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Abstract--Many information systems capable of handling incomplete or fuzzy information manipulate 
objects with single-valued attributes. Information is then said to be disjunctive. Information is said to be 
conjunctive when pertaining to many-valued attributes. While a piece of incomplete disjunctive informa- 
tion is easily represented by means of a set of mutually exclusive possible values, modeling incomplete 
conjunctive information theoretically leads to consider families of sets, since attributes are then set-valued 
under complete information. Some proposals are made in order to efficiently and rigorously represent 
incomplete conjunctive information, and deal with query evaluation, especially in the case where only 
upper and/or lower bounds of the set of values of a many-valued attribute are known. Applications of this 
approach can be expected for the processing of time intervals, as well as spatial reasoning, among other 
topics, in knowledge base management. 

1. I N T R O D U C T I O N  

Situations where only incomplete information is available are often encountered. Thus, the 
representation and the management  of  such pieces of  information are important  issues. However  
there exist various kinds of  incomplete (or partial) information. In this paper  we make a distinction 
between a partially-known (or if we prefer ill-known) value and a partially-known (or ill-known) 
set. This corresponds to the difference between a single-valued attribute and a multiple-valued 
attribute in a data base. When the value of a single-valued attribute is incompletely/p.artially known 
for a considered object, it is only known that this value belongs to some subset of  the attribute 
domain. In a more general case this subset may be fuzzy and then it restricts the more or less 
possible values of  the attribute. For  instance, the attribute "age"  is obviously single-valued and 
in case of  incomplete or fuzzy information, we may only know that "John  is between 20 and 25 
years old" or that "John  is young".  In that case the (fuzzy) subset under consideration gathers 
mutually exclusive values, since a single-valued attribute has only one value for a given object. This 
kind 'of  incomplete knowledge is said to be disjunctive by some authors [1-5]. In contrast, even when 
it is perfectly known, the information pertaining to a multiple-valued attribute for a given object 
can be modelled by a subset which does not necessarily reduce to a singleton. For  instance, if we 
know that "John  speaks English and French only", there is no mutual  exclusiveness between 
"English" and "French"  in the subset {English, French}. In that case the information is said to 
be conjunctive. More generally, conjunctive information, thus corresponding to a multiple-valued 
attribute, may be incompletely or even fuzzily known. The representation and the management  of  
such pieces of  knowledge in information systems is the topic of  this paper. In the next section 
representation issues are discussed, and a representation by means of  pairs of  nested sets is more 
particularly considered for incomplete conjunctive information. Then the evaluation of  queries in 
face of  such information is studied. 

2. R E P R E S E N T A T I O N  ISSUES 

2. I. Upper and lower approximations of an ill-known set 

Let f~ be a referential. Let A be an ordinary set which is ill-known; this means that there exists 
at least one element to ~ t~, for which it is not known if whether o~ belongs to A or not. A natural 
way for representing this state of  uncertainty about  the elements which do belong to A, is to 
consider the different possible realization of  A, namely the subsets As --q f~, i e I, where I is an index 
set. Note  that the Ais as possible realizations Of A are mutually exclusive in 2 a. I f  all the A;s are 
not regarded as equally probable, a probability assignment m from 2 n to [0, 1] can be introduced, 
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such that 

rn(Ai) = 1 (I being assumed finite). 
i ~ l  

m(A~) is then the probabili ty that A = A,. Then, the ill-known set A is viewed as a random set, 
and m is very similar to a basic probabili ty assignment in the sense of  Shafer [6]. However, we may 
also use a possibility distribution zt from 2 n to [0, 1] (see Prade and Testemale [7], Dubois and Prade 
[8, 9], Yager [10, 11]) in order to model that some realizations are more possible than others. Then 
I = {i ln(A/)  > 0}, and n(A/) is the possibility (in the sense of  Zadeh [12]) that A = A~ and we have 
the normalization condition 

max rc(Ai) = 1 
i E l  

(i.e. at least one realization should be considered as completely possible). Note  that A~ = ~ ,  for 
some i is allowed in the model. 

A probabili ty assignment or a possibility distribution over 2 ° may be considered as too 
sophisticated, hence heavy-to-handle representation. Then it would be desirable to approximate 
such a representation in a natural way. This is what is proposed now. Let 

A - = ( ~ A i ,  A + = U A ~ .  (1) 
i 6 1  i ~ I  

Obviously, we are certain that all the elements of  A belong to A, i.e. A - _ A and that all the 
elements outside A + do not belong to A, i.e. A _ A +. In that sense A + corresponds to a negative 
information. Moreover,  A + gathers all the possible elements of  A. Note that A - ~_ A + and that 
A - may be empty or A + may be equal to f~. The pair (A - ,  A +) provides a lower and an upper 
approximation of  A. Such a pair has been considered by Narin 'yani  [13, 14] under the name of  
"sub-definite set". The "flou" sets introduced by Gent i lhomme [15] are other examples of  pairs 
of  nested sets. Then the ill-known set A is implicitly represented by the subset ~¢ of  2 ° defined by 

~1 = {E • 2n, A - __q E _= A +}. (2) 

When A - = A +, ~1 = {A } and A is perfectly known. Note  that, Vi • L A~ • ~¢; however there may 
be elements of  ~1 which are not A/s, for instance A + and A - themselves. Note that ~ contains 
the empty set as soon as A -  = ~ .  

