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Accurate segmentation of the subcortical structures is frequently required in neuroimaging studies.Most existing
methods use only a T1-weighted MRI volume to segment all supported structures and usually rely on a database
of training data. We propose a newmethod that can use multiple image modalities simultaneously and a single
reference segmentation for initialisation, without the need for a manually labelled training set. The method
models intensity profiles in multiple images around the boundaries of the structure after nonlinear registration.
It is trainedusing a set of unlabelled training data,whichmay be the same images that are to be segmented, and it
can automatically infer the location of the physical boundary using user-specified priors.We show that themeth-
od produces high-quality segmentations of the striatum, which is clearly visible on T1-weighted scans, and the
globus pallidus, which has poor contrast on such scans. The method compares favourably to existing methods,
showing greater overlap with manual segmentations and better consistency.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

The subcortical structures of the brain are a set of nuclei with unique
anatomical shapes and, due to their histological composition, specific
MR contrast properties. Automatic segmentation of these structures is
often desired, as manually segmenting them is a process that is both
laborious and prone to labelling inconsistencies and errors. Unlike
cortical segmentation, which is a nearly universal process for all of the
cortex, subcortical segmentation requires methods that are tailored to
these structures specifically, due to both their unique anatomies and
contrasts. Thesemethods produce an estimate of the extent of the struc-
tures, either as voxel labels or in the form of amesh describing the outer
surface of the shape.
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Numerous methods have been proposed to automatically segment
the subcortical structures and a number of these are used routinely
in imaging studies. The input data typically consist of a single T1-
weighted magnetic resonance imaging (MRI) volume. Such an image
is often a standard part of the acquisition protocol in neuroimaging
studies and serves as the anatomical reference in the analysis. The
T1-weighted contrast is most suitable for structures such as the
putamen and the caudate nucleus, which are clearly visible on such
scans. Other structures, like the globus pallidus and the red nucleus
are barely visible or invisible. In such cases, a segmentation method
that only uses a T1-weighted volume needs to rely more on anatomical
priors.

Iosifescu et al. (1997), Khan et al. (2005) and Lin et al. (2010)
describe methods that segment the subcortical structures by non-
linearly registering an atlas of the subcortical anatomy to the new
scan. This idea is extended by Gouttard et al. (2007) through the use
of a probabilistic atlas. Yan et al. (2013) describe an adaptive atlas and
Van Leemput (2009) applies Bayesian inference to optimise atlas and
registration parameters during atlas generation. Multiple manual
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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segmentations can be individually registered to a new scan and com-
bined into a final segmentation by building a probabilistic atlas
(Svarer et al., 2005) or using a decision fusion scheme such as using
the modal label (Heckemann et al., 2006), support vector machine-
based selection (Hao et al., 2014), graph-based selection (Wang et al.,
2014), joint label fusion (Wang et al., 2013; Yushkevich et al., 2015) or
fusion of the likelihoods under the different atlases (Tang et al., 2013).
J. Morra et al. (2008a) and J.H. Morra et al. (2008b) use a classifier
trained on non-local image features using an extension to AdaBoost
(Freund and Schapire, 1997). A method using a single template and ex-
plicit modelling of an hierarchy of structures is described by Wu and
Chung (2009).

Fischl et al. (2002, 2004) and Han and Fischl (2007) take a different
approach in themethod that is used in the FreeSurfer software package
(http://surfer.nmr.mgh.harvard.edu/). A probabilistic atlas, which is
derived from a number of manual segmentations, is still used, but in
this case it is used as a prior on a Markov random field (MRF). The
spatial constraints imposed by the atlas allow the MRF to segment the
image into the large number of classes needed to segment the subcorti-
cal structures. This idea is combined with a multi-atlas approach by van
der Lijn et al. (2008) andWolz andAljabar (2009). Amesh-based spatial
prior can also be used (Puonti et al., 2013). Khan et al. (2008) propose to
use the segmentation output from the method by Fischl et al. (2002) to
drive registration of a secondary manually labelled template.

The information fusion approach described by Barra and Boire
(2001) segments structures based on a model of expert knowledge.
General descriptions of experts of segmentation criteria are converted
to image-based pieces of information, from which a fusion process
finds the final segmentation. Fuzzy neural networks have also been
proposed for segmentation (Jian et al., 2002). An approach based on
discriminative dictionary learning was proposed by Benkarim et al.
(2014).

Finally, a number ofmethods segment structures by fitting amesh to
the imaging data. Themethod described by Belitz and Rohr (2006) uses
an active surface model (ASM), which is based on image-based edge
detection. Asl and Soltanian-Zadeh (2008) also use a shape model, but
optimise with respect to the image entropy within structures instead.
Liu et al. (2007) propose a method that incorporates a probabilistic
atlas and Uzunbas et al. (2010) and Cerrolaza et al. (2012) take advan-
tage of the spatial relationships between structures. FIRST (Patenaude
et al., 2011) uses a Bayesian appearancemodel that links the intensities
around a deformable shape to the spatial configuration of the shape. The
intensities and possible shape variations are derived from a set of
manually labelled training segmentations.

All of the methods described above segment subcortical structures
on the basis of only a T1-weighted scan. In the case of a poorly
visible structure like the globus pallidus, a different contrast, like a
T2-weighted scan, can be more useful. Magnotta et al. (1999) propose
a method that uses multiple contrasts to segment the brain tissue into
grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF).
An artificial neural network is then trained using the tissue-type maps
and a set of manual labels to label the subcortical structures. Multi-
modal extensions have also been proposed to atlas-based methods
(Xiao et al., 2012) and random-field-based segmentation (Marrakchi-
Kacem et al., 2010, related to Poupon et al., 1998). Kim et al. (2014)
propose a method that combines explicit edge detection on multiple
modalities with a statistical shape model that is trained using multiple
manual segmentations.

Many of themethods described above need to be trained usingman-
ually labelled data. The required amount of training data can be either a
single segmentation for deterministic atlas-based methods or a larger
set of labelled scans for the classifier and probabilistic atlas-based
methods. The degree to which methods are constrained to the proper-
ties of these training segmentations varies. Fully atlas-based methods
will not capture details at a higher resolution than that of the deforma-
tion field, while the random-field-based approach in FreeSurfer should
allow it to detect smaller variations more flexibly. FIRST parameterises
shapes using a limited number of modes of variation that are derived
from the training segmentations.

If segmentation is constrained by the variations thatwere seen in the
training data, this may have undesirable consequences when applying
the method to populations that are different from the training set. An
examplewould be patient groups, where anatomymight be significant-
ly different from the normal population. Segmentation results in such a
group would be biased towards the appearance of the structure in the
trainingdata. The sameholds for the less typical caseswithin the normal
population; these might not be within the variability observed in the
training group. In the case of pathology, there might also be unique
variations in single subjects.

Because of these potential differences compared to the training
group, it is a desirable property of a segmentation method to require
only a limited number of manual segmentations, as this makes
retraining the method for a new population more tractable. The
segmentation method could then be re-trained to the images that are
to be segmented, without requiring a full set of manually labelled train-
ing segmentations. This would remove much of the bias towards the
original training group, but would not solve the more idiosyncratic
cases. To address this problem, a more flexible approach with weaker
constraints is required. A further potential disadvantage of usingmanu-
ally labelled training segmentations is that it introduces some subjectiv-
ity in the segmentation process. We would like a new method to be
more data-driven and less reliant on manual segmentations. When a
method can be more easily retrained, it can also be adapted if the
image contrast in a study is fundamentally different from that in the
training data. This might be the case if acquisition is optimised for the
segmentation of a particular structure, for example the globus pallidus
which is hard to segment on a T1-weighted image but much clearer on
a T2-weighted one.

In this paper, we describe a multimodal segmentation method that
can simultaneously use information in multiple volumes with different
contrasts. This has two potential advantages. First, if not all boundaries
of a structure are visible in each contrast, it allows the method to
combine the complementary information. Secondly, in cases of low
contrast, the availability of multiple images can help segmentation as
it effectively increases the contrast-to-noise ratio. The method detects
edges in images based on their intensity profiles, allowing it to capture
shape variations that did not occur in the training set. We use a genera-
tive model for the intensity profiles perpendicular to a deformable
mesh, somewhat like Patenaude et al. (2011), but unlike that method
it can learn in an unsupervised fashion from unlabelled training data.
The user input is limited to the reference mesh, which may be derived
from a single manual segmentation or from an existing atlas, and a set
of priors describing the general form of contrast changes at the bound-
aries of the structure. We describe an automatic procedure for setting
these parameters for the striatum and globus pallidus, to enable
retraining on different datasets and populations. To use the method
with new contrasts and structures, the user can specify the priors by
hand using the same principles described in the paper. We will refer
to the method as ‘multimodal image segmentation tool (MIST)’.

