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The Structure of Elongated Viral Capsids
Antoni Luque* and David Reguera
Departament de Fı́sica Fonamental, Facultat de Fı́sica, Universitat de Barcelona, Martı́ i Franquès 1, 08028 Barcelona, Spain
ABSTRACT There are many viruses whose genetic material is protected by a closed elongated protein shell. Unlike spherical
viruses, the structure and construction principles of these elongated capsids are not fully known. In this article, we have devel-
oped a general geometrical model to describe the structure of prolate or bacilliform capsids. We show that only a limited set of
tubular architectures can be built closed by hemispherical icosahedral caps. In particular, the length and number of proteins
adopt a very special set of discrete values dictated by the axial symmetry (fivefold, threefold, or twofold) and the triangulation
number of the caps. The results are supported by experimental observations and simulations of simplified physical models.
This work brings about a general classification of elongated viruses that will help to predict their structure, and to design viral
cages with tailored geometrical properties for biomedical and nanotechnological applications.
INTRODUCTION
Viruses are submicroscopic organisms constituted, in their

simplest form, by an infective genetic material (DNA or

RNA) and a protective protein shell (the capsid) (1). The

remarkable structural and mechanical properties of viral

capsids have been a subject of increasing interest in the fields

of biomedicine and nanotechnology in recent years (2–5).

In general, each virus has a well-defined wild-type shell

that can be rodlike, quasispherical, bacilliform, or conical.

However, by controlling the environmental conditions,

e.g., the pH and salt concentration, many viruses can self-

assemble in vitro in different shapes (6–10). The formation

of these common and well-defined capsid architectures is

essentially a consequence of a general physical principle:

the free energy minimization of weak interactions among

identical units (11–13).

The size of viruses, on the order of tens to hundreds of

nanometers, restricts the amount of information that can be

coded in the viral genome. Therefore, capsids are typically

built from multiple copies of one or a few similar small

proteins for the sake of genetic economy (14). These sub-

units interact with each other and self-assemble into a regular

hollow shell. In two dimensions, the hexagonal lattice or its

dual, i.e., the triangular one, maximize the packing and the

number of interactions of identical units. Starting from

them, it is possible to build all basic capsid shapes. The

open helical tube characteristic of rodlike viruses can be

obtained by simply wrapping the lattice. To construct closed

shells, one needs to introduce 12 pentagonal defects (15). If

they are evenly distributed, one gets the polyhedral shell with

icosahedral symmetry of quasispherical viruses. Prolate or

bacilliform capsids can be made by wrapping the lattice

into an helical tube and closing each of its ends with six
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defects. Finally, conical viruses are obtained by making a

closed tube with a different number of defects at both ends.

The physical and geometrical principles leading to the

formation of rodlike and quasispherical icosahedral viruses

are now relatively well understood. However, many viruses,

including some bacteriophages, such 429 or T4, and several

fungus, plant, and animal viruses, e.g., in the genera barna-

virus, badnavirus, and ascovirus, respectively (16), have a

prolate capsid whose geometrical construction is not so

well understood.

Recent works have shed some light on the structure of

prolate viruses. In particular, Nguyen et al. (17) compared

the energy of spherical, tubular, and conical viral shells using

continuum elasticity arguments. In addition, some simula-

tions performed in the literature (18,19) have obtained elon-

gated shells from physical models of different degrees of

complexity. Moreover, by using a simple model of cap-

somer-capsomer interaction that successfully explained the

structure of spherical viruses (12), we have shown that the

optimal structures for closed elongated viruses are, in general,

hexagonally ordered tubes closed by hemispherical caps with

icosahedral symmetry (13).

The main goal of this work is to describe the geometrical

principles that lead to the construction of such bacilliform

viral capsids. We will focus our attention on closed elon-

gated viruses, which are also labeled in the literature as pro-

late, bacilliform, elongated, tubular, or allantoid (16), leaving

aside specifically open-ended rodlike viruses such as tobacco

mosaic virus. Our work is based on the ideas introduced

by Caspar and Klug (20) and further extended by Moody

(21), and establishes a general geometrical framework to de-

scribe icosahedral spherical capsids as well as icosahedrally

capped bacilliform shells. The choice of these particular

structures is not arbitrary and has been justified on energetic

grounds (13).

The importance of this geometrical description is that it

enumerates and characterizes the set of structures that can

be built. We find that prolate capsids adopt a discretized
doi: 10.1016/j.bpj.2010.02.051
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set of lengths, radii, and numbers of proteins. The knowledge

of these selection rules can be very useful to infer the struc-

ture of a virus from simple experimental data as well as for

nanotechnological applications that rely on a proper control

of the dimensions and architecture of viral capsids.

Icosahedral capsids

Roughly half of all viral species have a quasispherical capsid

with icosahedral symmetry. Their construction rules were

introduced in 1962 by Caspar and Klug (20), based on the

idea of quasiequivalence (Fig. 1). In general, the optimal

way to build a capsid made of identical units is to arrange

them in a regular polyhedron where all of them sit in iden-

tical environments and share the same interactions with

each other. However, the largest regular polyhedron that

can be built fulfilling this strict requirement of equivalence

is an icosahedron containing 60 proteins (three on each of

its 20 faces), which corresponds to the structure of the small-

est quasispherical viruses. The best alternative to build larger

capsids is to pack these identical proteins in a limited number

of quasiequivalent positions optimizing their mutual interac-

tions. Caspar and Klug (20) showed that this leads neces-

sarily to icosahedral symmetry as the most efficient design.

In these capsids proteins can be geometrically clustered in

two types of morphological units: pentamers, which are

five proteins aggregated around each vertex of the icosahe-

dron, and hexamers, which are clusters of six proteins evenly

distributed on the faces and edges of the capsid.