This representation can be improved by taking into account the possibility distribution 7r in the 
definitions of  the lower and upper approximations,  A and A +. The extent to which it is certain 
that an element o9 • f~ belongs to A (i.e. the degree of  membership of  this element co to A -)  
corresponds to the extent to which it is impossible to find an A~ such that o9 ¢ A~, including Ai = ~ .  
This leads to 

Vo9 • f~, PA- (CO) = 1 -- sup zr(A/) = inf [1 -- 7r(Ai)]. (3) 
i: to~ Ai  i : ~ ¢  A i 

Similarly, the degree of  membership of  an element co to A + corresponds to the extent to which 
it is possible that this element belongs to A, i.e. to the possibility of  finding an A~ such that co • Av 
This gives 

Vo9 •f~, #A+(og)= sup rr(A/). (4) 
i:ogE A i 

N.B. #A-(og) and #A+(og) are just upper necessity and upper possibility measures of  the singleton 
{co } in the sense of  Dubois and Prade [8, 9]. More recently, Yager [11] has considered the quantity 
1 - # A +  (CO) under the name of  "rebuff  measure".  In this paper, Yager shows how the possibility 
distribution Ir can, in some cases, be derived f rom (fuzzily) quantified statements. 

It can be easily checked that if Vi • L n(A~) = 1, i.e. each A~ is equally possible, then equations 
(3) and (4) reduce to equation (1). Viewing ga-(o9) as the degree of  certainty (or necessity) that 
o9 belongs to A, i.e. symbolically 

Vo9 • ~,  #~_ (co) = Cert(o9 • A) (5) 

we have 

Vo9 • f~, #A+ (co) = 1 - Cert(o9 • A )  (6) 
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since if the ill-known set A set is represented by {[A~, ~(A~)], i e I}, its complement X is obviously 
represented by {IX;, ~(3"~)], i e I} with 

Vi ~I, ~(.4,) = ~(a,), (7) 

where ~ is the possibility distribution attached to the representation of ,~. Equalities (5) and (6) 
express here the usual relationship between possibility and necessity (certainty) in modal logic or 
in possibility theory (see Dubois and Prade [16] for instance), i.e. the necessity (certainty) of an 
event corresponds to the impossibility of the opposite event. It can be easily checked that 

Vto eft ,  /tA+(to)< 1 = # 4 - ( t o ) = 0 ,  (8) 

due to the normalization of 7r. The pair (A-, A +) defined by equations (3) and (4) is thus an 
ill-known set in the sense of Prade [17] or a two-fold fuzzy set in the sense of Dubois and Prade 
[18, 19]. Section 4 will show that set operations defined for two-fold fuzzy sets, can be applied to 
pairs of the form (A-, A +). Relation (8) expresses that the co s which are more or less certain 
elements of A, must also be completely possible elements for A; this is intuitively satisfying. In other 
words, 

support (A -) _ core(A +), (9) 

where support(A -) = {co ~ £2, #4- (to) > 0} and core(A +) = {to ~ 1), #a+ (to) = 1 }. The equalities (5) 
and (6) show that the lower and upper approximations of the (ill-known) complement X of A are 
obtained by 

(A)-  = (A +); (X) + = (A-), (10) 

from the lower and upper approximations A - and A + of A, where the fuzzy set complementation 
is defined by 

Vto e ~, #p(to) = 1 - #F(to). (11) 

This generalizes the fact that, when Vie L n(Ai)= 1, we have 

- -  m 

( A - ) =  ~ A,= U A,= (X)+ and ( A + ) = U A ~ = N A ; = ( . 4 ) - .  
i E l  i e l  i e l  i e l  

However, note that 

{E~2n,(A+)~E _ (A-)} ~ 7 ,  (12) 

where ~7 denotes the complement of a¢ [defined by equation (2)] in 2 n. 
A similar extension of equation (1) using the probability assignment m instead of the possibility 

distribution n, is not possible. Indeed, the degree of membership of an element to ~ D to the fuzzy 
set A * defined by 

Vto~fl, #4.(to)= ~ re(A,), (13) 
i:o) E 4 i 

can be interpreted as the probability that to belongs to A, namely Prob(to e A). We can check that 
P r o b ( t o ~ A ) = l - P r o b ( t o ~ . ~ ) ,  due to the normalization of m and representing X by 
{(A,, m(-4i)), i e I} with 

Vi ~ I, ~(.4i) = re(A;). (14) 

See Dubois and Prade [4] for the introduction of equation (14) in the framework of a set-theoretic 
view of Shafer's belief functions. Definition (13) is sometimes called the one-point coverage 
function in the random set literature [20]. Obviously definition (13) does not reduce to equation 
(1) when m is uniformly distributed. 

Although the pair (A -, A +) is a natural and easy-to-handle way of modeling partial information 
about an ill-known set, it does not provide a representation as rich as the one defined by the 
{(A~, 7r(A~)), i ~I}, as shown on the following example. Let us suppose we have the partial 
information "John speaks either English and French, or English and German, and no other 
languages". In that case we have A, = {English, French} and A2 = {English, German}, with 
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n(A l )=n(Az )=l  and to(E)=0,  VECAI ,  E : ~ A  2, E ~ f ~ .  Obviously, A ={English} and 
A + =  {English, French, German}. In the representation by means of (A , A +), we have for 
instance lost the information that John certainly speaks two languages (since A - ¢  A~ and 
A -  ¢ A2), but certainly not both French and German. 

Note that, even when A - and A + are fuzzy sets, the ill-known set A under consideration remains 
an ordinary subset. Degrees of membership in A - or in A + only reflect our uncertainty about the 
belonging of a particular element of f~ to A. Due to condition (9), a distinction is made between 
the simple possibility of membership and a graded certainty of membership (when possibility is 
complete, i.e. equal to 1). The approach presented here could be extended to ill-known fuzzy sets 
(then the possible realizations A i would become fuzzy too), but situations where sets are both fuzzy 
and ill-known are not so frequent in practice, and various approaches have been proposed for 
handling ill-known membership functions. See Dubois and Prade [19] for a discussion of the 
relation between two-fold fuzzy sets and fuzzy sets with interval-valued membership functions. 