Methods

We aim to integrate the information in multiple imaging modalities
to produce accurate segmentations of subcortical structures. As a
starting point, we take a reference mesh that roughly corresponds to
the structure that we are interested in and map this to a subject's data
using nonlinear registration. The reference mesh may, for example, be
derived from an atlas. The method should then deform the mesh to
optimally alignwith the physical boundaries of the structure of interest.
The intensity profiles along the normal vectors at the vertices of the
reference mesh are used to estimate the adjustments that are needed
to make the reference mesh align with the anatomy.

http://surfer.nmr.mgh.harvard.edu/
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An important question is how the method will be able to relate
observed image intensities to the actual structural boundaries. If we
had used manually labelled training segmentations, this would be triv-
ial, as the physical boundary would be defined as the point where the
person that labelled the image drew the boundary. However, as we do
not have such manual segmentations, we need to devise an alternative
method. The approach that we take is based on the simultaneous
alignment of the profiles observed in an unlabelled training group,
which is combined with a prior that specifies, in general terms, what
intensity changes we expect near the boundary. Such a prior resolves
the ambiguity in the connection between an edge in the observed
intensity profiles and the physical boundary.

The framework that we will use is a probabilistic one, where a gen-
erative model describes how between-subject anatomical variability
gives rise to the observed intensities. We will use a Bayesian approach
where we find estimates of the model parameters in a training phase.
The trained model is then used to obtain an approximate maximum a
posteriori (MAP) estimate of the deformations needed to segment a
structure in a new set of images.

In the next sections, an overview of the generative model will be
given first, followed by a discussion of how we obtain estimates of its
parameters and how the priors need to be set. More practical issues,
such as prerequisite image registration, are discussed in the final part
of this section. We will assume for now that the reference mesh is
roughly aligned with the images that are to be segmented.

Generative model

The model that we use can be seen as consisting of two parts: A part
that we will call the shape model, which describes how the displace-
ments at different vertices vary and covary, and a second part, the inten-
sity model, which is independent for each vertex and which describes
how the intensities arise given a displacement.

Shape model
We assume that the displacements along the vertex normals are

sampled from a multivariate normal (MVN) distribution with mean μs

and precision Λs:

p δjμs;Λs� � ¼ NN δjμs;Λs� �
: ð1Þ

In this equation, δ is the N-dimensional vector consisting of the
displacements of all N vertices along the normals.

Priors for the shape model
The role of the shape model is to learn the differences between the

mean location of the structural boundary in the training data and the
reference mesh. It also constrains the segmentation by controlling the
covariance between vertices. We use a Normal–Wishart distribution
as the prior for the mean and precision of the shape model:

Nwk μs;Λs� � ¼ Nk μsjμs
0;n0Λs� �

Wik Λs��αs;βs
� �

: ð2Þ

The prior mean μ0s is set to zero and the elements of the covariance
(inverse precision) prior are specified as a Gaussian function of the
surface distances between the vertices:

βs
i j ¼ h2e−

d2
i j

2w2 ; ð3Þ

where dij is the number of edges between vertices i and j,w is thewidth
parameter and h2 is the expected on-diagonal value of the covariance
matrix; wewill refer to h as the height parameter. Thewidth parameter
controls how strong we expect the correlation between neighbouring
vertices to be. The parameters n0s and αs control the width of the prior
distributions. More details about all of these parameters are given in
Appendix A.

Intensity model
In order to be able to later fit the mesh to imaging data, we need to

define the relationship between the two. In this section we shall only
be concerned with a single vertex on the mesh, as the form of the
model is identical and independent for all vertices. We start with a
simple model where the intensities sampled at equidistant points
along the normals of the anatomical structure are represented by an
MVN distribution:

p yjμ;Λð Þ ¼ Nk yjμ;Λð Þ; ð4Þ

where y is the k-dimensional vector of the intensities that make up the
profile and μ and Λ are the mean and precision. The profile y is centred
around the physical boundary of the structure.

To be able to estimate displacements, the profile that is considered in
the image is shorter than the reference profile μ. The observed profile y′
has length k′ and is centred around the reference shape.Weassume that
this is sampled from the distribution described by Eq. (4). As the
observed profile is shorter than μ, however, we need to marginalise
over the unobserved points. For an MVN distribution, this is as simple
as dropping the corresponding dimensions. The number of dimensions
that need to bedropped on either endof theprofile is determined by the
integer displacement δ at this vertex:

p y
0
δ ¼ ⌊δ−δmin þ

1
2⌋; μ;Λ

����
� �

¼
Z

…
Z

p y μ;Λjð Þdy0…dyδ−1dyδþk
0
…dyk ð5Þ

¼ Nk0 y0jμδ;Λδ
� �

; ð6Þ

with the integer displacement δ defined with respect to the maxi-
mum negative displacement. The maximum integer displacement
is Δ = k − k′. In practice, we will use the same value for Δ and k′,
which means that, for example, an observed profile of 20 points
would have maximum displacements of 10 points inwards and 10
points outwards. The length of the reference profile would be k =
40 in this case. We will use the superscript δ to denote taking the
subvector or submatrix corresponding to an integer displacement δ
. It is useful to note at this point that in the training stage, due to
the lack of manually labelled training data, the displacement δ will
be unknown. As we will see later, this ambiguity can be resolved by
using informative priors.

The anatomy that is observed along thenormal at a given vertexmay
not be the same for all subjects. Examples of this might be vessels,
whose exact location varies with respect to the vertices, or the exact
pointswhere neighbouring structures start to be connected to the struc-
ture of interest. In order tomodel such variability, we extend the simple
model in Eq. (5) by replacing the single MVN by a mixture model with
Nr components:

p y δ; μ0;Λ0;…; μNr
;ΛNr ; θ

��� � ¼ ∑ Nr
r¼1p y

0
δ; μr ;Λr
��� �

p r θjð Þ ð7Þ

¼
XNr

r¼1

Nk0 y0r μ
δ
r ;Λδ

r

���� �
Cat r θjð Þ; ð8Þ

where Cat(r|θ) is the categorical distribution andwhere μr andΛr are the
mean and precision matrix for component r.

The final extension that we need to make to the profile model is
the extension to multiple modalities. This is relatively straightfor-
ward:

p y0;…; yNm
δj ;M; L; θ

� � ¼ ∏ Nm
m¼1 ∑

Nr
r¼1Nk

0 ym μδ
mr ;Λδ

mr

���� �
Cat r θmjð Þ; ð9Þ
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where Nm is the number of modalities and where we have used the
shorthandsM, L and θ to denote all mean vectors μmr, all mean preci-
sion matrices Λmr and all mixing parameter vectors θm, respectively.

Parameterisation of the covariance matrix
The precision matrices in the intensity model are parameterised

through the inverse of the covariance matrix:

Λmrð Þ−1 ¼ Σmr ¼ GDmrG; ð10Þ

where Dmr is the diagonal matrix that parameterises the covariance
matrix and G is a symmetric matrix that determines the smoothness.
When fitting the model, G is a constant parameter, while Dmr needs to
be determined from the data. Both Σ and the precision matrix Λ =
(Σ)−1 need to be computed frequently and this can be done quickly as
G−1 is constant and needs to be computed only once and Dmr, being
diagonal, is trivial to invert. The elements of the matrix G are:

Gi j ¼ e−
i− jð Þ2
2σ I ; ð11Þ

where σI is the smoothness parameter of the intensity model.

Priors for the intensity model
The priors that we will set on μmr and Λmr are crucial for the method

to be able to detect edges rather than to rely on manual segmentations
to build the reference profiles. Without prior information, the relation-
ship between the physical boundary and the mean profile intensity is
undefined. By setting a prior that specifies what we expect an edge to
look like, this ambiguity is resolved. We use a Normal–Wishart prior
for p(μmr, Λmr):

Nwk μmr;Λmrð Þ ¼ Nk μmr

��μ0
mr;n0Λmr

� �
Wik Λmrjα0;β0

mr

� �
ð12Þ

where Wik denotes a Wishart distribution. The hyperparameters that
we need to set are the parameters μmr

0 , n0, α0 and βmr
0 . The parameters

μmr
0 and n0 control the mean and variance of the distribution on μmr

and the parameters βmr
0 and α0 control the mean and variance of Λmr.

In general, when setting up the method to segment a structure, we
will have some general idea about what the intensity profiles perpen-
dicular to the structural boundaries look like. We would like to specify
these ideas once for the structure (i.e. we want to use the same priors
for all vertices) and therefore the specification needs to be relatively
general. The model can then learn more specific features of the profile
and the probabilities of themixture components appearing at a specific
vertex. We will parameterise the prior profiles by selecting one of the
functions in Table 1.

We have parameterised the covariance matrices through Eq. (10)
and we will use a similar structure for the covariance hyperparameter
βmr
0 of the Normal–Wishart distribution. The Wishart distribution in-

cludes covariance matrices that cannot be generated through Eq. (10)
and the parameterisation of (Λmr)−1 effectively acts as an additional
constraint to enforce the desired off-diagonal structure.While in princi-
ple different values can be specified for different points along the profile,
Table 1
Functions used to specify mean and covariance priors; x is the distance along the profile, x
=0 at the physical boundary of the structure and a, b and v,w are the parameters as spec-
ified by the user. The exponential prior has a step in intensity at x=0 and decays back to
the original intensity for positive x.