Starting from a flat hexagonal lattice or equivalently its

dual, the triangular one, there is a limited number of ways

to create a closed shell with icosahedral symmetry. Essen-

tially, one has to replace 12 evenly-distributed hexamers

by the 12 pentamers required by Euler’s theorem to make

a closed surface (15). The different ways to accomplish

that correspond to different triangulation numbers (T) that

classify the quasispherical icosahedral viruses.
FIGURE 1 (Color online) (a) Basic elements of the Caspar and Klug

construction. The shaded face is a T ¼ 3 (h ¼ k ¼ 1). The icosahedral shell

is built by 20 of these triangles. (b) Flat icosahedral template for a T ¼ 3

virus (bottom) and the resulting folded capsid (top). (c) (Top) Example of

a T¼ 7l capsid corresponding to bacteriophage HK97 (22). Arrows indicate

the steps along the hexagonal lattice (h ¼ 2,k ¼ 1) from one pentamer to the

next. (Bottom) Two triangular faces from the class P ¼ 7l.
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The T-number is the area of a triangular face of the icosa-

hedral shell defined by the vector that joins two adjacent

pentamers in the lattice, namely

~CT ¼ h~a1 þ k~a2hðh; kÞ; (1)

where (h, k) are nonnegative integers that give the number of

steps to connect two nearest pentamers along the principal

directions of the hexagonal lattice, i.e.,~a1 and~a2 (Fig. 1 a).

The smallest triangular face is defined by (1, 0) or equiv-

alently (0, 1), and has an area S0 ¼ j~a1 �~a2j=2. T is the

number of these basic triangles contained in a face of the re-

sulting icosahedra, i.e., the area of the equilateral triangle

defined by~CT divided by S0. Using the elementary properties

of the hexagonal lattice listed in Supporting Material A, one

obtains

T ¼ h2 þ hk þ k2 ¼ Pf 2: (2)

As h and k are nonnegative integers, T follows a particular

series of ‘‘magic’’ numbers, i.e., T ¼ 1, 3, 4, 7, 9, 12, 13,

., which also correspond to the number of quasiequivalent

locations in the shell (20,23).

Because an elementary T¼ 1 triangle accommodates three

proteins and the resulting icosahedron is built by 20 T-faces,

the total number of proteins in the capsid is

Nsub ¼ 60T: (3)

Every structure has NP ¼ 12 pentamers, accounting for

60 proteins, and the remaining subunits are distributed in

NH ¼ 10(T – 1) hexamers. Therefore the total number of

capsomers in the capsid is

N ¼ 10T þ 2: (4)

In modern structural virology, icosahedral capsids are always

described by T(h, k). However, the triangulation number is

not always unique; e.g., for some T R 49, more than one

pair (h, k) share the same T, e.g., (7, 0) and (5, 3) give T ¼
49. Therefore, Caspar and Klug (20) proposed also a reorga-

nization of the T-structures in terms of classes P (not to be

confused with the pseudotriangulation number used to label

icosahedral capsids made of chemically different proteins)

with common geometrical properties. Defining f as the great-

est common divisor of h and k, i.e., f ¼ gcd(h, k), we can

rewrite h ¼ fh0 and k ¼ fk0. Thus, from Eq. 2, we obtain

P ¼ h2
0 þ h0k0 þ k2

0: (5)

The class P is a subset of T (P ¼ 1, 3, 7, 13, .) and groups

those icosahedral capsids that have an analogous distribution

of hexamers (Fig. 1 c). Shells with (h, 0) or (0, k), i.e., T¼ 1,

4, 9, ., belong to the class P ¼ 1; those characterized by

(h, h), i.e., T ¼ 3, 12, 27, . belong to P ¼ 3; and any class

P > 3 is skewed, so that (h, k) generates a chiral structure

specular to the shell generated by (k, h). To distinguish these

situations we use the labels l, laevo or left-handed, for h > k,



FIGURE 2 (a) (Top) Illustration of Moody’s geometrical model for

fivefold prolate capsids. (Bottom) Complete flat design of a Tend ¼ 3 and

Tmid ¼ Q ¼ 5 prolate capsid, which corresponds to the shell of a f29

(30). (b) Zenithal (top) and lateral (bottom) views of the folded structure

of a Tend ¼ 3 and Tmid ¼ Q ¼ 5 prolate capsid. Below each view, there is

a ping-pong model representation of the same capsid, where hexamers are

colored in green and pentamers in gold.
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and d, dextro or right-handed, for h < k. As an example, a

T ¼ 7l capsid is plotted in Fig. 1 c.

For a given P ¼ T(h0, k0), the value of f 2 defines the

number of P-triangles necessary to tile the T(h, k)-face (see

Eq. 2). For instance, the face of a T ¼ 28l has four times

(f ¼ 2) the distribution of proteins of a T ¼ P ¼ 7l triangle

(Fig. 1 c). Shells belonging to the same class have an analo-

gous arrangement of proteins, and so they should show

similar physical properties, as evidenced, for instance, in

the distribution of local stresses (24). Furthermore, the class

P plays an important role in the geometrical properties of

prolate capsids.

It is appropriate to make some clarifications regarding the

Caspar and Klug model that will also apply to our extension

for prolate shells. The Caspar and Klug construction only

determines the point symmetry and is compatible with

different clustering of the proteins. Thus, capsids with 20T
trimers, 30T dimers, or 60T monomers are also possible.

Moreover, the subunit in the Caspar and Klug model is not

necessarily a single protein. For instance, the bluetongue

virus core (25) has 120 proteins leading to a forbidden T¼ 2,

which violates the model of Caspar and Klug. However, in

terms of dimers the capsid contains 60 units organized as

in a T ¼ 1 shell.

On the other hand, not all quasispherical viruses strictly

comply with the Caspar and Klug model. In their native

form, polyoma and papilloma viruses are built only with pen-

tamers arranged in a T ¼ 7 capsid (26). Polyomavirus can

also be reconstituted in vitro in a quasispherical, but nonico-

sahedral, structure that resembles a snub cube (26), which is

completely outside the Caspar and Klug model. In this

context, we must point out that both Caspar and Klug’s

capsids and the exceptions mentioned above have been

found to be free energy minima of protein aggregates (12)

and can also be explained using a tiling approach (27,28).
PROLATE OR BACILLIFORM CAPSIDS:
A GENERALIZED GEOMETRICAL MODEL

A significant number of viral species have a closed elongated

capsid whose precise structure is not so well characterized. In

the late 1960s, Moody (21,29) extended the ideas of Caspar

and Klug and described the construction of prolate capsids

based on the elongation of an icosahedron along a fivefold

axis of symmetry (Fig. 2).