2.2. Recovering a possibility distribution on the power set from the upper and lower approximations 

Since (A- ,  A +) is only an approximate representation of the information contained in 
{(At, n(A~)), i ~ I}, there are several possibility distributions n in general, which lead via conditions 
(3) and (4) to the same pair (A -, A +). However, among them there exists a possibility distribution 
7r* which is the largest one in the sense of the inclusion of fuzzy sets defined on 2 ~ [i.e. such that, 
VB ~ 2 Q, n*(B)>/re(B) where 7r satisfies conditions (3) and (4) for a given pair (A , A +)]. Indeed 
condition (4) can be rewritten as 

Vco e f t ,  PA+(co) = sup min(rc(A/), #R(co, Ai)), 
i E l  

where 

1, if co eA~, 
#R(co, A~) = 0, otherwise, = #4, (Co). 

It is a fuzzy relation equation [21]; this equation has always a solution [e.g. n({co}) = #A+(co) and 
is zero for sets which are not singletons]; the largest solution rr* is given by 

with 

VB e2  n, n*(B) = inf/*R(co, B) ---' /~A+ (Co), 
toED 

r _... a = {1, ifr<~a, 
a, i f r  > a .  

Finally, we get, making the membership relation R explicit, 

V B ¢ O ,  B e 2  n, n*(B)=inf/~A+(co), 

Similarly the equation 

while u*(O) is undefined. 

1 - # 4 -  (Co) = s u p  ~ z ( A i )  
i, ¢o q~ A i 

has always a solution [e.g. r r ( f~-{co})=l-#A_(Co) ,  and re(B)=0,  VB such 
B = ~ - {Co }]. Its largest solution is 

VB ~ f l ,  B e 2  n, rr*(B)= inf[1-#a-(Co)] ,  and n * ( t ' l )  is  u n d e f i n e d .  

that ~'o~, 

Proposition 1 

The possibility distribution n* defined on 2 n by ;r*(J~)= rr~'(O), n*( f l )=  ,r*([~), 

VB ~ ~ , f l ,  B ~ 2  n, rr*(B)=min~inf lza+(x),inf(1--#A_(y))], 
- e B y C B 

(15) 



Incomplete conjunctive information 801 

is still a solution of the system of  equations (3) and (4) (and by construction the largest one). 
Proof. Let us prove that 

#4+ (co) = sup n*(B). 

If  co ~ support(A -) then 

sup n*(B) >>, ~* [support (A -)  U {co}] = g4+ (co), 
wEB 

since g4-(Y) = 0, Vy ¢ support(A -)  and g4+(x) = 1, Vx ~ support(A -). But VB, co 6 B implies 
Ir*(B) ~</~4+ (co). Now if co 6 support(A -), 

sup n*(B) = It *[support (A -)] = 1 = #4 + (co) 
coEB 

due to relation (8). I f  support(A -) U {co} = f~, then f~ = {co} U core(A +) and 

n*(f~) = inf/z4+ (x) =/z4÷ (co), 

so that the proof still holds. 
Similarly, if co e core(A +) then 

inf 1 - n*(B) ~< 1 - n*[core (A +) fl (f~ - {co})] =/z4- (co), 
coeB 

provided that core(A +) I"1 (f~ - {co}) :~ O.  But VB, co ¢ B =~ n*(B) ~< 1 - g4- (co). The result is still 
valid of  co ¢ core(A +), where #4-(co)= 0, since n*[core(A +)] = 1. If core(A +)fl ( f ~ -  {co})= 
then support(A-) _ {co}, and 

rr*(JZ) = inf [1 -/~4- (x)] = 1 - g4-(co) 

so that the proof still holds. Q.E.D. 
Note that equation (15) gives 

VB, support(A-)~B~core(A+),  r r* (B)= l  

and when A -  and A ÷ are ordinary sets, equation (15) reduces to 

1, i fB  s ~ ,  

~*(B)=  0, otherwise, 

where ~¢ is defined by equation (2). In the more general case ~¢ is a fuzzy subset Of 2 a, defined 
by equation (15), i.e. VB ~ 2 a, # d ( B ) =  n*(B). 

Expression (15) is intuitively satisfying, since it means that B is all the more a possible realization 
of the ill-known set A, as B includes only elements among the most possible ones (which belong 
to A ÷ with a high degree of  membership) and does not exclude any element among the most certain 
ones (which belong to A -  with a high degree of membership). Expression (15) was proposed by 
Prade and Testemale [22], in order to estimate to what extent a key-word-based description of  a 
document is possible (admissible) in information retrieval. Indeed such a description must include 
only "possible" key-words and must not exclude any "necessary" ones with respect to the 
considered document. 

In the next section, we discuss elementary query evaluation in presence of partial conjunctive 
knowledge represented by pairs of the form (A -, A ÷), where A - and A ÷ may be fuzzy and satisfy 
condition (9). We also compare this evaluation to the one which would be directly obtained from 
the representation provided by a possibility distribution on the power set 2 n. 