Description Function

Flat fflat(a) = a
Step fstep(a, b) =

n a if xb0;
b if x≥0

Exponential fexp(v, a, b) =
n a if xb0;
aþ ðb−aÞe−x

v if x≥0
there is little advantage to doing so and we use a scalar value βmr for all
of the coefficients:

β0
mr ¼ βmrGG: ð13Þ

For themixing parameters θm, we use a Dirichlet prior Dir(θm|α). All
components of the hyperparameter α are set to the same value. This
value determines a preference towards either equal mixing or selection
of a single component.

Full model
Combining Eqs. (1) and (9) yields the joint distribution for the full

generative model:

p Y1;…;YN ; δjM1; L1; θ1;…;MN ; LN ; θN ; μs;Λs� �
¼ Nm δ μs;Λs��� �

∏
N

i¼1
∏
Nm

m¼1

XNr

r¼1

Nk0 yim μδi
imr ;Λδi

imr

���� �
Cat r θimjð Þ; ð14Þ

where N is the number of vertices and where Yi denotes all vectors yim.
The subscripts δi refer to the integer displacements corresponding to the
components of δ. Eq. (14)will only be evaluated for these integer values.

Eq. (14) shows that the individual profile mixture models at differ-
ent vertices are thus linked through the shape distribution Nm(δ|μs, Λs).
The model parameters will be learned in the training stage, which will
be described below. The training stage makes use of the priors intro-
duced above to find posterior estimates of the parameters. Due to the
complexity of the model, in practice we will train the profile and
shape parts of the model sequentially. For the shape model, we will
use the analytical conjugate process and this part of the model is fully
Bayesian. Maximum a posteriori (MAP) parameter estimates are used
in the intensity model.

Model estimation

The intensity models at different vertices are in principle linked
through the shape model. Estimating the full model is computationally
intensive, however, given the large number of vertices. For this reason,
we estimate the intensity models for all vertices independently and
use point estimates for their parameters when estimating the shape
model.

Estimating μmr, Λmr and θm from training data
The parameters μmr, Λmr and θm are unknown and we want to learn

these from a set of training data. From Eq. (9), it is easily seen that, for a
single vertex, the combined probability for the full set of intensity pro-
files zsm in the training data is

p z1;…; zS δ1;…; δS;M; L; θjð Þ
¼ ∏ Nt

s¼1 ∏
Nm
m¼1 ∑

Nr
r¼1Nk

0 zsm μδs
mr;Λδs

mr

���� �
Cat r θmjð Þ; ð15Þ

where δs is the displacement for subject s, Nt is the number of training
subjects and the vertex index i has been omitted. Applying Bayes' rule
yields

p M; L; θ; δ1;…; δS z1;…; zSjð Þ
∝p z1;…; zS M; L; θ; δ1;…; δSjð Þ ∏

Nm

m¼1
∏
Nr

r¼1
p μmr;Λmrð Þ

 !
∏
Nt

s¼1
p δsð Þ

 !
p θð Þ

¼ ∏
Nm

m¼1
Dir θm αjð Þ

 !
∏
Nm

m¼1
∏
Nr

r¼1
Nwk μmr;Λmr μ0

mr ;n0;α0;βmr

��� Þ
 !

� ∐
S

s¼1
N δs μd;λd

��� �
∏
Nm

m¼1

XNr

r¼1

Nk0 zsm μδs
mr;Λδs

mr

���� �
Cat r θmjð Þ:

ð16Þ

The priors N(δs|μδ, λδ) replace the shape model. This replacement is
necessary to be able to train the profile part of the model separately
for each vertex, but it is an approximation to the full model. The
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Fig. 1. Different intensities (white and dark grey) around the structure to be segmented
(light grey).
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parameter μδ is set to zero, i.e. the distribution is centred around the ref-
erence shape.

When fitting the full model to new data, we will use point estimates
for the parameters μmr, Λmr and θm. These are the MAP estimates in the
single-vertex isolated intensity model. To simplify the problem of find-
ing these, it is useful to first marginalise out δ1, …, δS:

p M; L; θ z1;…; zSjð Þ∝p θð Þð∏ Nm
m¼1 ∏

Nr
r¼1p μmr;Λmrð ÞÞ

�∏ S
s¼1 ∑

Δ
δs¼0p δsð Þ∏ Nm

m¼1 ∑
Nr
r¼1Nk

0 zsm μδs
mr;Λδs

mr

���� �
Cat r θmjð Þ;

ð17Þ

where the sum is over the integer values of δs. TheMAP estimates of the
parameters μmr, Λmr and θm are the values where this function is at its
global maximum. For Λmr the parameterisation that was described
above is used.

To perform the optimisation, the method of moving asymptotes
(MMA, Svanberg, 2002) is used, as implemented in the NLopt optimisa-
tion library (Johnson, http://ab-initio.mit.edu/nlopt). This algorithm
was chosen because it converged more quickly in practice than the al-
ternatives that were considered. Optimisation is performed using the
logarithm of the probability given by Eq. (17). The logarithm of the
probability and its derivatives, which are needed for MMA, are given
in the Supplementary material.

Training the shape model
As we train the intensity models in isolation, we can take the most

likely displacements for all subjects and use these to train the shape
part of themodel.We use the standard training process using conjugate
priors; the details are given in the Supplementary material.

Estimating the approximate full model
With the trained intensity models and the shape model we can ob-

tain an estimate of the vector of displacements δ for a new set of data
given the training data. It is not difficult to see that the conditional prob-
ability of the continuous displacements δ is proportional to Eq. (14):

p δ Y1;…;YN ; J; δz0;…; δzNt

��� �
¼

p Y1;…;YN ; δ J; δz0;…; δzNt

��� �
Z

p Y1;…;YN ; δ J; δz0;…; δzNt

��� �
dδ1…dδN

∝p Y1;…;YN ; δ Jjð Þp δjδz0;…; δzNt

� �
;

ð18Þ

where J={M1, L1, θ1,…,MN, LN, θN} denotes the parameters of the inten-
sity models at all vertices. As mentioned before, this depends on Mi, Li
and θi explicitly, as we use MAP point estimates from the training
stage when fitting to new data. The final segmentation is given by the
vector δ for which this distribution has its maximum. The details of
the optimisation procedure are given in the Supplementary material.

Parameters

The most important parameters to be set up before training the
model are the shapes and intensities of the prior mean profiles. As will
be seen below, the shapes, i.e. the selection of a function from Table 1
along with the specification of any shape parameters, depends mostly
on anatomy, whereas good choices for the intensities can be derived
from the training data themselves in an automated fashion.

While there are a significant number of parameters to be specified in
setting up the priors, the meaning of these parameters is relatively
transparent. The problem's geometry is illustrated by Fig. 1, where the
light grey shape represents the structure to be segmented. For purposes
of specifying the prior, it is assumed that image intensity Iin inside the
structure is close to homogeneous. In this example, the structure of in-
terest has two neighbouring structures with intensities I1 and I2. These
intensities are highly acquisition-dependent, but sufficiently good
estimates can be found by automatically determining the intensities
inside atlas-derived volumetric masks in the training dataset.

In addition to specifying the intensities, suitable functions need to be
selected from Table 1. These need to have some resemblance to the
profiles actually encountered in the training data, as their role is to de-
termine what point on the intensity profile corresponds to the physical
boundary. In cases where the outside intensity is homogeneous in a
region that extends beyond the profile length considered (e.g. I2), a
step function is a good choice, but in other cases, for example where
there is a thin sheet of white matter, an exponential prior may be
more appropriate as this forces the boundary to be adjacent to the
sheet; a step function would leave the location within the relevant
half ambiguous.

In practice, we use a Python script to automatically set up the
hyperparameters in a rule-based fashion. This script allows a user of
the method to automatically retrain it for any dataset that has similar
modalities to those used in this paper. The script uses themedian inten-
sities in a number of predefined regions in the user's images to automat-
ically set the intensity parameters of the priors. A full description of how
the priors and other parameters are set up is given in Appendix A. An
automated procedure to set the parameters in order to retrain the
method on a new dataset is also explained there.

In order to be able to directly compare uni-modal and multi-modal
segmentation accuracy with the same method, we also trained the
model on only the T1-weighted data with the same parameters that
were used for the T1-weighted modality in the multimodal case.

Registration and intensity normalisation

The approach we take in segmenting a structure is to first register
the brain to a standard space template volumetrically. The first aim of
this step is to remove the pose of the head and any global scaling,
which is achieved by the affine registration step. A nonlinear registra-
tion step is also run to remove as much between-subject anatomical
variability as possible. Note that this is merely to reduce the size of the
variations that need to be explained by the shapemodel of the segmen-
tation method; the final segmentation output will still be in the undis-
torted subject-native coordinates.