The structure of some bacteriophages complies with

Moody’s model, as it has been confirmed by cryo-electron

microscopy (cryo-EM) reconstructions (30,31). However,

several bacilliform plant viruses, such the alfalfa mosaic

virus (AMV), seem to have threefold rather than fivefold

axial symmetry (32). Hull (33) and Moody (21) put forward

the hypothesis that bacilliform viruses could have a tubular

body closed by half icosahedral caps cut in different ways,

but, except for the fivefold case, they did not describe

precisely the geometrical rules to construct them.
In this section, we generalize Caspar and Klug and

Moody’s models to build bacilliform shells by elongating

an icosahedron along all its different axes of symmetry: five-

fold, threefold, and twofold. This model sets the basis for the

geometrical characterization of prolate capsids, leading also

to general rules that dictate the total number of proteins

in any bacilliform shell as well as the number of subunits

necessary to increase its length.

To make an elongated capsid starting from an icosahe-

dron, its 20 triangular faces must be distributed among a

tubular body and two equivalent caps, with the requirement

of keeping six vertexes, i.e., pentamers, regularly arranged,

in each cap.

This leads to a different scenario for each of the three

possible axial symmetries (Fig. 3). In the fivefold case

(Fig. 3 a), each cap is made by five triangular faces, whereas

in the threefold and twofold situations the caps are made by

four faces (Fig. 3, b and c). In the twofold case, the two spec-

ular possibilities (shown in Figs. 3, c and d) are valid to

define the cap.

The number of faces in the body is then obtained by sub-

tracting from the 20 faces of an icosahedron the number of

triangles involved in the caps. Thus in the fivefold case the

body has 10 triangular faces, and in the threefold and twofold
Biophysical Journal 98(12) 2993–3003



FIGURE 3 The three axes of symmetry of an icosahedron: fivefold (a),

threefold (b), and twofold (c and d). The patterned triangles emphasize the

end-faces that constitute the cap of the elongated structure. The solid dots

highlight the vertexes that define the rim of the caps. In panels c and d,

we show that the construction of the twofold prolate is intrinsically skewed

and has two possibilities.
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situations it has 12. But in general, not all these triangular

body faces will be equal. Symmetry arguments allow us to

calculate how many nonequivalent triangles we need to

construct the body of these prolates. Any elongated capsid

has two types of symmetry: the axial one, i.e., fivefold, three-

fold, or twofold, and the equivalency between caps, i.e., a

twofold axis in the middle of the body perpendicular to the

axis of the capsid. The product of the two symmetries defines

the symmetry number, which sets the number of body-faces

that must be equivalent. Hence, by dividing the total faces in

the body by the symmetry number, we obtain the number of

nonequivalent body-triangles. In the fivefold case the body

has 10 faces, and the symmetry number is 10. Thus we

only need one kind of triangle to characterize the tubular

part (Fig. 2). Threefold and twofold prolates have 12 body-

faces, and symmetry numbers six and four, respectively.

Therefore, we need two different body-triangles in the three-

fold case (Fig. 4), and three in the twofold one (Fig. 5).

All triangles in both caps are equilateral and equal, and are

determined by the cap vector ~CT , (Eq. 1). As in the Caspar

and Klug model, this vector defines the triangulation number

of the caps Tend h T (Eq. 2), and fixes the radius of the

prolate. To describe the triangular faces of the elongated

body we need a second vector ~CQ, which connects a pen-

tamer in one cap to the closest one in the opposite cap, and

it is given by

~CQ ¼ h
0
~a
0

1 þ k
0
~a
0

2h
�

h
0
; k
0
�0
; (6)

where (h0, k0)0 are integers from a second pair of hexagonal

coordinates, rotated counterclockwise 60� with respect to

the original ones (Fig. 2 and Supporting Material A). Even

though it is not strictly necessary to define a new pair of

axes, this representation is more convenient, because for

h0 ¼ h and k0 ¼ k we recover, in the body, the equilateral

triangle that defines the face of an icosahedron.

Fivefold prolates

This case was studied by Moody (21,29), and it is the

simplest situation because the body is made by 10 copies

of the same midtriangle (Fig. 2). This triangular body-face
Biophysical Journal 98(12) 2993–3003
is defined straightforwardly by ~CT and ~CQ (Eqs. 1 and 6).

Its normalized surface, i.e., j~CT �~CQj=2S0, defines a new

triangulation number

T1 ¼ hh
0 þ hk

0 þ kk
0
h Q1f ; (7)

which Moody labeled as Tmid. This T1-number can also be

expressed in terms of f ¼ gcd(h, k), with

Q1 ¼ h0h
0 þ h0k

0 þ k0k
0
; (8)

which we rename as Q5F h Q1 in the fivefold case.

For (h0 ¼ h,k0 ¼ k) we obtain T1 ¼ Tend and Q0
5F ¼ Pf ,

thus recovering a Caspar and Klug’s icosahedral shell. The

elongation with respect to the spherical capsid is then char-

acterized by DQ h Q – Q0. It is geometrically possible to

build structures with T1 < Tend, i.e., DQ < 0, but this oblate

capsid have not been found experimentally (29).