3. QUERY EVALUATION IN PRESENCE OF PARTI AL CONJUNCTIVE 
I N F O R M A T I O N  

The evaluation of vague queries in presence of partial or fuzzy information pertaining to 
single-valued attribute has been studied at length by Prade and Testemale [23], when the available 
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information is represented by means of  possibility distributions. In the case of a single-valued 
attribute, a possibility distribution is defined on the attribute domain, since the elements in the 
domain are mutually exclusive as possible values of  the attribute. The case of  multiple-valued 
attributes is dealt with by Prade and Testemale [7], where partial information is modeled by means 
of possibility distributions defined over the power sets of  the attribute domains (i.e. using 
representations of  the type {(Ai, rc(Ai)), i e I}). In this section we consider the problem of  query 
evaluation when the available information is represented under the form (A- ,  A +) with 
suppor t (A-)  __. core(A ÷ ) ~  fl. The corresponding query will be supposed to be expressed in the 
same style. Namely, does the attribute under consideration take at least all the values in B -  and 
at most all the values in B +, where B -  ___ B ÷ ___ ~? More generally vague queries where B -  or B ÷ 
are fuzzy sets satisfying support(B-)___ core(B+), can be considered. If we are only interested in 
the "at  least" (resp. "at  most")  part of  the query, we take B ÷ = f~(resp. B -  --- ~ ) .  We first consider 
the case where A - ,  A +, B -  and B ÷ are ordinary subsets. 

3. I. Non-fuzzy information and query 

Knowing that the multiple-valued attribute under consideration takes at least the values in A - 
and at most the values in A +, we are certain that it takes at least the values in B -  if B -  ___ A - 
and we are certain that it takes at most the values in B + i fB  + ~ A +. Let us denote by Cert(B; A) 
the certainty that the piece of information (A- ,  A +) satisfy the query represented by (B- ,  B+). 
Thus, we have 

1, i f B  c A  and A + ~  + 
- _ _ B , ( 1 6 )  

Cert(B; A) = 0, otherwise. 

It can be easily checked that condition (16) can be rewritten as 

1, i f ~ _ ~ ,  _ N ( ~ ; ~ ¢ ) ,  (17) 
Cer t (B ;A)  = 0, otherwise, 

where ~¢ is defined by equation (2) and similarly . ~ = { F ~ 2 n ,  B - c_F~_B+}. Besides it is 
impossible that the datum ( A - , A  +) satisfy the query (B- ,  B +) as soon as B n A ÷ : / : ~  or 
A - N B + ¢ ~ ,  since then there are certainly elements of  the ill-known set A which are outside B +, 
or there are in B -  elements which are certainly outside A. If  Poss(B; A) denotes the possibility 
that the datum (A- ,  A +) satisfies the query (B- ,  B+), then we have 

1, i f B - n A + = ~  and A - A B + = ~ ,  

Poss (B;A)  = 0, otherwise. 

1, i f B - c A  + and A - ~ _ B  + 
= - ' (18) 

0, otherwise. 

Note that B _ A ÷ and A - _ B + ,~ ~¢ O ~ ~ ~ .  Indeed if the lefthand part of  the equivalence 
h o l d s t h e n w e h a v e A - c _ A - U B - ~ A + a n d B - ~ _ A  UB-~_B+;thus, A - U B - e ~ C N ~ . I f t h e  
righthand part of  the equivalence holds, then 3E, A - _ E _ A + and B -  c_ E _ B + and then the 
two inclusions of  the lefthand part are obtained by transitivity. Thus condition (18) can be rewritten 

1, i f ~ / N ~ ¢ ~ Z ~ ,  - - H ( ~ ; ~ ¢ ) .  (19) 
Poss(B; A) = 0, otherwise, 

It may look strange that from condition (18) P o s s ( B ; A ) =  1 when A - =  B - =  ~ even if 
A + N B + = ~ .  However, this ease preserves the possibility that A = B = j~; this situation occurs 
in the following example, where the available information is "John was living in Paris at most in 
1982 (but maybe he was in Amsterdam that year)", and the query is "Was John living in Paris 
at most in the seventies?". The query can be answered positively if John had never been living in 
Paris (a case which is not excluded). 

Using conditions (16) and (18), Cer t (B ;A)  and Poss(B;A)  are easy to evaluate. Moreover 
conditions (17) and (19) are satisfying from an intuitive point of  view. indeed, since the ill-known 
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set A is (approximately) represented by the set ,~ of  the subsets of  12, then it is certain that the 
partially-known datum whose content is .4 satisfy the query represented by (B-,  B+), as soon as 
all the subsets in ,~ arc between B -  and B + in the sense of inclusion; the same thing is possible 
as soon as at least one subset in ,~ is between B -  and B +. From conditions (17) and (19), we 
obviously have 

Cert (B; .4) = 1 - H (~/; ~ ) ,  (20) 

where ~/denotes the complement of  ~ in 2 a. ~/corresponds to the query which is the negation 
of the one represented by (B-,  B +), namely "does the attribute take some values outside of B + 
or is there some value in B -  which is not taken by the attribute?" The query corresponding to 
(B +, B - )  is obviously different and means "does the attribute take at least all the values outside 
B + and at most all the values outside B - ? "  This latter query can be viewed as the antonym of 
the query associated with (B-,  B +) rather than its negation. 

Let us consider a small example where a query of the form (B-,  B +) is processed. The available 
knowledge says that "John was living in Paris at least during the period A - "  (where .4 - is a subset 
of the set D of years). Here .4 + = 12. The answer to a query of the form "Was John living in Paris 
during the period B?" is "certainly yes" if B _ A - (B-  = B), and "possibly yes" if A - _ B (with 
B + = B, thus understanding the query as "the period B only"; if B + = D, the possibility that the 
answer is "yes" is always equal to 1). For 12 finite, we may think of using the relative cardinality 

I B I N . 4 -  I 
I B - I  ' 

when B -  ~ .4  - and B -  _ A +, if B + = 12 so that Cert (B; .4) = 0 and Poss (B; A) = 1, in order to 
estimate the proportion of elements in B -  for which we are uncertain about their belonging to the 
ill-known set .4. 