Registration is performed using the FLIRT and FNIRT tools in FSL
(Jenkinson et al., 2002; Andersson et al., 2010). The T1-weighted volume
is registered to the 2 mm isotropic resolution version of the MNI152
template. Where needed, the other modalities are then registered to
the T1 weighted volume using mutual information or, in the case of
the diffusion data, using boundary-based registration of the fractional
anisotropy (FA) image (Greve and Fischl, 2009). In the 7 T dataset,
which will be described below, all modalities were registered to the
FLASH volumes instead.

Before fitting the model, the intensity of all volumes for each
modality is scaled automatically to have the samemean intensity across
subjects in a bounding box around the structure to be segmented. For
structures like the caudate nucleus, the amount of cerebrospinal fluid
(CSF) inside such a box can vary substantially from subject to subject.

http://abnitio.mit.edu/nlopt
Image of Fig. 1
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In many contrasts, CSF exhibits either very high or very low intensities
and as this might interfere with normalisation, CSF voxels were not in-
cluded in the calculation of the mean for any of the structures. FAST
(Zhang et al., 2001) was used to create the CSF mask. Normalisation
was not used for the FA volumes (see below) and for the QSM volumes
(see below) an additive normalisation procedure was used instead in
order to deal with negative values correctly.

Mesh generation

The referencemeshes for our segmentationmethodwere generated
from the probabilistic Harvard–Oxford subcortical atlas (supplied with
FSL) using the marching cubes algorithm as implemented in VTK
(http://www.vtk.org/). The 2 mm isotropic resolution version of the
atlas was used, meaning that points on the meshes are approximately
2 mm apart. For the putamen and globus pallidus, the threshold was
set at 50%. For the caudate nucleus and nucleus accumbens simple
thresholding did not produce a suitable mesh, as the tail of the caudate
has relatively low atlas probabilities due to anatomical variation. To
compensate for this, voxels were upweighted based on their Euclidean
distance from the highest-probability region of the structure. A
regularisation and smoothing step implemented in FIRST (Patenaude
et al., 2011)was applied to allmeshes to producemore regular triangles
and smoother surfaces.

We chose to use a singlemesh representing the caudate nucleus and
nucleus accumbens joined together, because there is little to no visible
structure dividing the two in the images we are using. The merged
structure was created by taking the sum of the probabilistic maps for
the two structures before generating the mesh.

Datasets

The three datasets described below were used to evaluate the
method.

Human Connectome Project (HCP80) dataset
The first is the 80 unrelated subjects subset of the Human

Connectome Project (HCP80) dataset. All subjects are healthy adults.
The following scans were acquired on a Siemens Skyra 3 T system
with a 32-channel head coil (Van Essen et al., 2012,2013):

• The average of two 0.7 mm isotropic resolution T1-weightedMPRAGE
acquisitions with a 320 × 320 × 256 imaging matrix, repetition time
(TR) = 2400 ms, echo time (TE) = 2.14 ms, inversion time (TI) =
1000 ms, flip angle = 8° and acceleration factor 2. The acquisition
time for each scan was 7:40.

• The average of two 0.7 mm isotropic resolution T2-weighted 3D-
SPACE acquisitions with a 320 × 320 × 256 imaging matrix, TR =
3200 ms, TE = 565 ms, variable flip angle and acceleration factor 2.
The acquisition time for each scan was 8:24.

• An extensive diffusion-weighted imaging (DWI) acquisition with
1.25 mm isotropic resolution, multiband echo-planar imaging (EPI)
with a 168 × 168 imaging matrix, 111 slices, TR = 5520 ms, TE =
89.5 ms, 6/8 phase partial fourier and multiband factor 3 (Moeller
et al., 2010; Feinberg et al., 2010; Setsompop et al., 2012;
Sotiropoulos et al., 2013). All volumes were acquired twice with
left–right and right–left phase encoding polarities. The acquisition
time was approximately one hour. Only the 90 directions with diffu-
sion weighting b = 1000 s/mm2 and 18 volumes with b = 0 were
used for calculating the FA images.

All of these images were corrected for gradient nonlinearity induced
distortions by the HCP pipeline (Glasser et al., 2013). The pipeline addi-
tionally corrected the intensities of the T1- and T2-weighted images for
B1 inhomogeneities. Geometric distortions due to B0 inhomogeneity
and eddy currents were corrected by the pipeline using EDDY and
TOPUP, making use of the additional images with reversed phase
encoding (Andersson et al., 2003, 2012) Fractional anisotropy (FA)
images were calculated using FSL's DTIFIT.

The HCP80 dataset contains 77 usable subjects, 10 of which were
used for experimentation and 10 were manually labelled for the
quantitative evaluation of our method. This left a training group of 57
subjects. All results shown in this paper were obtained by training the
model on this training group and segmenting the subjects in the
labelled group.

7 T dataset
The second set of structural datawere the young subjects of the pub-

licly available dataset described by Forstmann et al. (2014). These data
were acquired using a 7 T Siemens Magnetom MRI using a 24-channel
head array Nova coil (NOVA Medical Inc., Wilmington MA):

• A T1-weighted MP2RAGE slab (Marques et al., 2010) which consisted
of 128 slices with an acquisition time of 9:07 min (TR = 5000 ms;
TE = 3.71 ms; TI1/TI2 = 900/2750 ms; flip angle = 5°/3°;
bandwidth = 240 Hz/Px; voxel size = 0.6 mm isotropic).

• A T1-weighted whole brain MP2RAGE acquisition which had 240
sagittal slices with an acquisition time of 10:57 min (repetition time
(TR) = 5000 ms; echo time (TE) = 2.45 ms; inversion times TI1/
TI2 = 900/2750 ms; flip angle = 5°/3°; bandwidth = 250 Hz/Px;
voxel size = 0.7 mm isotropic)

• A T2⁎-weighted 3D FLASH acquisition. The FLASH slab (Haase et al.,
1986) consisted of 128 slices with an acquisition time of 17:18 min
(TR = 41 ms and three different echo times (TE): 11.22/20.39/
29.57 ms; flip angle = 14°; bandwidth = 160 Hz/Px; voxel size =
0.5 mm isotropic).

The imaging slab for the limited field-of-view acquisition was
64mm thick for the FLASH protocol and 76.8mm for theMP2RAGEpro-
tocol and positioned to capture the subcortical structures. Both slab se-
quences consisted of axial slices tilted −23° to the true axial plane in
scanner coordinates. The QSM volume was calculated using the phase
information of the FLASH MRI sequence and the method proposed by
(Schweser et al., 2013).

The 7 T dataset consisted of 29 usable subjects; one subject was not
used because registration of the whole-brain MP2RAGE volume to the
FLASH slab failed. Fourteen of these subjects weremale and 15were fe-
male. Their mean age was 23.8 years with a standard deviation of 2.3
years. For quantitative evaluation, a ‘leave 5 out’ scheme was used,
where per block of 5 or 4 subjects the method was trained on the
other 24 or 25 subjects.

Clinical HD dataset
To investigate how well the method performs on data acquired

using more typical protocols and in the presence of pathology, it was
also applied to the dataset from a Huntington's disease (HD) study.
HD is an informative test case as the disease is associatedwith severe at-
rophy of subcortical grey matter. These data and the manual segmenta-
tions are described in detail in the original papers (Douaud et al., 2006,
2009) and acquired as part of the MIG-HD (Multicentric Intracerebral
Grafting in HD) project.

The dataset consists of ten patients and six control subjects from the
original study. The number of control subjects included was limited to
six, as this was the only consistent subset of the control data that had
both identical acquisition protocols for the structural images and for
which diffusion data were available. For each subject the following
scans were obtained on a General Electric 1.5 T Signa system with a
birdcage head coil with 40 mT/m maximum gradient strength:

• A T1-weighted scan using a 3D inversion recovery fast spoiled
gradient recalled (IR-FSPGR) acquisition with 0.9375 mm ×

http://www.vtk.org/
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Fig. 2. Profile model for a single vertex on the inferior boundary of the putamen. First column: specified priors (green: first component, blue: second component, red: third component).
Second column: profiles as sampled in the 57 training subjects before edge-based alignment, but after initial registration. Third column: MAP estimate of component means and aligned
profiles. The effect of alignment is especially clear when comparing panel 2 and 3 on the FA row; note the overall shift of about 1mm. Columns 4–6:MAP estimates of mean and standard
deviation for all components. Rows correspond to the modalities that were used in the model. Row 1: T2-weighted, row 2: T1-weighted, row 3: FA. Note that the observed profiles are
shorter than the mean profiles; this corresponds to the lengths k′ and k in the main text.
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0.9375 mm× 1.2 mm resolution, matrix size 256 × 256 × 124, TI =
620 ms, TE = 2 ms, TE = 20.3 ms, flip angle = 10° and
bandwidth = 7.81 kHz.