The sum of triangulation numbers of all faces gives the

total surface of the bacilliform capsid. In this case there are

10 end-triangles in the caps and 10 midtriangles in the

body. The total number of proteins in the capsid is then

N5F
sub ¼ 3ð10 Tend þ 10 T1Þ ¼ 30f ðPf þ Q5FÞ: (9)

As in icosahedral capsids, the 12 pentamers of a prolate

require 60 proteins. Thus the number of hexamers is N5F
H ¼

5ðTend þ T1Þ � 10, and the total number of capsomers is

N5F ¼ 5ðTend þ T1Þ þ 2 ¼ 5f ðPf þ Q5FÞ þ 2: (10)

The value of Tend controls the radius of the structure. If we fix

it, i.e., P and f are constant, the different values of Q5F(h0, k0)
in Eq. 10 give the possible lengths of the prolate in terms of

number of capsomers. As h0 and k0 are integers, the number

of capsomers and proteins in the body of a prolate can only

adopt a discrete set of values. One can prove using Bezout’s

identity (Supporting Material B) that the minimum step

possible in Q5F is

DQmin
5F ¼ 1: (11)

Thus, unlike Tend, Q5F can be any nonnegative integer.

Combining Eqs. 10 and 11, the minimum length step of

a prolate in terms of capsomer numbers is

DNmin
5F ¼ 5f DQmin

5F ¼ 5f (12)

or DN5F
sub ¼ 30f in terms of subunits. Hence, prolates based

on f ¼ 1 caps, e.g., Tend ¼ 1 or Tend ¼ 3, have lengths dis-

cretized in steps of five capsomers, i.e., 30 proteins. How-

ever, those based on f ¼ 2, e.g., Tend ¼ 4 or Tend ¼ 12

caps, must add multiples of 10 capsomers, i.e., 60 proteins,

to enlarge the structure.

There are some examples of fivefold prolate viruses,

especially among bacteriophages. For instance, 429 is a

Tend ¼ 3, Q5F ¼ 5 (30), and bacteriophage T4 has Tend ¼ 13l
and Q5F ¼ 20 (31).
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Threefold prolates

Prolates can also be made by the elongation of an icosahe-

dron along one of its threefold axes. To build this structure

one needs two different types of body-triangles (Fig. 4), as

discussed before. The first triangle is the same T1 used in

the fivefold situation. The second triangle is defined by the

body vector ~CQ and a 120� counterclockwise rotation of

the cap vector

~C
120o

T ¼ ð�h� kÞ~a1 þ h~a2hð�h� k; hÞ: (13)

This is because these two nonequivalent body-faces and

three end-triangles from the cap must share a common vertex

at the origin, defining a pentamer. Therefore, to close the

structure properly, we must introduce a 60o wedge in the

plane between the second triangle and the adjacent end-

face (Fig. 4). The normalized surface of this second triangle

is then j~CQ �~C
120o

T j=2S0, which defines a new triangulation

number

T2 ¼ hh
0 þ kh

0 þ kk
0
hQ2f ; (14)
FIGURE 4 (a) (Top) Basic elements to build a prolate based on hemi-

spherical icosahedral caps centered on a threefold axis. The vector

C
!

s ¼ C
!

h=3 (in yellow) joins to consecutive pentamers along the rim of

the cap. (Bottom image) Complete flat design of the prolate with the eight

end-triangles and the 12 body-triangles. (b) Zenithal (top image) and lateral

(bottom image) view of the resulting folded structure, along with its ping-

pong model representation. The case illustrated in this figure corresponds

to a Tend ¼ 3 and Q3F ¼ 9.
where

Q2 ¼ h0h
0 þ k0h

0 þ k0k
0
: (15)

To characterize the threefold body we sum up the contri-

butions of the two nonequivalent midtriangles, yielding

Q3FhQ1 þ Q2 ¼ h0

�
2h

0 þ k
0
�
þ k0

�
2k
0 þ h

0
�
; (16)

which for the spherical case reduces to Q0
3F ¼ 2Pf . Note

that the value of Q3F for the isometric particle starts at

Q0
3F ¼ 2 Tend=f .

The surface of the capsid determines the total number of

subunits as in the fivefold case. Now we have eight end-

triangles with Tend, six midtriangles with T1, and another

six with T2, which leads to

N3F
sub ¼ 3ð8 Tend þ 6 T1 þ 6 T2Þ ¼ 6f ð4Pf þ 3Q3FÞ: (17)

Again, the 12 pentamers of the prolate account for 60

proteins, so the number of hexamers is N3F
H ¼ 4 Tendþ

3ðT1 þ T2Þ � 10; and the total number of capsomers is

N3F ¼ 4Tend þ 3ðT1 þ T2Þ þ 2 ¼ f ð4Pf þ 3Q3FÞ þ 2: (18)

As before, the value of Q3F controls the length of the shell

and can only adopt a discrete set of values. In this case the

minimum step possible in Q3F is (Supporting Material B)

DQmin
3F ¼

3 if jh0 � k0jf3

1 the rest
:

�
(19)

Therefore, the possible lengths of threefold prolates increase

at discrete steps of capsomers:

DNmin
3F ¼ 3f DQmin

3F ¼
9f if jh0 � k0jf3

3f the rest
:

�
(20)

Accordingly, there are two different situations depending on

the value of jh0 – k0j. In particular, for the class P ¼ 1 (h0 ¼
1,k0 ¼ 0) we get DN3F ¼ 3f, hence the possible lengths of

a Tend ¼ 1 (f ¼ 1) capped shell are discretized by steps of

at least DNmin
3F ¼ 3 capsomers, i.e., 18 proteins. This growing

law agrees with the results obtained for AMV (34) and

supports its classification as a threefold Tend ¼ 1 bacilliform

particle (see Applications: Structural Characterization of

Prolate Viruses, below). On the other hand, a P ¼ 3 (h0 ¼
k0 ¼ 1) prolate has DNmin

3F ¼ 9f . Thus, the lengths of a

Tend ¼ 3 (f ¼ 1) capsid correspond to multiples of

DNmin
3F ¼ 9 capsomers. In fact, rice tungro bacilliform virus

(RTBV) has been suggested to be a threefold Tend ¼ 3

prolate (35).