3.2. Fuzzy information and vague query 

In possibility theory, the extent to which we are certain that a fuzzy set F is included in a fuzzy 
set G, is estimated by the necessity degree (see Dubois and Prade [24] for instance), defined by 

N(G; F ) =  inf max(#c(co ), 1 --#e(co)). (21) 
(oEQ 

When F a n d  G are ordinary sets, we have N(G; F) = 1 i f F  __ G and N(G; F) = 0 otherwise. More 
generally, N(G;F)>0 if and only if core(F)_suppor t (G) ,  and N(G;F)= 1 if and only if 
support (F) _ core (G). 

This enables us to extend conditions (16) and (18) to the case where A -, A +, B -  or B + are fuzzy 
sets. We obtain 

Cert(B; A) = min F inf max(# A- (co), 1 - /~s-  (co)), inf max(#s+ (co), 1 -/ZA+ (co))] (22) 
3 

Poss(B;.4) = minFinf max(/IA+ (co), 1 --#B-(co)), inf max(#B+(co), 1 -- #A-(CO))]- (23) 
3 

These expressions are intuitively justified as follows: Cert(B; A) is the minimum of two terms 
expressing to what extent B-  is included in A -  and A + is included in B +, respectively. The 
minimum operation expresses the "and"  which appears in condition (16). Poss(B; A) is similarly 
interpreted. However, equations (22) and (23) can he rigorously established. Namely Cert(B; A) 
is really the degree of inclusion of ag in ~ in the sense of equation (21), i.e. 

Cert(B; A ) = N(~;  a~) = inf max(1 - #~,(C), #~(C)). (24a) 
C ~ 2  fl 

Similary equation (23) is the degree of intersection of ~ and ~ in the sense that 

Poss(B; .4) = / / ( ~ ;  ~ )  = sup min(#~,(C), #re(C)), (24b) 
C E 2  a 

i.e. a degree of possibility of a fuzzy event [12]. These two identitites are proved in the Appendix. 
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The following properties are easy to establish using inclusion (9) and the properties of the degree 
of inclusion N(G; F): 

Cert (B; A ) ~< Poss (B; A); 

Cert(B; A) > 0 =~ Poss(B; A) = 1, when B-  and B ÷ are ordinary subsets 

It expresses the certainty that the piece of information (A -, A ÷) satisfies the query can be strictly 
positive only if the associated possibility is already equal to 1 in case of crisp queries; this 
is intuitively satisfying, and expected, due to equations (24a) and (24b) since possibility and 
necessity measures are such that H(~;~C)~>N(~;~¢)  when ~ is fuzzy and such that 
min(1 - / - / ( ~ ;  ~1), N(:~; ~1)) = 0, when ~ is crisp. 

It is interesting to compare the evaluation of a query from the (approximate) knowledge 
expressed by the pair (A -, A ÷), to the evaluation of the same query from a rich representation, 
namely the one provided by the fuzzy set ~¢~ = {(A;, rr(A;)), i e I} defined on 2 ~. When B -  and 
B ÷ are ordinary subsets of fl, a reasonable estimate of the certainty that the piece of information 
represented by ~1~ satisfies the query, is given by 

Cert(B; ~¢~) = inf 1 - re(A;). (25) 
i ,B ~ A i o r A i ~ B +  

Indeed, the extent to which it is certain that B - (resp. B +) is included (resp. contains) the ill-known 
set A, corresponds to the extent to which it is impossible to find an A; such that B-  ~A;  or A;~B ÷. 
This expression extends to the case when B and B ÷ are fuzzy sets into 

Cert(B; ~¢~) = inf max(min(N(A;; B-),  N(B+; A;)), I - n(Ai)) = N(~;  ~ ) ,  
i 

noticing that #~(Ai) = min(N(A;; B-), N(B +; A;)), is just another way of writing expression (15). 
We have the following result when B -  and B ÷ are ordinary or fuzzy subsets, 

Cert(B; ~¢~) = Cert(B; A) (26) 

Proof of equality (26) 

Cert(B; ~¢~) = inf min(max(N(A;; B-) ,  1 - r~(A;)), max(N(B÷; A,), 1 -- re(A,))) 
i 

= min( in f  max(N(A;; B-),  1 - rc(A;)), infi max(N(B+; A i ) '  1 - 7t(Ai))). 

Letting 

and exchanging 

N(A;;B-)= inf 1 - # n _ ( x )  and N(B+;A;)=inf#s+(y) 
xq~A i y ~ A  i 

inf and inf into inf and i n f ,  
i x , x ~ A  i x i , x ~ A  i 

we get 

~¢~) = min(infk max(1 -/~B-(x), inf 1 - n(A;)), inf max(#B+ (y), inf 1 - r~(Ai))')/ Cert(B; 
X ~ A i  y x E A i  

= Cert(B; A), 

since ~1~ can be represented by (A +, A - )  via equations (3) and (4) Q.E.D. 

Similarly, a reasonable estimate of the possibility that the piece of information represented by 
~1~ satisfies the query, is given by 

Poss(B; ~1~) = sup re(A;) (27) 
i ,B  + ~ A i ~ _ B -  

Indeed, the extent to which it is possible that B-  (resp. B ÷) is included (resp. contains) the ill- 
known set ,4, corresponds to the extent to which it exists an ,4; such that .4; _ B-  and A; _ B +. 
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Equation (27) can be extended to the case when (B- ,  B +) is fuzzy as follows: 

Poss(B; ad,) = sup min(N(B+; At), N(Ai; B-), n(At)) 
i 

= r t ( ~ ;  ~ . ) ,  

since once again, n~)(A~)=min(N(B+;At), N(At; B-)) due to equation (15). In contrast with 
equation (26), we only have the following inequality (a natural one since M,  ___ ~d): 

Poss(B; ~¢,) ~< Poss(B; A). (28) 

The inequality is simply due to the fact that ~d, ~_ ~d, where both ~¢, and ~¢ are approximated 
by (A -, A ÷), ~d being the least specific subset of  2 n corresponding to this pair. Inequality (28) only 
expresses tha t / - / (~ ;  ~¢)/>/-/(~; ~d,). 