• Diffusion-weighted echo-planar imaging (EPI) with matrix size
128 × 128, reconstructed as 256 × 256 to yield 0.9375 × 0.9375
in-plane resolution with 2 mm slice thickness, 60 slices, TE =
71 ms, TR = 2500 ms, flip angle = 90°, bandwidth = 125 kHz, 41
diffusion directions, b = 700 s/mm2 and one volume with b = 0.
1 Dice’s coefficient is defined as 2NAB
NAþNB

, where NA and NB are the number of voxels in
masks A and B, and NAB is the number of voxels in the overlapping region (Dice, 1945).
Manual segmentations

7 T dataset
Themanual segmentations in the 7 T data were described in Keuken

et al. (2014). The putamen, caudate nucleus and nucleus accumbens,
along with the islands of grey matter between the putamen and the
caudate nucleus and nucleus accumbens, were segmented as a single
structure. Because all segmentation methods evaluated in this paper
segment the different parts of the striatum separately and none seg-
ment the grey matter islands, these islands were removed from the
segmentation masks. The internal and external parts of the globus
pallidus were labelled using the QSM volumes. As there is a gap be-
tween the parts, voxels for which the sum of the Euclidean distances
to the internal and the to the external part was smaller than 2.5 mm
were added to the combined mask. This effectively closes the gap be-
tween the two parts.
HCP80 dataset
Manual segmentation of the striatum in the HCP80 dataset was per-

formed by a single rater using the T1-weighted volumes and the same
guidelines as used in Keuken et al. (2014). The globus pallidus was not
segmented as this dataset did not include QSM images.

HD dataset
Manual segmentation of the putamen, caudate nucleus and ventral

striatum in the HD dataset was described in (Douaud et al., 2006). The
scanswere resliced to have the anterior commissure (AC) and posterior
commissure (PC) in the same axial plane. This plane was used as the
lower boundary of the globus pallidus in the manual segmentations.
In the comparisons betweenmethods for the HD dataset, the automatic
segmentations were also cut off in the AC–PC plane to be consistent
with the manual segmentation protocol.

Methods comparison

The segmentations produced byMIST, FIRST (Patenaude et al., 2011)
and FreeSurfer (Fischl et al., 2002) were quantitatively compared with
manual segmentations in all three datasets (HCP80, 7 T and HD). To
compare the methods, three different comparisons were performed.
The first of these compares the Dice scores between differentmethods.1

The second comparison looks at themean distance between themeshes

Image of Fig. 2
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produced by the different methods. Finally, the third comparison com-
pares the correlation coefficients between the automatically segmented
mask volumes and manual segmentations. The general procedure used
for this comparison is described here, as well as a number of processing
steps that are specific to one or two of the datasets.

The mesh-based output from MIST was converted to voxel-based
masks in order to be able to compare to the manual segmentation.
This was achieved by testing for all voxels' vertices whether they were
inside the mesh. A voxel was considered to be inside the mesh if at
least one of its vertices was inside. The vtkSelectEnclosedPoints filter
in VTK was used for this procedure.

In order to be able to compute the average distances between
meshes, the manual segmentations and FreeSurfer segmentations
were converted to meshes using the vtkMarchingCubes filter. Where
meshes needed to be combined for the comparison, such as for the
caudate and accumbens meshes from FIRST, only points that are at
least 2 mm from the other mesh were used in the distance calculation
to ensure that no internal boundaries were present.

In the HCP80 and 7 T datasets, results were compared to those
obtained using FIRST with and without its boundary correction post-
processing step. This step uses a voxel-based mixture model to reassess
which voxels on the boundary of a structure should and which should
not be part of the structure. In the 7 T dataset, the segmentations also
needed to be registered to the scans onwhich themanual segmentations
were performed: The partial FOV MP2RAGE scans for striatum and the
QSM volume for the globus pallidus. All segmentationmethods subdivide
T1 T
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Example segmentations us

Fig. 3.Example subject (499566) in theHCP80 dataset showing segmentations of putamen (red
and coronal (bottom two rows) slices. The FA volume was not used for segmenting the caudat
the striatum intomultiple structures; themasks for the putamen, caudate
nucleus and nucleus accumbens were combined into a single striatum
mask.

In the HCP80 dataset, the FreeSurfer segmentations that are provid-
ed with the pre-processed structural datasets by the Human
Connectome Project were used. FIRST was run with its default op-
tions on the T1-weighted volume. The segmentations produced by
multi-modal segmentation were also output in the coordinates of this
volume.

In the 7 T dataset, FreeSurfer was run on the brain-extracted whole-
brain MP2RAGE volume as whole brain coverage is a requirement of its
processing pipeline. The segmentation masks were linearly upsampled
to match the full resolution MP2RAGE volume and registered to both
the partial FOVMP2RAGE and FLASH volumes as themanual segmenta-
tions were performed on these images. FIRST was run on both the
whole-brain and partial FOV MP2RAGE volumes and the resulting
segmentations were registered with the partial FOV MP2RAGE and
FLASH images. In the segmentations using MIST, the partial FOV
MP2RAGE volumes were used.

Results

Automatic edge alignment

An important question is whether the profile model, that is fitted for
each vertex separately, is successful at finding a mean profile that
2 FA

ing MIST in HCP80 dataset

), globuspallidus (green) and caudate+nucleus accumbens (blue) on axial (top two rows)
e nucleus and nucleus accumbens.

Image of Fig. 3
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captures the local intensity features and that is properly aligned with
the physical boundary of the structure. Fig. 2 shows the unaligned pro-
files thatwere sampled for the different training subjects at a single ver-
tex on the inferior boundary of the putamen. It also displays the prior
and posterior means and the training profiles after they have been
aligned to the posterior mean (i.e. at their most probable displacement
δsi). It shows that, while the unaligned profiles are not closely aligned
with eachother, the aligned ones overlapmuch better; this is particular-
ly clear for the FA profiles. In addition, the step in intensity is now locat-
ed at the centre of the reference profile, which means that it is aligned
with the prior that defines the physical boundary.

Segmentation results

The full set of segmented structures in an example subject is shown
in Fig. 3. In this figure there are some clear examples of areas where
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Fig. 4. Segmentation results for the globus pallidus in the 7 T dataset using all threemodalities (r
slices. The QSM volume was not used for segmenting the caudate nucleus and nucleus accumb
multiple contrasts can complement each other. One example is the
globus pallidus, which is essentially invisible on the T1-weighted
image. Another example is the lateral boundary of the putamen,
which, although there is contrast in the T1- and T2-weighted images, is
difficult to see or detect due to the resolution of the volume. In the FA
image, however, the boundary ismuch clearer. Further examples of seg-
mentations in different subjects in the HCP80 dataset can be found in
Figs. S1 (putamen), S2 (caudate nucleus and nucleus accumbens) and
S3 (globus pallidus) in the Supplementary material. A comparison
with the meshes produced by FIRST is given in Fig. S4.

The advantage of multimodal segmentation for segmenting the
globus pallidus can also be seen in the 7 T dataset. Fig. 4 shows the re-
sults obtained using the full multimodal model, as described in
Table A.2, and a model using only the T1-weighted volume. The lateral
boundary, which is clearly visible on the MP2RAGE scan, is accurately
segmented in both cases, whereas the other boundaries improve with
bject 3 Subject 4 Subject 5

al and T1-based segmentation

ed) and T1-weighted only (green). Top three rows: axial slices, bottom three rows: coronal
ens.
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Fig. 5. Dice overlap (first column) with manual segmentations and mean mesh distance in mm (second column) of segmentations produced by different methods in HCP 80 dataset (10
subjects). Correlation coefficients betweenmanual and automaticmask volumes are shown in the third column.MIST:multimodal segmentation, T1:MISTwith T1-weighted images only,
Ft−/+: FIRSTwithout andwith boundary correction, FS: FreeSurfer. Data points that are outside the box bymore than 1.5 times the interquartile range are treated as outliers. A significant
difference in performance between a method andMIST is denoted by an asterisk (p ≤ 0.05, Wilcoxon signed rank test for the boxplots andWilliams's test for the correlation coefficients.
Computed using R, http://www.r-project.org/).
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the inclusion of the other modalities. Examples of all three structures
that are segmented are given in Fig. S5 in the Supplementary material.
Voxel-based overlap with other methods

To quantitatively assess the performance of MIST, the results were
compared with manually labelled scans. The Dice overlap scores for
segmentation of the striatum in the HCP80 dataset using MIST, FIRST
and FreeSurfer are shown in Fig. 5. The scores show that our method
produces accurate segmentations in the HCP80 dataset with overlaps
that are larger than those obtained with FIRST and FreeSurfer. Multi-
modal segmentation using MIST produces significantly more accurate
results than segmentation using only the T1-weighted volume. The pic-
ture for the mesh-based distances is fairly similar, although the differ-
ence between MIST and FIRST is not significant in this case. Mesh
distance is more sensitive than the Dice score to differences between
MIST FMIST T1 onlyManual

Fig. 6. Example masks for the striatum using different methods in an example subject (499566
overlap. BC denotes boundary correction.
segmentation in areas such as the tail of the caudate, a thin and elongat-
ed part of the structure.