Twofold prolates

In this case, the body is determined by three nonequivalent

midtriangles (Fig. 5). The first body-face is again the

T1-triangle. The second midtriangle is the T2-triangle intro-

duced in the threefold case. The third midtriangle is
Biophysical Journal 98(12) 2993–3003



FIGURE 5 (a) (Top) Basic elements required to build a prolate capsid

with twofold axial symmetry. The vector C
!

s ¼ C
!

h=2 (in yellow) joins to

consecutive pentamers in the rim of the cap. (Bottom) Complete flat design

of the prolate with the eight end-triangles and the 12 body-triangles. (b)

Zenithal (top image) and lateral (bottom image) view of the resulting folded

structure, along with its ping-pong model representation. The case illustrated

in this figure corresponds to a Tend ¼ 3 and Q5F ¼ 14.
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a translation by~CT of the first one and has the same triangula-

tion number T1, but they are not equivalent because is not

possible to relate each other by applying only the symmetries

of a twofold prolate. To take into account the three nonequiv-

alent midtriangles, it is convenient to define the body in terms

of

Q2Fh2Q1 þ Q2 ¼ h0

�
3h

0 þ 2k
0
�
þ k0

�
3k
0 þ h

0
�
; (21)

which for the case of a spherical structure reduces to

Q0
2F ¼ 3Pf ¼ 3 Tend=f .

We can compute the total number of proteins of the

prolate, as we did for the fivefold and threefold cases. Now

we have eight end-triangles in the caps with Tend, and four

of each of the three midtriangles in the body, where two of

them share the same T1 number. Thus, we obtain

N2F
sub ¼ 3ð8 Tend þ 8 T1 þ 4 T2Þ ¼ 12f ð2Pf þ Q2FÞ: (22)

The twofold prolate has 12 pentamers, N2F
H ¼ 4 Tendþ

2ð2 T1 þ T2Þ � 10 hexamers; and a total number of cap-

somers

N2F ¼ 4Tend þ 2ð2T1 þ T2Þ þ 2

¼ 2f ð2Pf þ Q2FÞ þ 2:
(23)
Biophysical Journal 98(12) 2993–3003
Again, the value of Q2F determines the length of the

prolate, which can grow at discretized steps of (Supporting

Material B)

DQmin
2F ¼

7 if jh0 � 2k0jf7

1 the rest
;

�
(24)

or, in terms of capsomers,

DNmin
2F ¼ 2f DQ2F ¼

14f if jh0 � 2k0jf7

2f the rest:
:

�
(25)

We have then two different cases depending on the value

of h0 and k0. In particular for the class P ¼ 1 (h0 ¼ 1,k0 ¼ 0)

or P¼ 3 (h0¼ k0¼ 1) the growing law is DNmin
2F ¼ 2f , hence

the possible number of capsomers of a Tend¼ 1 or a Tend ¼ 3

capped shell is discretized at intervals of two capsomers. On

the other hand, for P ¼ 7l with (h0 ¼ 2,k0 ¼ 1) the minimum

step is DNmin
2F ¼ 14f . Note that for twofold prolates, the

chirality is important. For instance, for the specular case

(h0 ¼ 1,k0 ¼ 2), we obtain DNmin
2F ¼ 2f . Thus, a shell based

on a T ¼ 7l can have different lengths separated by steps of

14 capsomers, whereas for a T¼ 7d the minimum step is two

hexamers.

Additionally, prolates with twofold axial symmetry can be

made in two different and nonequivalent ways, depending on

how we chose the triangles of the caps (Fig. 3, c and d). In

this work we have chosen the distribution shown in Fig. 3

c, which we can call twofold dextro. A similar construction

can be made with the laevo selection of end-cap triangles

(Fig. 3 d) obtaining the same growing rules, but interchang-

ing h0 by k0 in Eq. 25.

We are not aware of any prolate virus which is known for

sure to have a twofold construction. However, it is possible

that an aberrant particle of the AMV (36) could be the case

(discussed below in Applications: Structural Characteriza-

tion of Prolate Viruses).

A tubular description

The generalized model of elongated capsids introduced

above allows us to enumerate all possible icosahedral pro-

lates. In this section, we will describe a procedure to com-

pute, for any icosahedrally capped shell, the radius, the

length, and the position of the capsomers in the body. This

geometrical characterization of the resulting capsids was

carried out neither in Caspar and Klug nor in Moody’s

model, but it turns out to be quite helpful for both recognition

and design of viral shells.

The tubular body of an elongated virus can be built by roll-

ing up an hexagonal sheet (Fig. 6), much in the same way as

with carbon nanotubes (37). However, for prolate viral

capsids, only the subset of tubes closed by icosahedral

caps with fivefold, threefold, or twofold axial symmetry is

valid.

This procedure involves an approximation, because one

assumes that the surface of the resulting cylinder is the



FIGURE 6 (a) The unrolled tubular body of a prolate virus (shaded area)

shown on the honeycomb lattice. The solid dots indicate the location of the

pentamers in the rim. (b) Tubular body obtained by rolling up the shaded

area in the direction of C
!

h so that O meets O0 and B meets B0. The example

corresponds to a Tend ¼ 1 and Q2F ¼ 9 twofold prolate, with h ¼ 1, k ¼ 0,

and h0 ¼ 3, k0 ¼ 0.
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same as that of the flat lattice, which implies that hexamers

will be bent and stretched in the tube. However, it can be

shown that it is a very good approximation (see Supporting

Material H).

Radius of the tube

In the tubular approach (Fig. 6), the circumference of the

tube is determined by the chiral vector

~Ch ¼ m~a1 þ n~a2hðm; nÞ; (26)

which belongs to the hexagonal lattice, i.e., m and n are

integers, and connects all pentamers along the rim of the

cap. Hence, ~Ch is related to the cap vector ~CT , but differently

for each axial symmetry.