At first glance, it may seem amazing that the equality (26) holds for certaint~¢ degrees and that 
only the inequality (28) holds in case of  possibility degrees. In fact, this situation already exists 
when A - and A ÷ are ordinary subsets (i.e. Vi, n(At) = 1). Indeed, the requirements B -  ~_ A - and 
A + _~ B ÷ in equation (16), along with 

A - = N A  i and A + = U A i ,  
i i 

are equivalent to Vi, B -  _ At and At --- B ÷, i.e. to Cert(B; sd~) = 1. Contrastedly, we only have the 
entailment 

(Vi, B- ~Ai, At~_B +) =~ B- ~_ U At, N hi ~-'B+ 
i i 

i.e. Poss(B; z d , ) =  1 =~ Poss(B; A ) =  1. Obviously, the converse entailment does not hold. 
However, the inequality (28) expresses that using the approximate information conveyed by the 

pair (A -, A +), we obtain an upper bound of the possibility degree, which is satisfying. Indeed, 
overestimating a possibility corresponds to a lack of  knowledge, since when the possibility degree 
of  an alternative decreases the certainty degree of the opposite alternative increases [due to 
relation (20)], the certainty being always total in case of  complete information. The equality (26) 
guarantees that the information which is lost in zd (with respect to the information contained in 
~¢,), has no influence on the estimation of  the certainty degree in the query evaluation process, 
which is fortunate. 

4. C O M B I N A T I O N  OF C O N J U N C T I V E  E V I D E N C E  

A question which naturally arises is to know if the approximation in the sense of  equations (3) 
and (4) of  the result of  a set operation performed on ill-known sets represented by means of  
possibility distributions on the power set, is equal to the result of  this set operation directly 
performed on the approximate representations of  the ill-known sets under consideration. 

Let n and re' be two possibility distributions on 2 n. These possibility distributions can be viewed 
either as fuzzy sets of  2 ta or as representations of  ill-known sets. These two points of  view induce 
two different types of  set operations. In the first case we just apply the usual fuzzy set operations to 
fuzzy sets of  2 n. In the second case we estimate the possibility of realization of  a particular subset as 
the result of  the set operation on the possible realizations of  the ill-known sets under consideration. 

Set theoretic operations on twofold fuzzy sets [18, 19] have been suggested. Let (A- ,  A +) and 
(B- ,  B +) be twofold fuzzy sets, i.e. they satisfy condition (9). The complement of  (A -, A ÷), the 
intersection and the union are defined by 

(A -, A +) = (A +, A - ), (29) 

(A-,A+)n(B-,B+)=(A - nB-,A + riB+), (30) 

( A - , A + ) U  ( B - , ~ + )  = (A - O B - , A  + UB+),  (31) 

where the overbar, N and U are usual fuzzy set theoretic operations, based on equation (I I), min 
and max, respectively. Let A and B be two ill-known sets characterized by possibility distributions 

C.A.M,W.A. 15/16--B 
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~zA and nB on 2 ~. The complement A of A, the union and intersection A 13 B and A Iq B are 
characterized by possibility distributions r~,  rr A u B, nAn B defined by 

lrx(C ) = rrA(C), VC _ 2 ~, (32) 

rcA u B(C) = supi.j min(rcA (Ai), nB(Bj)), (33) 
C= AiU B j 

rranB(C)= sup/.: min(rrA(A/), lrs(Bj)). (34) 
C = AiN B ] 

Note that the quantity (34) has been introduced by the authors [9] as a possibilistic counterpart  
of  Dempster  rule of  combination [6]. The meaning of  definitions (32)-(34) can be exemplified as 
follows. 

Let A be the (ill-known) set of  years spent by John in Paris, and B the set of  years spent by 
Jack in Paris. rrA(C) [resp. rrB(C)] is the degree of  possibility that John (resp. Jack) was in Paris 
during all years in C and only those. T h e n / f  is the ill-known set of  years when John was not in 
Paris, .4 f'l B is the ill-known set of  years when both John and Jack were in Paris, A U B is the set 
of  years where at least one of  them was in Paris. For  instance rra n , (C)  is the degree of  possibility 
that both John and Jack were in Paris exactly during the years in C. 

The consistency between conditions (29)-(31) and (32)-(34) is expressed by the following 
identities: 

(,4)+ = A - (~-)-  = A +, (35) 

( A U B )  + = A  + U s  + ( A U B )  = A - U B  , (36) 

(A f'l B) + = A + fq B + (A N B ) -  = A - ( '1B-. (37) 

Proof. Construction of  (A -,  A +) out of  rrA is done by equation (3) and (4). Identity (35) was 
proved in Section 2.1. 

#(a n s)+ (o9) = sup supi.j min(uA (Ai), rrs(Bj)) 
oJ~C A i ~ B j = C  

= sup/j min(rrA(Ai),IrB(Bj))=min(#A+(~o),#B+(og)) 
~o E Ai, ¢o~ B 3 

#~anB)-(og) = inf inf,.,: max(l  - 7r,~(Ai), 1 - riB(By)) 
m ¢ C  AiNBy=C 

= inf., j max(1 - na(Ai), 1 - rcB(Bj) ) 
coC Aior mC~ B j 

But 

min( inf i j  m a x ( 1 -  nA(Ai), l --na(Bj)), i n f  m a x ( l -  nA(Ai), l --roB(B:))). 

inf(  1 - hA(C)) = 0 = inf (1 - riB(C)) 
C C 

since rrA and nc are normalized. Hence the arguments of  the outer min collapse to #A- (co), #B- (co), 
respectively, identi ty (36) is proved the same way, or noticing that De Morgan Laws are valid on 
ill-known sets. Q.E.D. 

