CPI. The direction of the propagation of price changes from raw materials to final consumer
goods is very natural from an industrial point of view. We also define cumulative intensity S �(t) by

S �(t) =

∑t
t′=1 I�(t′)∑T
t′=1 I�(t′)

. (11)

The results are shown in Fig. ??. We find the first mode is strongly exerted by the consumption tax law enforcement
(3%) and subsequent consumption tax rate increases to 5% and then to 8%.

The second eigenmode is also manifestation of a collective motion of individual prices. Especially, the yen-dollar
exchange rate, IPI’s, and some of CGPI such as CGPI-PEC, CGPI-SCW and CGPI-NFM lead the other prices. We
remark this mode highly contrasts with the first mode. Because many prices of CPI and CGPI are dynamically coupled
to the leading prices almost in quadrature and with negative correlations, that is, rise of the leading prices giving rise
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Table 4. Phases Δθ of individual prices in the first eigenvector measured relative to the phase of IPI-MET, a price leader to all others. To squeeze
the list, we do not list items with the absolute value (Abs) of their eigenvector components less than 0.5 for Δθ < 0.5 and those with Abs less than
0.8 for Δθ > 0.5. On the whole, the IPI items first go ahead and then the CGPI’s follow and the CPI’s bring up the rear.
Δθ [rad/π] Abs ID Items
0.000 0.864 71 IPI-MET
0.036 0.556 68 CGPI-SCW
0.058 0.737 72 IPI-LWD
0.065 0.685 79 USD/JPYF
0.078 0.813 55 CGPI-NFM
0.079 0.795 78 IPI-OPG
0.084 0.759 74 IPI-CHE
0.086 0.845 69 IPI-FFS
0.118 0.718 75 IPI-GBM
0.130 0.687 73 IPI-PEC
0.131 0.688 70 IPI-TET
0.137 0.569 77 IPI-TPE
0.173 0.601 76 IPI-ELE
0.265 0.765 48 CGPI-LWD
0.315 0.697 51 CGPI-PEC
0.326 0.672 17 CPI-OFL
0.329 0.577 33 CPI-PRT
0.379 1.001 50 CGPI-CHE
0.403 1.229 43 CPI-PEE
0.437 1.189 47 CGPI-TET
0.447 1.053 54 CGPI-IRS
0.507 1.324 49 CGPI-PAP
0.514 1.580 56 CGPI-MET
0.517 1.319 3 CPI-MET
0.524 0.938 59 CGPI-BOM
0.525 1.488 53 CGPI-CSC
0.539 1.403 52 CGPI-PLA
0.544 1.208 58 CGPI-PDM
0.551 1.040 16 CPI-GAS
0.552 0.980 66 CGPI-MIN
0.563 1.653 22 CPI-NDG
0.566 1.537 46 CGPI-FBT
0.569 1.339 57 CGPI-GPM
0.574 1.213 7 CPI-OFS
0.592 1.763 21 CPI-DUT
0.592 1.829 28 CPI-SCL
0.594 1.667 64 CGPI-MIP
0.596 1.575 12 CPI-MOH
0.599 0.975 26 CPI-FTW
0.608 1.414 61 CGPI-EME
0.608 1.547 9 CPI-CFD
0.610 1.219 30 CPI-SAP
0.613 1.128 42 CPI-TAR
0.615 1.473 8 CPI-CAC
0.619 1.143 23 CPI-DSR
0.620 1.542 14 CPI-REM
0.631 0.922 11 CPI-ALB
0.634 1.263 10 CPI-BEV
0.643 1.075 20 CPI-BED
0.650 1.612 41 CPI-PCS
0.655 1.053 63 CGPI-TPE
0.655 1.172 19 CPI-IFN
0.658 1.021 29 CPI-MHF
0.812 0.863 13 CPI-REN

to drop of the CGPI and CPI followers and vice versa. The accumulated relative intensity of the mode signal given
in Fig. ?? shows that the second mode is reacts sensitively to the epoch-making economic events including Plaza
Accord (September, 1985), record high of the yen (September, 1995), surge of the yen due to the Asian currency
crisis (October 1998), and bankruptcy of Lehman Brothers (September, 2008). On the other hand, the second mode
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is completely silent on the consumption tax shocks. Also this fact evidently discriminates the second mode from the
first mode.

In the fourth eigenmode as shown by Fig. ??, we observe that CPI-OFL, CGPI-PEC, CPI-PRT, CGPI-CHE and
IPI-PEC move together with almost the same phases. And the relative intensity of the corresponding mode signal in
Fig. ?? shows the fourth mode is strongly affected by IPI-PEC. We thus see that the mode represents primary effects
on the price system of changes in import prices of natural resources.

The panel for the fifth eigenmode in Fig. ?? shows the mode is dominated by the CPI-ELE, CPI-GAS and CGPI-
EGW. Figure ?? shows the relative intensity of the corresponding mode signal is highly enhanced in 1980 and 1986.
In fact, electricity and gas had great price revisions at those times.

6. Summary

We attempted to extract dynamical correlation structures hidden in the Japanese price system by applying the CPCA
to the individual price data. The RRS method enabled us to identify four statistically significant eigenmodes which
are free from seasonal variations. The first two dominant modes represent collective motions of individual prices with
different correlation properties. The remaining modes illuminate dynamics of specific prices. Also we adopted the
idea of response theory to characterize those modes. In fact, each of them shows different reaction characteristics to
prominent economic shocks. We can not rule out the possibility that the mode signals just accidentally coincide with
the shocks. A randomization test is in progress to ascertain that the coincidences are statistically significant.
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