The fivefold case is particularly simple. The rim of the

tube is delimited by the five vertexes of the icosahedron,

i.e., pentamers, that lie on a plane perpendicular to the axis

of the prolate (Fig. 3 a). Therefore, by unrolling the body

of the capsid, it is easy to see that the circumference of the

tube is just made by five times the cap vector ~CT (Eq. 1):

~C
5F

h ¼ 5~CT ¼ 5f ðh0; k0Þ: (27)

Hence, for P ¼ 1 we obtain ~C
5F

T ¼ ð5f ; 0Þ, and for P ¼ 3 we

have ~C
5F

T ¼ ð5f ; 5f Þ.
In the threefold case, the circumference of the cap is

defined by three nonconsecutive vertexes (pentamers) in a

section perpendicular to the axis (Fig. 3 b). The vector that

connects two of these vertexes lying on the rim is plotted

in Fig. 4 and, in terms of the cap vector, is given by

~CT �~C
120o

T . Thus the chiral vector is just obtained by

summing up three times this vector

~C
3F

h ¼ 3
�
~CT �~C

120o

T

�
¼ 3f ð2h0 þ k0; k0 � h0Þ: (28)

Similarly, in the twofold case, the circumference of the

tube is defined by the two pentamers that are farther apart
and lie on a section perpendicular to the axis (Fig. 3 c). As

we can see in Fig. 5, the rim vector that connects the two

pentamers in the unrolled body is 2~CT �~C
120o

T . Hence, the

chiral vector is made by two times the rim vector, i.e.,

~C
2F

h ¼ 2
�
2~CT �~C

120o

T

�
¼ 2f ð3h0 þ k0; 2k0 � h0Þ: (29)

For symmetry reasons, the specular construction defined in

Fig. 3 d leads to the same results, but permuting h0 and k0.

The radius of the resulting tube is, in all cases,

R ¼ j
~Chj
2p

; (30)

and the particular expressions for each symmetry are listed

in Table S1. From these results, we also observe that for a

given Tend

R5F ( R3F ( R2F; (31)

hence, the fivefold prolate has the smallest radius, followed

by the threefold and finally the twofold structure.

Chiral angle and distribution of hexamers
in the body

The distribution of hexamers in the body of a prolate is

determined by the chiral angle q, which is the angle between
~Ch and the vector ~a1 of the hexagonal lattice (Fig. 6).

Accordingly,

cosðqÞ ¼
~Ch$~a1

j~Chj
¼ 2m þ n

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ mn þ n2
p ; (32)

where, due to the symmetry of the hexagonal lattice, q is

defined between 0� and 60�.
There are two special situations. For n ¼ 0 (q ¼ 0�) or

m ¼ 0 (q ¼ 60�), i hexamers in the body are arranged in

rings, Ri, whereas for m¼ n (q¼ 30�), i hexamers are distrib-

uted in zigzag rows, Zi (rings and zigzag layers correspond

to zigzag and armchair structures, respectively, in carbon

nanotubes).

The components of the chiral vector ~Ch depend on the

axial symmetry. Therefore, ring and zigzag bodies are asso-

ciated to different classes P for each axial symmetry

(Table S2). For instance, rings are obtained for P ¼ 1 five-

fold, P ¼ 3 threefold, and P ¼ 7l twofold, whereas zigzag

appear for P ¼ 1 threefold, P ¼ 3 fivefold, and P ¼ 21d
twofold.

Smallest length step and particle length

The chiral vector defines the radius of the tube, but its height

is controlled by the body vector ~CQ, which connects two

pentamers in different caps (Fig. 6). Hence, the length of

the tubular part of the capsid is given by the perpendicular

projection of ~CQ onto ~Ch, namely,
Biophysical Journal 98(12) 2993–3003
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L ¼ j
~Ch � ~CQj
j~Chj

¼ a2
ffiffiffi
3
p

2

Q

j~Chj
sf ; (33)

where the value of s can be 5, 3, or 2 in consonance with the

axial symmetry. Because Q is discretized by DQmin, the

possible lengths of a prolate are discretized by

DLmin ¼ a2
ffiffiffi
3
p

2

DQmin

j~Chj
sf : (34)

This is directly related to the elongation of the body

DLhDLmin
�
Q� Q0

�
hDLminDQ; (35)

which becomes zero for a spherical capsid, when Q ¼ Q0.

In Table S1 we list the values of these properties for each

axial symmetry.

Another relevant geometrical property is the aspect ratio,

which can be defined as the total length of the prolate divided

by its width, i.e.,

ar ¼ 2R þ DL

2R
¼ 1 þ DL

2R
: (36)

Finally, the position of all capsomers in the tube can also

be evaluated, as shown in Supporting Material D.
Degeneracy and number of relative orientations

Some prolate structures can be built in different ways. Here

the term ‘‘degenerate’’ refers to architectures that have the

same Tend, axial symmetry, radius, and length, but differ in

the relative orientation of pentamers in both caps. As shown

in Supporting Material E, the degeneracy, i.e., the number of

different structures is

D ¼ f DQmin: (37)

Therefore, all elongated structures based on icosahedral

caps with f > 1 or DQmin > 1 are degenerate. In the fivefold

case, we have DQmin
5F ¼ 1; therefore structures with f ¼ 1,

e.g., Tend¼ 1, 3, 7, 13., have always a unique prolate capsid,

whereas for f > 1, e.g., Tend ¼ 4, 9, 12, there are f shells with

different relative orientation between the pentamers of the two

caps. We stress that this occurs even for the spherical case

when Tend ¼ T1. For instance, a Tend ¼ 4 (f ¼ 2) can adopt

two spherical configurations (Fig. S2) but only one has full

icosahedral symmetry. In fact, we have found that for T ¼ 4

the nonicosahedral structure is feasible and has the same

free energy as the icosahedral one in simulations of a simple

physical model for spherical capsids (13).