As a consequence twofold fuzzy sets and ill-known sets are homomorphic  structures in terms 
of  operations (29)-(31) and (32)-(34), respectively. Namely the function A +-, (A -,  A +) being onto, 
the relation ~ defined by A ~ B ~ (A , A + ) =  (B- ,  B +) is an equivalence relation and the set 
o f  equivalence classes on [0, 1] 2~ is isomorphic to the set of  twofold fuzzy sets on fl  which in turn 
is isomorphic to the set of  fuzzy sets on f~ equipped with usual operations [19]. In other words 
the set of  ill-known sets on fl, is a pseudo-complemented distributive lattice. 

These results are counterparts of  similar ones for belief functions viewed as random sets [4, 5]. 
Actually we propose a possibilistic theory of  evidence in this paper. 
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Denoting ~¢ and ~ the fuzzy sets on 2 n with membership functions #~, = ha, #~ = nn, they can 
be combined via usual fuzzy set operations i.e. 

#~(C)  = 1 - riM(C), 

#~,u~(C) = max(ha(C), riB(C)), 

#dn~(C)  = min(na(C), ha(C)). 

(38) 

(39) 

(40) 

These operations are clearly different from operations (32)-(34) and do not express the same type 
of  combination. Namely ~ represents for instance the ill-known set of  years which do not represent 
the exact period when John was in Paris; it contains, but is not covered by, the ill-known set of  
years representing the exact period when John was not in Paris (i.e. #~(C)  >f 1ix(C) VC). ~ O gt 
is the ill-known set of  years representing either the period when John was in Paris or the period 
when Jack was in Paris (we no longer know which of  the two variables is represented). #~,n~(C) 
is positive if and only if C is possible as the complete period when both John and Jack were in 
Paris. (This is very drastic because it assumes that Jack and John were always together in Paris!) 
These operations have less intuitive appeal than operations (32)-(34). 

5. P O S S I B I L I T Y  D I S T R I B U T I O N ,  LEVEL CUTS AND I L L - K N O W N  SETS 

A possibility distribution on a power set is an ill-known set. Hence a possibility distribution on 
a set f l  is an ill-known singleton. Results on ill-known sets can be particularized to standard 
possibility distributions corresponding to single-valued variables. A possibility distribution on f~ 
is viewed as an ill-known set A on 2 a such that 

n ( A ) > 0 o 3 { c o } ,  A = { c o } o r A = O  

then equations (3) and (4) reduce to 

#a- (co) = info,, 1 - n(co') > 0 only if g(co) = 1 
tO ~ tO' 

and 

7r(co') ~< 1 -- E, VCO' ~ co with E > 0. 

#a+(co) = re(co), identifying rt({co}) with n(co). 

Hence A -  is usually empty, and anyway does not bring new information with regard to 
A +, provided that we rule out the possibility that the variable we model has no value as 
long as #A+ is normal (sup#a+ =1) .  Note that C e r t ( B ; A ) = N ( B + ; A  +) generally. How- 
ever Poss(B; A) ~ / / ( B + ;  A +). Namely Poss(B; A) = 1 VA, B, ill-known singletons, when 
A - = B -  = O.  This behavior has already been mentioned earlier. The proper index of  possible 
matching between B and A i s / / ( B + ;  A +) in the case of  ill-known singletons with n ( O )  = 0. 

Another interesting particular case is when the At s such that n(At) > 0 form a nested sequence, 
say A~_ A2 ~- " '" ~-An. Then if cote A t - A t - l ,  i/> 2, equations (3) and (4) become 

with 

#A+ (co,) = supj~, ~(Aj),  

#a+(co0= l ,  if c o i t a l ;  

#A-(cot) = inf 1 - n(Aj). 
j < i  

Assuming further that lr(Al) = ~1 = 1 t> n(A2) = ~2/> " "  >i n(An), we get 

#A+ (cot) = art Vcot e A; - At _ 1, i >t 2, 

#a- (co) = 0, Vco ¢ At, i I> 2 

= 1 ,  if co CAl. 
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The result is similar to the case of  ill-known singletons, in that A + gathers the whole information, 
provided that we rule out the possibility that the ill-known set be empty when Aj :~ ~ (i.e. 
sup/~A+ = I). In fact it is clear that the Ai s are the level cuts of A +, and that equation (4) generalizes 
Zadeh's [25] representation theorem for fuzzy sets, 

/~A+(eo) = sup{alco EA+}, where A + = {col#A+(eo) > ~}. 

However the largest ill-known set equivalent to (A~, A +) does not reduce to the set of  level-cuts 
but contains more sets; namely equation (15) reduces to 

rr*(B) = inf/~+(eo), if support (A +) __p_ B ~_ A~, 
coEB 

a richer representation of  A + than level-cuts. This formula was first used in Dubois and Prade [26] 
in the definition of  an integral over a fuzzy interval. 

6. C O N C L U D I N G  R E M A R K S  

In Prade and Testemale [7, 23] an approach to the treatment of  fuzzy partial information about 
the values of  single-valued or multiple-valued attributes in data bases has been proposed. This 
information is represented in terms of  possibility distributions, which in case of  multiple- 
valuedness, are defined on the power sets of  the attribute domains. The evaluation of various kinds 
of  queries is dealt with in this approach and the extent to which an item of  the data base satisfies 
a given query is in any case estimated in terms of  a possibility and of a necessity degree. 