In the comparison of volume correlations it is remarkable that
boundary-corrected FIRST and FreeSurfer fare better than in the
overlap- and distance-based comparisons. The advantage of comparing
methods in terms of these correlations is that they show whether a
method produces larger segmentations in subjects where a structure
is larger, without being sensitive to the exact handling of the bound-
aries. In this case, the correlations indicate that FIRST and FreeSurfer
capture the variability in striatal volume between subjects, despite the
imperfections in boundary placement suggested by the Dice scores.

Examples of the voxel-based masks (as used to calculate the Dice
scores) generated by the different methods are shown in Fig. 6.

The overlap scores for the 7 T dataset are shown in Fig. 7. MIST again
compares favourably to the other methods when segmenting the stria-
tum, for both the multi-modal and T1-only cases. A striking feature of
the results is that segmentation accuracy is also more consistent, in
FreeSurferFIRST with BCIRST without BC

) from the HCP80 dataset. Green: manual labelling, red: automatic segmentation, yellow:

Image of Fig. 6
Image of Fig. 5
http://www.r-roject.org/
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the sense that the difference between the lowest and highest scores is
smaller. In the case of the globus pallidus, the improvement over the
existing methods is even clearer than for the striatum. The correla-
tion plots indicate that while FIRST and FreeSurfer show reasonable
overlap with the manual segmentations, they do not accurately cap-
ture the differences in volume between subjects of the globus
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Fig. 7. Dice overlap (first column) with manual segmentations and mean mesh distance in mm
subjects). Correlation coefficients betweenmanual and automaticmask volumes are shown in t
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pallidus (in the left hemisphere only, in the case of FreeSurfer). For
the globus pallidus, multimodal segmentation using MIST produces
more accurate segmentations than segmentation using only the T1-
weighted volume, whereas in the case of the striatum, which has
clear contrast on a T1-weighted scan, MIST performs slightly better
in the T1-only case.
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Application to HD dataset

Example segmentations in a patient in the HD dataset are
shown in Fig. 8. This patient has significant atrophy of the subcor-
tical GM. Despite this, MIST is successful in segmenting the differ-
ent structures.

Fig. 9 shows themetrics of the segmentation performance of the dif-
ferent methods in the HD dataset. For the globus pallidus, MIST and
FIRST perform comparably in terms of overlap and mesh distances
and MIST performs slightly better than FreeSurfer (though statisti-
cally significant). In the comparison of volume correlations, MIST
and FreeSurfer are comparable and FIRST shows significantly lower
correlations.

For the striatum, Dice scores for MIST and FIRST are again higher
(and mesh distances lower) than for FreeSurfer. The volumes of the
FIRST segmentations of the left striatum correlate more weakly with
the manual labellings than the volumes obtained with the other
methods. This appears to be caused by two subjects in which FIRST per-
formed poorly when segmenting this structure (see the Dice scores).
This did not occur for the right striatum and this may explain the higher
correlation in this case.
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Example segmentations using

Fig. 8. Example patient in theHD dataset showing segmentations of putamen (red), globus palli
tom row) slices.
General observations in the comparison between methods

The three measures of performance (Dice overlap, mean mesh dis-
tance and volume correlation) are sensitive to different aspects of the
segmentations produced by the automatic methods, as illustrated
above. MIST performswell in terms of all threemeasures in all datasets,
while both FIRST and FreeSurfer are less consistent in this respect.

Themethods comparison shows that FIRST achieves reasonable Dice
scores for the globus pallidus in the 7 T dataset (above 0.7, Fig. 7),
although the low volume correlations indicate that it is not successful
in capturing between-subject variability. A possible explanation is that
in the absence of image contrast, the segmentations are almost exclu-
sively driven by prior knowledge. In this situation, there could still be
substantial overlap of the segmentations with the globus pallidus due
to the similarity of its appearance between subjects, but the variations
themselves would not be captured by the segmentations. This would
result in the low volume correlations. FIRST performs significantly
better in the HD dataset, where contrast for the globus pallidus is
much better in the T1-weighted volume.

The degree of asymmetry between left and right hemisphere results
is remarkable. Volume correlations for the right striatum in the HCP80
2 FA

 MIST in clinical HD dataset

dus (green) and caudate+nucleus accumbens (blue) on axial (top row) and coronal (bot-

Image of Fig. 8
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dataset are significantly lower when using MIST with just the T1-
weighted data compared to the multimodal case, while they appear
similar for the left striatum (Fig. 5). As the testing dataset is relatively
small (10 subjects), it is difficult to know whether this represents a
real asymmetry in performance. A similar situation exists for the differ-
ence in the striatal volume correlation for FIRST in theHDdataset,which
is significantly lower than for MIST in the left hemisphere only (Fig. 9).
FIRST seems to perform poorly in terms of Dice scores in two subjects in
the left striatum and it is hard to tell if the fact that no such outliers
occur in the right hemisphere is caused by an actual asymmetry in the
segmentation process or simply due to chance. A more convincing
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Fig. 9. Dice overlap (first column) with manual segmentations and mean mesh distance in mm
subjects). Correlation coefficients betweenmanual and automaticmask volumes are shown in t
tile range are treated as outliers. A significant difference in performance between a method an
example of asymmetry is the performance of FreeSurfer in the globus
pallidus in the 7 T dataset, which is substantially better in the right
hemisphere (Fig. 7). We do not see an obvious explanation for this
asymmetry in FreeSurfer's performance.

Importance of the size of the training set

To investigate how sensitive segmentation performance is to the size
of the training set, the striatummodels for the HCP80 datawere trained
using a number of reduced-size subsets of the full training set. The re-
sults from this comparison are shown in Fig. 10. As expected,
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segmentations become less accurate with smaller training datasets, al-
though performance in terms of these summary measures is still very
reasonable even with the smallest training set. The reason for this be-
haviour is illustrated by Fig. 11. In this figure it can be seen that segmen-
tation is successful for large parts of the structure even with very little
training data by mostly relying on the intensity priors. In regions
where anatomy ismore complex, though, such as near the external cap-
sule, learning the intensity profiles from the training data has a clear
benefit. Another areawhere segmentation improveswithmore training
area is the anterior end of the putamen. This may be caused by the
islands of grey matter that are present between the putamen and cau-
date nucleus and whose appearance differs significantly between sub-
jects and scans.

Contribution of non-linear registration

To investigate how large the relative contributions of non-linear
registration and the subsequent segmentation steps are, Fig. 12
2557

Fig. 11. Segmentation of the putamen in an example subject in the HCP80 dataset for different
labelling.
compares the result of the full segmentation procedure in the HCP80
dataset to the results obtained by applying non-linear registration to
the reference shape without performing segmentation, i.e. setting all
the displacements to zero. Non-linear registration produces a reasonable
approximation to the structure, but the full segmentation procedure is
required to obtain a high quality delineation.

Discussion

Segmentation results

The results in the previous section show that MIST can produce
high-quality segmentations of the striatum and globus pallidus. The
successful segmentation of the globus pallidus, which has poor contrast
in a T1-weighted scan, illustrates the advantage ofmulti-modal segmen-
tation. Although both the T2-weighted and FA contrasts provide more
information on the boundaries of the structure, neither of these shows
all aspects. The combination of the three images, however, allows the
310

numbers of training subjects. Red outline: automatic segmentation, blue overlay: manual

Image of Fig. 11
Image of Fig. 10
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Fig. 12.Dice overlap (first column)withmanual segmentations andmeanmesh distance inmm(second column) of segmentations produced in theHCP80dataset usingMIST and byusing
non-linear registration of the reference shape only (NLR). Correlation coefficients betweenmanual and automaticmask volumes are shown in the third column. A significant difference in
performance between NLR and MIST is denoted by an asterisk (p ≤ 0.05).
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method to successfully segment the entire structure. This puts it at an
advantage over FIRST and FreeSurfer, which only use a T1-weighted
scan, and there is indeed an improvement in segmentation accuracy of
the globus pallidus over these methods. MIST also produced good
results in the 1.5 T HD dataset, confirming that the method works
well with more typical clinical acquisitions as well. Contrast in the
T1-weighted acquisitions in this dataset has been optimised for
deep grey matter and as a result the globus pallidus is visible even on
the T1-weighted images. This means conditions were probably fairly
optimal for unimodal segmentation. MIST performs best of the three
methods in terms of correlation with the manual segmentation mask
volumes and comparably to the unimodal methods in terms of Dice
overlap and mesh distances. This confirms that the method can handle
more significant differences in anatomy than those that are typically
present in healthy subjects.

Of the segmentations produced by the different methods that were
evaluated, those produced byMIST showed the strongest volume corre-
lations with the manual segmentations. This is an important result, as
these correlations are probablymore descriptive of the relevant proper-
ties of a method than the overlap and distance measures. Overlap and
distance are very sensitive to issues of subjectivity, such as the prefer-
ence of either a person doing manual segmentation or an automated
method to include more or fewer boundary voxels. While such differ-
ences are important in quantifying the exact volume of a structure,
they are not very relevant at all when the volumes are compared be-
tween groups and the question is justwhether the volumes differ. A sec-
ond scenario where correlation is the more relevant measure is when
the numbers are to be used as predictor for some othermeasure, for ex-
ample when using the volumes as a regressor in a general linear model.

