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In this paper a geometrical interpretation of the Hungarian method will bL given. This spc:cial 
algorithm to solve the dual transportation probleln is not restricted to the edges of the convex 
polyhedron of feasible solutions. Each covering-s:ep can be considered as a determination of a 
direction of steepest descent, each reduction-s:ep as movement along that direction to a 
bound-**It uAJ point of the polyhedron. The dimension of the face that will be crossed depends on 
the covering that is chosen. 

I. htroductim 

The Hungarian method is a well-known solution of the dual tran!qortation 
problem, based on a combinatorial theorem of ,the Hungarians Mijnig and 
Egervhry. Kuhn [Sj used a constructive proof of this theorem to solve the 
assignment problem. This procedure led to combinatorial solutions of the trans- 
portation problem (foi references see [3]). The main difficulty in these algorithms 
was the determination of a minimal covering. Many variants were studie;l solving 
ihe covering problem by primal-dual means (e.g. [2]). By the pseudo-Boolean 
approach to this problem (see [4]) the Hungarian method was reduced to 2 pure 
dual algorithm. 

In spite of the great number of articles on this algorithm no geometrical 
interpretation- analogous to that of the simplex method in [l, chapter Y/]--was 
made, as far (as the author knows. Using the compact form of the E%ungarian 
method in [d] and a characterization of the convex polyhedron of feasible 
solutions we shall give such an interpretati0.n. ‘Tii, % paper is based on results Erom _ 

[7] which will be simplified and slightl~~ extended. . 

2. The tranq)orPatio.o pmblem 

Let a = (aI, a29 . . I ., a,) and b = (b,, b2, . . . , b,) be given, satisfy& Cr_ I ai = 

Crsl bj = r, where a,, + are positive integer ‘3, and let C = illij) be an VI x n 1112trix 

with normega tive integer entries. 



and ‘/ .,; .I;. 
+fJ, - i&l,2 ,..., in: j--l-,2 ,... -,n, ” y ;2.3 
‘rn 
2: ‘y = b#, 

l ‘r j=132,..i,Yt9 .@.3) 

&=l 

n 

c xlr = ai, i=%,2,...,m* (2* 4) 
I-1 

By tiefinition,, the: $qa\.pybie,m is : a :,_ 

P!mbbm D. R& (ZQ, 112,. . . , u,) and (v,, uf, . . . , uii wch that 

and 

I(ifz+Clj) _ i=3.,2 ,..,, m; j=l,2 ,... + (2.6) 

From the d&Gity theorem of linear programming, cf. 1‘11, it follows that either 
both prob&-@-have no optimal sohltioa or the:y have thf$ same objective value. In 
the latter case’bdth problems have optimaf ~olutionk. !‘or our purpose the dual 
problem fits better in an eqaivalent for&. We put \ 

a& = cjj -h-vi forall i and j (2.7) 

and rewrite Problem D in matrix form. 

hrabkm D,, Find an m X n matrix A = (@ii) isuch that 

1” n 
dA)=- 

r cc a,i$i =: min, 
i=l j=l 

and 

aij 3 0, i=4,2 ,..., m; j=l,Z,...,n, (2.9) 

i=Z,3,...,m; j = 2,3, . . . , a. 
(Z.lO! 

To show that (2.7) transc;:xms Problem D into Problem D, and vice versa. WI? 
re~~xb; that (2~3) is equivalent to (2.9). Matrces A = (a,) satisfying, (2.7) are 



A 
’ , 
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gti.neyated by subtracting real values from all1 ele.nents of each row and each 
colurrrn of C. Hence such matrices are characterized by 

$1 + akl - a, - Ukj = Cij + Ckl - Gil - Cki for all i, j, k, 1. (2.11) 

Tb3w wp&M~s have an (m + pc - 1) parameter solution set which enables us to 
sdve backs for rc,, uj and to reduce (2.11) to (2.10). Finally a short computation 
cads to 

(2.12) 

Rence a maximum of (2.5) yields a minimal value of (2& and 3 minimum of (2.8) 
yields a maximal value of (2.5). We use Problem D, to state the dual problem, 
since geometrical properties of the feasible solutions of the dual problem can be 
easily recognized in matrix form. On the other hand, an optimal solution X = (xii) 
of Problem P can be derived at once from an {Dptimal solution A = (a,) of 
Problem D,. We have to set &j = 0 whenever ai] > 0 and to determine the rest of 
the virriables Xij via (2.2), (2.3) and (2.4). The forthcoming results can be 
translated back to the usual dual variables of Problem 0. 