In the present paper, we have considered the case of  multiple-valued attributes, or if we prefer 
of  conjunctive information when fuzzy partial information is available under the form of  a lower 
and of  an upper approximation of  a set of  values (rather than a possibility distribution on a power 
set). Again the evaluation of  a query is made in terms of  possibility and necessity degrees. A pair 
of the form (A -, A +) offers a natural and easy-to-handle modeling of  incomplete conjunctive 
information. Although it may not be possible to distinguish with this representation between 
situations which would be clearly differentiated in a power set-based representation, it is fortunate 
that the approximative nature of  the (A , A +)-representation has no influence on the evaluation 
of  the necessity degrees. Clearly, the approximate representation suggested here allows for the 
treatment of  an interesting class of  queries on conjunctive pieces of  knowledge. Although having 
sound foundations, a pair of  fuzzy sets has a limited expressive power. Namely there are some kinds 
of knowledge item which correspond to vacuous approximate representations (i.e. A - - ~ ,  
A + = f~). For  instance, queries such as "Does John speak at least English or French?" or "Does 
John speak exactly 2 languages?" cannot be represented by means of  (B , B +). What may be useful 
is some information on the cardinality of  the ill-known set, as already suggested by Narin'yani [13]. 
The treatment of  cardinality in fuzzy conjunctive information is a topic for further research. 
However queries dealing with cardinality can already be handled as suggested in the following 
example. 

An important example of conjunctive information is encountered in the modeling of  time. For 
instance the set of  years when John had been more or less certainly (resp. possibly) living in Paris 
can be conveniently represented by a pair (A -, A +). Then, queries such as "Was John living in 
Paris during the period B -  ?", as well as more sophisticated ones such as "Was John living in Paris 
for at least some years?" can be easily handled in the possibility/necessity setting. This latter query 
can be dealt with by computing the fuzzy cardinality (which is a possibility distribution on the set 
of  integers) of  the ill-known set represented by (A- ,  A +) [27, 28], and then by estimating the 
matching of  this fuzzy cardinality with the fuzzy requirement "at  least some years", in terms of  
possibility and necessity measures using standard methods [29]. 
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A P P E N D I X  

Proof of the Identity Cert (B; A) = N(~; ,~/) 

N(~; ~¢) = inf max(l - #~¢(C), #~(C)) 
C~212 

=infc.2~ max[lL -#~.(C).  min(  inf #n . \ y . c  (y)' z,cinfl- #n- (z) ) ]  

[due to equation (15). expanding #•(C)]. 
Let us apply the following transformations: 

• m a x ( 1  - a. min(b +. b-))  = rain(max(1 - a. b +). max(l - a. b -)) 

• incfmin(f(C),g(C))=min(incff(C),incfg(C') ). 

We get 

N(~II; ~ / )=  min [incf m a x ( l - / ~  (C)' y~cinf #,+ (y )~ . / i n fmax( l -  # d ( C ) . c  \ z,cinfl--#,_ (z) ) ]  

= min[ infmax( inf  ! -  #d(C). ~n+ (Y)). infmax(inf  1 -  #d(C). 1 -  #B- (z)) ]  
L Y \y~c z \z~c 

= Cert (B; A). 
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The last equality was obtained noticing that 

inf f (u ,v)=inf  inf f (u ,v)=inf  inf f(u,v), 
(u ,c)~D u r ¢- D(u) r u~ D(r) 

where D(u)= {ul(u,v)~ D}; D(v)= {vl(u,v)E D}. 

Proof of the Identity Poss (B;A) = / / ( ~ ;  ~¢) 

We need the following: 

L e m m a  

Let ~t  be the largest fuzzy set in 2 n equivalent to a pair (A , A +) satisfying condition (9); then the level-cut ~¢~ is equal 
to {E; Af:q_~ =__ E _~ A+}, where Fa denotes the s trong a-cut  (F~ = {x I /ae(x)> c¢ }). 

Proof. Let E such that A~_~ _~ E ~ A +.  Then 

inf/iA+(to)~>ct and sup #A_( to)~<l -c t .  

Hence 

n~'(E)~>ct and n * ( E ) =  inf 1 -~uA_(to)~>ct, 
raCE 

where n*  and n~' are defined in Section 2.2. Hence ,u~(E)>~ct. Now if E ~ A  + then 3 t o e E ,  g ~ + ( t o ) < a  and 
/~d (E) ~< n 1' (E) < ct. Similarly if A~:q_ ~ g E, 3 to ¢ E and co z A~:~_~, i.e. /~A-(co) > 1 -- ct. Hence g~, (E) ~< n~ (E) < ct. 

Q.E.D. 
Now assume that  Poss(B; A)t> a. Hence the two following inequalities hold: 

inf  max(/zA+ (to), 1 - #z (co))/> ct; 
~ ta  

inf  max(~s+ (co), 1 - /~A- (w)) i> ct. 
toEfl  

They are equivalent to B i -  = c_ A + and A~_~ ~_ B + . Hence, using condition (9) 

Bf~_~ ~_ ,~_~ UA~-_~ = ( B -  U A - ) r :  ~ ~_B + 

and 

A]~_~ c _ A ~  U Bf=,_, = ( A -  U B-)r= ~ ~_A~ +. 

Using the above lemma, we conclude that (A - U B- ) i=~  e M,  n ~ ,  and so we have proved 

Poss(B; A) i> a ~ / - / ( ~ ;  .4)  I> ~, V~ ~ [0, l]. 

This is equivalent t o / - / ( ~ ,  M) I> Poss(B; A), and the inequality is proved. The reverse inequality is easily obtained using 
the lemma. I n d e e d / / ( ~ ,  .~)  i> ~ => ~ E ~ M~ N ~ .  Hence, we have A]=c~_ ~ ~- E _~ A + and B]=~_ ~ _~ E ~ B + . By transitivity 
we get B~=~_~ ~_ A J  and A]==~_~ ~_ B + , which is equivalent to Poss(B; A)i> a. Q.E.D. 