MIST produced more consistent results than the other methods, es-
pecially in the HCP80 and 7 T datasets. It is difficult to make a definite
statement about the cause of the difference, as themethodology under-
lying the three methods differs substantially. The larger number of im-
ages available to the multi-modal method is a clear advantage and this
should make it more resilient to image noise. MIST was trained on im-
ages from the same population andwith the same acquisition protocols
as the images to be segmented. This is also likely to be advantageous, as
this means that the trained model is more appropriate for the images
that are segmented. Finally, considering that the largest improvements
in segmentation quality and consistency were obtained in the HCP80
and 7 T dataset, it seems likely that the fact that the new method can
more easily take advantage of the high quality data also contributes to
better consistency.

MIST also performed well when used on only a T1-weighted image,
in particular in the 7 T dataset. For the striatum, which is clearly visible
on a T1-weighted scan, this may not be completely unexpected. Never-
theless, it confirms that the intensity model can reliably identify edges
in the training data and that it is at least as sensitive to image informa-
tion as the methods to which we compared. Fig. 4 shows that for the
globus pallidus, the additional contrast is advantageous in producing
good-quality segmentations. In Fig. 7, MIST performs slightly better on
segmentation of the striatum when using only the T1-weighted data.
The differences in the masks produced by multimodal and T1-only seg-
mentation are rather subtle and it is difficult to conclusively determine
what causes this difference. The effect of partial volume averaging and
data smoothness will be slightly different in the multimodal case and
due to the fact that there is more intensity data, the relative weighting
of the shape priorwill be somewhat lower. It is likely that the difference
is caused by a combination of these effects. Both multimodal and T1-
only MIST show better consistency than the other methods. It should
also be kept in mind that the manual segmentations were done on the
T1-weighted data, meaning that they have not taken the additional in-
formation in other modalities into account.

The DWI protocol used in the HCP dataset has a total acquisition
time of about an hour, but it is useful to note that for purposes of subcor-
tical segmentation, high angular resolution and multiple b-values are
not required and acquisition could be much quicker, as long as the spa-
tial resolution is relatively high. It should also be noted that while the

Image of Fig. 12
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acquisition protocol for the T1-weighted scan in the HCP data has been
optimised heavily for cortical contrast, subcortical contrast is signifi-
cantly poorer.

Parameter setup

Using the script that is described in Appendix A, MIST can be
retrained fully automatically on any dataset that contains one or more
of the contrasts that were used in this paper or similar contrasts. If the
dataset contains fundamentally different contrasts, the user can add
priors for these modalities to the generated setup. The fact that the
method can be easily retrained eliminates bias that might otherwise
arise when the model is applied to a population that is different from
the one it was trained on. This could be an important advantage in pa-
tient studies, where brain anatomy could be substantially different
from the healthy population. If desired, a completely unbiased result
could be obtained by creating a reference mesh from the study average
image; this would require a manual labelling of only that image. Note
that, while in this paper we used separate training and evaluation
groups, in applications there would be no problem with training on a
balanced and representative subgroup of the study subjects.

A suitable specification of the priors is essential in order to train the
model to achieve good quality segmentations. This specification should
reflect our a priori belief about the shape and amplitude of an intensity
profile, which is determined by two factors: Anatomical variability and
image properties. The first of these two, the anatomy and the anatomi-
cal differences between subjects, are what dictates the choice of func-
tion to be used as a prior (see Table 1). In the case where we expect
only a single image edge to be present in themeasured profiles, specify-
ing the prior profile would be simple, as a simple step function (i.e. fstep
in Table 1) with the intensity inside the structure as the first parameter
and the outside intensity as the second parameter represents this situa-
tion accurately. In reality, however, there are likely to be additional
image features that we are not interested in, such as edges farther
away from the boundary of the structure of interest. The advantage of
the exponential shape, which we have mostly used, is that it contains
one sharp edge, which helps alignment, but not any other edges that
might cause the method to unintentionally align to other structures.
The advantage over the step function, which also contains only one
edge, is that the amplitude returns to the value for the inside (left) sec-
tion of the profile. This is beneficial in assigning profiles to a mixture
component, as it reduces the influence of intensity difference that are
not related to the edge feature.

The second factor in specifying the priors is finding an initial esti-
mate of the image intensities. These intensities can vary significantly be-
tween acquisitions and scanners andwe have used the automated setup
script described in Appendix A to find these for the different datasets
presented in this paper. The script uses rules based on the intensities in-
side different structures to find suitable values to be used in the prior
specifications. This should automate the retraining process for the stria-
tum and globus pallidus in datasets that have the types of contrasts as
used here. Fundamentally different contrasts (i.e. other than T1-, T2-
weighted, FA or QSM) that show different aspects of structures will re-
quire the user tomanually specify the shapes and intensities of the prior
profiles for those contrasts. To segment a completely new structure (not
the striatum or globus pallidus), the user will need to provide a refer-
encemeshand specify theprofile priorsmanually (or extend thePython
setup script).

General considerations

By considering displacements along the shape normals only, we
were able to formulate a model that is relatively straightforward and
in which the intensity models factorise if the shape model is not taken
into account. Asmentioned in the introduction, this type of deformation
was chosen becausemost of the intensity information that is relevant to
find the location of the structural boundary is along the normals. The re-
sults we obtained suggest that with an appropriately constructed refer-
ence shape, this parameterisation is flexible enough to capture the
anatomical variability that is present.

Themeshes thatwehave used are relatively regular in terms of point
spacing and triangle areas. We have chosen to do this, as we want the
model to be able to capture small and unique variations like vessels
with the same resolution anywhere along the surface. It is conceivable
that in areas of high curvature a higher mesh resolution would be ad-
vantageous, but for the structures that we segment in this paper we
did not see any resolution-related problems with the current meshes.
Using lower resolutions for parts of the mesh would compromise our
aim of being able to capture small variations anywhere along the
mesh and instead impose a degree of regularity.

The primary purpose of the shape model is to regularise segmenta-
tions, as the displacements that are determined for all vertices indepen-
dently can be noisy in areas of weaker contrast. To overcome this
problem, the shape model learns themean displacement at each vertex
and the covariance between vertices. This regularises the segmentations
by only generating large displacements with respect to the mean
learned from the training data if the images provide strong enough ev-
idence in terms of edge contrast. It also favours segmentations that re-
spect the covariance between displacements observed in the training
data and the smoothness specified by the covariance prior.

For further statistical analysis, there are two forms of output that
can be used. The first option is to use the vertex-wise displacements.
These are generated in MNI coordinates, but as the nonlinear trans-
formation from native to MNI coordinates already includes some of
the shape variability, the best option appears to be to undo the non-
linear part of the transformation, but not the affine part. This means
that global scaling factors, which primarily represent head size, are
not included in the displacements, but that all local deformations
are included. Standard multivariate analysis tools can then be used
for inference. A second option is to use the voxel-based output for
further analysis. This can be a good approach to get only a scalar vol-
ume for each structure, or to get a mask that can be used to define a
region of interest (ROI) for further analysis.

We chose to treat the caudate nucleus and the nucleus accumbens as
a single structure. There is virtually no contrast between these struc-
tures in the images that were used here. Because of this, a subdivision
would not be driven by the data, but rather it would be based solely
on some form of prior knowledge. In the case of a shape-based analysis
using the vertex-wise displacements, this may not be a problem, as dif-
ferent patterns of variationwithin themerged structure can still be rep-
resented. In the case of a voxel-based further analysis,we propose to use
a subdivision based on the MNI coordinates if this is required.

The runtime of the training stage of the method depends on many
factors, the most important of which are the size of the training dataset
and the number of modalities. Evaluation time of the cost function
scales linearly in both factors, although total runtime might deviate
from this linear behaviour due to the non-linear optimisation. Training
the method on the structures and datasets presented in this paper
took between an hour and half a day of processor time on recent PC
hardware. In practice, we have parallelised the training stage, which
means the wall time spent is much lower. Segmenting a new image
after training takes under a minute on a single processor.

In this paper, we have described a flexible newmethod for subcorti-
cal segmentation. It can successfully combine information frommultiple
modalities and can be retrained for datasets with different characteris-
tics. We have applied the method to the striatum and globus pallidus,
but the framework is more general and can be applied to other struc-
tures. Retraining is automatic for the structures and contrast types con-
sidered in this paper. The method can be applied to new structures and
contrasts by the user through the specification of suitable priors and a
reference mesh in the case of new structures. The implementation of
the method that was used to produce the results in this paper will be



Table A.3
Prior specifications of standard deviation; β is the scalar value that is used for
all coefficients of the covariance priors and f is the relative resolution of the
modality. See the main text for a description of how these values are used in
specifying the model.