Interestingly, elongated structures with threefold and

twofold axial symmetry can be degenerate even for f ¼ 1,

but only for classes P with DQmin > 1. For example, there

are three possible relative orientations between the caps of a

Tend ¼ 3 (DQmin ¼ 3) for a given length. Once again, this

holds even for the nonelongated capsids, leading to three
Biophysical Journal 98(12) 2993–3003
possible structures for a spherical T ¼ 3 capsid, one of

them with complete icosahedral symmetry and the other

two just keeping the threefold axial symmetry. The same

happens, for instance, with structures based on Tend ¼ 7d
with twofold axial symmetry and the choice of caps of

Fig. 3 c, where for a fixed length there are seven possible

choices for the relative orientation between the caps, even

for the nonelongated case.
RESULTS

The main results of this section are summarized in Table S1

and Table S2, listing the expressions of the relevant quanti-

ties for each axial symmetry (Table S1) along with their

specific values for the smallest classes P in the Caspar and

Klug classification (Table S2).

Applications: structural characterization
of prolate viruses

In this section, we will use different viruses to illustrate how

the insights gained in this work can be useful for character-

ization purposes.

Bacteriophage T4

Bacteriophage T4 is one of the few prolate viruses whose

capsid structure has been determined at high resolution

(31), and we will illustrate that is possible to infer its struc-

ture using a few experimental data.

In particular, we will use the experimental diameter of

the capsid, 2Rexp ¼ 86 5 3 nm, and the distance between

hexamers in the body, aexp ¼ 14 5 2 nm, both obtained

from Fokine et al. (31). Inserting these data in the formulas

of the radius for the different symmetries listed in Table

S1, we obtain T5F ¼ 14.9 5 1.6, T3F ¼ 13.8 5 1.5, and

T2F ¼ 13.3 5 1.4 as potential values for the triangulation

number of the cap. Because Tend ¼ 14 or 15 are not valid

results, the triangulation number should be either Tend ¼ 13

or 16.

Moreover, the shell is composed by 167 capsomers: 155

hexamers made of 930 copies of gp23*, 11 pentamers

made of gp24*, and an effective pentamer corresponding

to the gp20 connector. Taking into account the growing

laws for the different Tend-caps proposed (Table S3), we

observe that only Tend ¼ 13 with fivefold axial symmetry

leads to a capsid with 167 capsomers. The number of hexam-

ers involved in the elongation is 35 because the icosahedral

shell has 132 capsomers, thus from Eq. 12 we get DQ5F ¼ 7.

Taking into account that in the spherical case Q0
5F ¼ 13, our

analysis suggests that the structure of bacteriophage T4 is

a fivefold prolate with Tend ¼ 13 and Q5F ¼ 20, which is

in fact the structure resolved in the cryo-EM reconstruction.

We can also compute the aspect ratio using Eq. 36, obtaining

a value of 1.3 in agreement with the experimental value,

1.4 5 0.2.
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Therefore, using three simple inputs, i.e., diameter,

distance between hexamers, and total number of proteins, it

is possible to infer the structure of the virus. These data can

be obtained from different experimental techniques, e.g., elec-

tron micrographs, optical diffraction, or sedimentation, but

unfortunately seem not to be available for most viruses.
Alfalfa mosaic virus (AMV)

AMV is a well-studied plant virus and adopts different lengths

depending on the amount of genetic material encapsidated

(32,34) (Table S4). The number of protein subunits in the

in vitro reconstituted capsids have been determined from their

molecular weights and correspond to Nsub ¼ 60, 132, 150,

186, and 240 (34). Only the smallest capsid has been recon-

structed by x-ray (38) and is a spherical T ¼ 1 composed of

12 pentamers. The elongated particles have a diameter similar

to that of the icosahedral one, hence they should have Tend¼ 1

caps. Assuming that the body of the prolate particles is formed

by hexamers, the number of proteins can easily be translated

into number of capsomers, obtaining the series N¼ 12, 24, 27,

33, and 42. Therefore, a multiple of at least three hexamers is

added in every step. According to our model, this can only

be explained if AMV elongated particles adopt a structure

Tend ¼ 1 centered on a threefold symmetry axis (Table S3

and Table S4). The same architecture was already proposed

in the literature (32,33) based on optical diffraction and

Geodestix models (Geodestix, Spokane, WA).

The predictions of our model are not only useful to infer the

structure, but can also be used to extract other geometrical and

structural information. For instance, the architecture proposed

has a body made of hexamers arranged in a zigzag pattern Z6,

and the minimum step of DN3F¼ 3 capsomers corresponds to

an increment in length of DL3f¼ a/2 (Table S2). Experimen-

tally, it is known that each step of 18 subunits, i.e., three

hexamers, increases the length by 4.34 nm (34). Hence the

distance between hexamers should be a x 8.68 nm, which

is in agreement with diffraction analysis (32), and from that

one can estimate, for instance, the typical size of a capsomer

or a coat protein.

AMV also makes an aberrant elongated particle that

contains 120 protein subunits, and does not follow the

sequence discussed above (36). Assuming that the central

body is built of hexamers, this number of proteins corresponds

to N ¼ 22 capsomers. In addition, the particle has again

a similar radius suggesting that it is based on Tend ¼ 1 caps.

Hence, in the framework of our model there are two possible

capsids for this aberrant particle (Table S3): a Tend¼ 1 bacilli-

form shell centered on a fivefold axis with Q5F ¼ 2, and a

Tend ¼ 1 prolate centered on a twofold axis with Q2F ¼ 5.

However, Cusack et al. (36) suggests that the particles show

an oblate shape. In that case the twofold situation seems a better

candidate, as twofold structures are quite distorted and could

lead to deformed shapes. In any case, experimentally, it is

not clear whether this aberrant particle is polymorphic.
Rice tungro bacilliform virus

The structure of this bacilliform virus has not been fully

determined yet. The diameter of the tubular part, 2Rexp ¼
30 5 3 nm, has been obtained from EM micrographs, and

diffraction experiments suggest that the distance between

hexamers in the body is aexp ¼ 10 5 2 nm, and they are

arranged in rings (35). Geometrically, for each axial

symmetry, there is only one class P having bodies made of

hexamer rings: P ¼ 1, P ¼ 3, and P ¼ 7l for five-, three-,

and twofold symmetries, respectively (Table S2). We can

use the experimental estimate of aexp to calculate what would

be the radius of the cap for each of these possibilities. The

result is, respectively,

2RP¼ 1
5F ¼ f ð16 5 2Þ nm;

2RP¼ 3
3F ¼ f ð28 5 3Þ nm;

and

2RP¼ 7
2F ¼ f ð44 5 9Þ nm;

Thus, comparing with the experimental value 2Rexp, RTBV

is either a Tend ¼ 4 (fivefold) or a Tend ¼ 3 (threefold) struc-

ture with a body made of rings of 10 or 9 hexamers, respec-

tively. The lack of further experimental information does not

allow us to discriminate between both possibilities.