Modality Prior standard deviation (
ffiffiffiffiffiffiffiffiffi
β= f

p
)

T1 Self × 0.1
T2 Self × 0.1
FA 0.1
QSM 0.02
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made publicly available through inclusion in a future release of FSL
(http://fsl.fmrib.ox.ac.uk) and will be called MIST.
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Appendix A. Parameter setup

In order to make it as straightforward as possible for users of our
method to retrain the models on new datasets, we use a script that au-
tomatically sets all the parameters by combining prior anatomical
knowledge with properties of the training images. This script was also
used to set the parameters for all datasets presented in this paper.

Two pieces of prior anatomical knowledge are required by the
model: A reference mesh, the generation of which was described in
the main text, and the specification of the profile priors. While the in-
tensities of the priors depend strongly on the acquisition, their shapes
(see Table 1) are determined by anatomical features like the number
of different neighbouring structures and their sizes and shapes. It is
therefore possible to define a set of reference meshes and rules for set-
ting up the priors that should apply to any dataset and combine these
with intensities that can automatically be determined based on the im-
ages. In this section we describe the template used by the automatic
Table A.2
Intensity model parameter template. Each row specifies one or more priors. The inside intensi
sponds to the peak value of the prior profile. ‘Self’ denotes the median intensity inside the stru
peak is scaled by that factor.

Structure Modality Type

Putamen T1 Exponential (1 an
Exponential (1 m

T2 Exponential (1 an
Exponential (1 m

FA Exponential (4 m
Exponential (1 m
Flat

QSM Exponential (2 m
Step
Flat

Globus pallidus T1 Exponential (3 m
Exponential (3 m

T2 Exponential (3 m
Exponential (3 m

FA Step
Flat

QSM Step
Step

Caudate and accumbens T1 Step and exp. (1
Step and exp. (1

T2 Step and exp. (1
Step and exp. (1
setup script to generate a full set of parameters that should apply to
any dataset that contains similar modalities to the ones described
here, or a subset of them.

The intensities are found automatically by the script from the user's
dataset by extracting the intensities inside regions of interest (ROIs).
The ROI masks are derived from the Harvard–Oxford subcortical atlas
that is providedwith FSL. Themedian of all valueswith above 75% prob-
ability in the atlas is extracted from each subject and the mean of these
medians is the value filled in into the templated defined by Table A.2. It
should be noted that, as the intensity setup is derived from the image,
each component in the table can be used with a range of similar con-
trasts. In this paper, for example, the T2- and T2⁎-weighted images in
the different datasets have quite different appearances, yet they can
all use the T2 setup from the table. The same is true for the different
T1-weighted scans.

The prescriptions for the profile priors thatwere used for all datasets
in this paper are displayed in Table A.2. The shapes of the functions have
been specified manually through considering the anatomy of the struc-
tures' boundaries and some experimentation.

For the T1 and T2 modalities in the putamen, priors are specified for
two cases: The case where the neighbouring structure at a vertex is ei-
ther the globus pallidus or WM and the case where there is a vessel in-
stead. For the first case, two exponentially decaying priors are specified
to better capture the range of profiles that may be observed. For exam-
ple, on the lateral side of the putamen there is the external capsule, a
thin sheet of WM, while the globus pallidus on the medial side is a
much thicker structure. The diameter of vessels is typically small,
which is why the prior that is specified to handle them decays quickly.
We have used a single outside intensity for the globus pallidus and
ty corresponds to the left half of the prior profile in Fig. 2 and the outside intensity corre-
cture to be segmented. Where an amplitude multiplication factor is given, the size of the

Inside Outside

d 4 mm) Self Average of GP and WM
m) Self Self × 0.5
d 4 mm) Self Average of GP and WM
m) Self Self × 1.5
m) 0.1 0.7
m) 0.1 0.4

0.1
m) 0.1 0.2

0.1 0.0
0.0

m) Self Putamen
m) Self WM (amplitude × 3)
m) Self Putamen
m) Self WM

0.2 0.6
0.2
0.2 0.1
0.2 0.0

and 4 mm) Self Ventricles (amplitude × 1.5)
mm) Self WM (amplitude × 0.67)
and 4 mm) Self Ventricles
mm) Self WM

http://fsl.fmrib.ox.ac.uk


Table A.4
Shape and intensity model parameters. The Wishart shape parameters can be thought of
as thenumber of pseudo-observations that theprior covariance represents. The parameter
σδ is only used when the intensity models are trained in isolation.

Part of model Parameter Symbol Value

Both Step size ℓ Half of voxel
size

Number of steps Δ 2 × ⌊3mm/ℓ⌋
Shape model Width parameter w 0.6

Height parameter h 0.05
Weight of prior mean n0

s 10
Wishart shape parameter αs N−1

2 þ 3
Intensity
model

Weight of prior mean n0 10
Wishart shape parameter α0 k−1

2 þ 3
Dirichlet parameter for all
components

α 2.0

Width of prior on δ σδ 5.0
Smoothness σI 0.5
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WM as the intensity changes with respect to the putamen are the same
for both (i.e. higher on T1-weighted and lower on T2-weighted
volumes).

For the FA andQSMmodalities, wide and narrow priors are specified
for the same reasons as in the T1 and T2 modalities. As vessels are not as
clear on these modalities, no vessel prior is included for these modali-
ties. The QSM prior with a positive edge is included for the boundary
with the globus pallidus, whereas the negative edge should handle
boundaries with WM. The intensities for the FA and QSM modalities
are not derived from the images as the former has a fixed range and
the latter is quantitative.2

The priors for the globus pallidus are set up to represent two cases:
On the medial side, the structure borders the WM and on the lateral
side the pallidum. Variations in thickness are less of an issue here, as
are vessels, so the prior specification is simpler. The reason for including
priors with two different inside intensities for QSM is that this is one of
the few caseswhere the inside intensity varies quite significantly across
the structure.

For the combined caudate and accumbens mesh, only the T1 and T2
modalities were used. The reason for this is that there is very little con-
trast in the FA and QSM images between the caudate nucleus and the
ventricles, while there is strong contrast between the ventricles and the
corpus callosum. This may result in ambiguities if the ventricles are
small. The priors for the caudate nucleus and nucleus accumbens were
set up in much the same way as for the putamen, but using the WM
and ventricles as reference structures. As these structures can be very
wide as seen from the caudate nucleus, step priors were added as well.

While themodel allows the specification ofmore complex functions,
in practice we will always use a flat profile with height β (see Eq. (13))
to specify the coefficients for the prior covariance. Up to a smoothness-
dependent constant, the square root of β behaves like the standard de-
viation.We set up the prior value of this standard deviation as a fraction
of the observed image intensity. Note that we cannot use the image
signal-to-noise ratio, as the variability of the profile is a composition of
image noise and anatomical variability. The value that is derived from
the image is scaled by the factor in Table A.3 and by an additional factor
f, which is the resolution of the modality divided by the highest-
resolution modality. This resolution scaling factor is used to weight
the modalities according to the smoothness, which is higher in low-
resolution images; see the discussion about σI below.

The remaining parameters, including the shape model parameters,
are set up according to Table A.4. We have used the same values for
all datasets presented here and we believe it to be likely that there
will be little need to change most of these when applying the method
to other datasets. The most important parameter is the number of
2 Although the QSM contrast is quantitative, the QSM data used in this paper use arbi-
trary units and as such do not have physical units.
steps, which together with the step size determines the maximum dis-
placement that can be fitted at each vertex. The setting in the table
amounts to an even number of steps that corresponds to a maximum
displacement of 3 mm inwards or 3 mm outwards. This appears to be
sufficient in practice even in the HDdataset. The smoothness parameter
σI can be used to avoid over-weighting lower resolution modalities, al-
though in practicewe do this using the variance priors described above.
This has a similar effect but has the advantage that it does not interfere
with non-linear optimisation by enhancing the collinearity between
parameters.

The parametersw and h control the prior variance and covariance be-
tween vertices. They can be used to control the smoothness of the final
segmentation. It is important to note however, that this smoothness con-
cerns the displacements with respect to the mean shape and as we train
all vertices in isolation, there is no guarantee that this mean will be
smooth. The parameters are useful to regularise the model in the case
of noisy data, however. Thefinal segmentation result is not very sensitive
to changes of w and h around their present values. Low values of w and
high values of h reduce the regularisation effect, while low values of h
constrain the mesh to the mean. Very high values of w may interfere
with non-linear optimisation as this causes the parameters to be highly
collinear. As the meshes used for the different structures in this paper
have similar numbers of vertices per unit of surface, we expect similar
smoothness and the same values for w and h are used for all of them.

Weighting of the priors relative to the training data is controlled by
the parameters n0s , αs, α0 and n0. We have set these close to their mini-
mum values as there is no obvious advantage to increasing these
weights. One reason for setting higher values might be if stronger
regularisation using w and h is desired. Finally, the parameter α deter-
mines whether the intensity model will prefer mixtures where one
component explains all observations versus mixtures with more equal
mixing. The current setting gives a slight preference to the first case, al-
though in practice the effect of this parameter appears limited.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.10.013.
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