However, we can use our model to predict what would be

the expected geometrical properties of the virus in each

case. If RTBV is based on a Tend ¼ 4 (fivefold), its number

of subunits should follow the law N5F
sub ¼ 240þ ðn� 60Þ,

and its total length should be L(n) ¼ 2R þ nDL, where

DL ¼ 8.7 5 1.7, which is the same for both architectures

because they have ring-bodies. Experimentally, the length

of the predominant particle is Lexp¼ 130 5 3 nm. Therefore,

we obtain a value of n¼ 11 5 3 for the number of steps, that

taking into account that Q0
5F ¼ 2, leads to Q5F ¼ 13 5 3.

Thus, the structure would have N ¼ 152 5 30 capsomers

or Nsub ¼ 900 5 180 proteins. Analogously, if RTBV is

based on a Tend¼ 3 (threefold) architecture, we would obtain

a structure characterized by N ¼ 130 5 30, Q3F ¼ 39 5 9,

and N3F
sub ¼ 180þ ðn� 54Þ ¼ 7705160 protein subunits.

Note that, simply by knowing the total number of proteins

or the molecular weight of the capsid, one could know which

is the right structure.

Hull (35) proposed that RTBV is an elongated particle

based on Tend ¼ 3 (threefold), which is one of the solutions

of our analysis. However, from the experimental data used

above we cannot reject the Tend ¼ 4 (fivefold) architecture.
CONCLUSIONS

In this work we have presented a geometrical model that

establishes the architectural principles that control the

construction of spherical and prolate viruses with icosahedral

symmetry. Closed elongated viruses can be constructed by
Biophysical Journal 98(12) 2993–3003
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the elongation of an icosahedron along a fivefold, threefold,

or twofold axis of symmetry. Interestingly, there is a finite

set of possibilities to do it, and that leads to discretization

rules for the length and number of proteins. These rules are

determined by the axial symmetry and the T number of the

cap. Moreover, our analysis leads to expressions for the

radius and length of prolates, as well as the arrangement of

capsomers in the tubular body.

The model accounts for the Caspar and Klug structures

(20) and the fivefold prolates described by Moody (21,29)

as a special case, adding new geometrical details. More

importantly, we have shown that it is possible to construct

quasispherical capsids that can be conceived as two hemi-

spherical caps rotated around one of their symmetry axes.

These degenerate viruses do not have complete icosahedral

symmetry, but are spherical structures that could compete

and interfere in the assembly of viral particles. In fact,

preliminary results suggest that, in terms of free energy,

these structures are, in some cases, equal in stability to the

normal icosahedral structures. In general, elongated viruses

with f > 1 or DQmin > 1 can also have more than one struc-

ture with the same length but differing on the relative orien-

tation between the caps. This can add an extra complication

to the experimental reconstruction of prolate structures.

It is worth mentioning that using a very simple model of

interaction between capsomers, we have found that these

icosahedral prolate structures are indeed free energy minima,

thus justifying their possible occurrence in nature (13). How-

ever, not all of them seem to be equivalent in energy or even

energetically optimal, which might be the reason why some

structures, especially those based on twofold axial sym-

metry, seem hard to be observed in native viruses.

On the other hand, there are viruses, like polyomavirus,

that are able to adopt elongated structures built exclusively

by pentamers (39,40). Strictly, these structures do not follow

the geometrical model described above. However, Luque

et al. (13) showed that hexagonally ordered tubes closed

by icosahedral caps and made only by one type of capsomer

are energy minima and follow the same selection rules pre-

dicted by our model.

The results of this work open the door to a simple charac-

terization of elongated viruses using a few parameters, e.g.,

subunit’s size or number, particle dimensions or chirality

of the body, which can be obtained from different standard

experimental techniques, such as electrophoresis, electron

microscopy and electron or x-ray diffraction.

The fact that prolate viruses can adopt different lengths

suggest that in principle it should be possible to control it

by using the proper assembly conditions and/or using, for

instance, different lengths of genetic or nongenetic materials.

This possibility would facilitate the design of artificial viral

capsids in applications such as nanopatterning or nanotem-

plating. The structural information provided by the geomet-

rical principles laid out in this work could be potentially very

helpful in this task.
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4.0-Å resolution. J. Virol. 71:7911–7916.

39. Kiselev, N. A., and A. Klug. 1969. The structure of viruses of the

papilloma-polyoma type. V. Tubular variants built of pentamers.

J. Mol. Biol. 40:155–171.

40. Baker, T. S., D. L. D. Caspar, and W. T. Murakami. 1983. Polyoma

virus ‘hexamer’ tubes consist of paired pentamers. Nature. 303:

446–448.
Biophysical Journal 98(12) 2993–3003


	The Structure of Elongated Viral Capsids
	Introduction
	Icosahedral capsids

	Prolate or Bacilliform Capsids: AnbspGeneralized Geometrical Model
	Fivefold prolates
	Threefold prolates
	Twofold prolates
	A tubular description
	Radius of the tube
	Chiral angle and distribution of hexamers in the body
	Smallest length step and particle length
	Degeneracy and number of relative orientations

	Results
	Applications: structural characterization of prolate viruses
	Bacteriophage T4
	Alfalfa mosaic virus (AMV)
	Rice tungro bacilliform virus

	Conclusions
	Supporting Material
	References