3. Characterization of feasible solutions 

Let (,4p,l[. 11) be the normed linear space of real FE x tt matrices over the field of 
real numbers with 

/IAIl = max {laijl: i = 1,2, . . . , m; j = 1,2, . . . , n} (3.1) 

for A E 2: I’;et Problem D, be given with a fixed r matrix C and fixed vectors a, b. 
The set of itiasible solutions of Problem D, consists of matrices A E 9 satisfying 
(2.9) and (2.10). We denote J# = A(C, CL, b) the set of those feasible solutions ii 
satisfying 

UllAF da. (3.2) 

It is easily checked that JZ is a convex polyhedron in (%‘,I\* 11). We assume that C 
itself is not an optimal solution of Problem D,, since otherwise a geometrical 
interpretation is trivial. Hence any algorithm so ving Problem D, determines 
matrices from 

At, = {A E A: q(A)< q(C)}. 

&+ is a convex subset of JN and ealzh vertex of ,184 !_ is vertex of JU. Wt: recall some 
fundamental definitions from the theory of convex polvfisdra. The intersection of 
a polyhedron with some boundary hypeiplanes is zalled face. Hence A E Jkc is an 

element of a Face, if “ii = 0 for at least one pai- (i, i) or if q(A) = q(C). The 

dimension c\f a face Sp is definead tc, be the dirlension of the smallect linear 



ak,j= ak,il == ;l’il,i, == l l l = aili,+, = 0, where jr+l = I and r24. 



I 

,, ‘h 
A geometrical interpretaticn of the Hungarian method 301 

Wk get 2;1k = -a for all k ~{1,2,. . . , n}, since b, = 0 whenever a:! - 0. For each 
iG{l, 2,. . . , m} there must be a i E {1,2, . . . , n} such that aij = 0, since A is 
l$%n--is61@ted. Hence we get Ui = cu for all i. This implies B = A, in contradiction to 
_i+r asmQ$on. 
' . .:,, , 

.R&mk 3.2. The proof of Lemma 3.1 can be used to show that every connected 
matrix A in Jcc is a vertex of .&. 

We shall prove the converse of Lemma 3.1. 

Lemmrr 3.3 [7, 81. If A E .k, is not connected, then A is no verte Ic of A,. 

Proof. Since A is not connected, we may assume A to be of thtl: form 

Al A3 .4=A A, ( ) 4 2 

where A, and A2 chntain all zeros of A. Let E3, E4 be matrices corresponding to 
A3, A4 and containing only entries equal to 1. We define Bk = (bf)) for k = 1,2 

tJY 

.E?,=A+oI~(_~~ :) and B,=A+c$~ -F), 

where (x1, (Y~>O, cyl s min {a,: Uij in Ad}, and LYE s min { aij : Oij in A3). B1, B2 are 
feasible solutions. Since p(A) < y(C) and 

we can find cyI, a2 such that cp(B,)<<p(C). This leads to A -= a,/(a,+cr,)B, + 
aJ[cr,+ ci2)B2, B,, B2e A+, hence A is no vertex of A+. 

By Lemma 3.1 and Lemma 3.3 the vertices of A+ are characterized as 
conne‘ctec I matrices of /+. This result can be extended to 

Theorem 3.4 [7]. Let A E 4, be non-isolated, then a(A) and dim Sp, rare linked 
by a(A)- I. = dim Sp,. 

Proof. We assume A in a form 

A= k = a(A), 

where the Aii’s are connected and contain all zeros of A. Cnrrespndingly we 
define submatrices Bij for BE Y*. 



_ 

The Hq@3n metho&+ see e.g. [41% and [t;]; ~lvei_ the dual transportation 
protitexl?, ~@~qo~~cttn&in Leach reductiorrd&ep y, nor$$$ted matrix of.&+ such 
that the ob&%ve @r&t!i~,,, 4. wili bk. d&reise& $&is &$$o~” 48% use of, minimal , . 
cover@s; The step & X&I&: such a, eovering ‘is~bter&n~’ i&a&d coverin@tep. 

Wsua!ly a, ~~v@ag @f t&t ZW~S) of 8 nonGsolated:.ma@x .A + (a,)E,& is .a set 
of row-indks ano culkmn-indi&k containing at least or& of the pindices i- and j, if 

aij ‘=I 0. TRe: mm of the correspo.nding q and bj is ca&d, capacity of the covering. 
A covering of As with a minimum capacity in respectto till ,possible coverings of A 
is called nGnima1 covering of A. 

In [4f the in&es are represented by ‘Boolean vectors x = (x1, x2, . . . ,, x,), 
Y=(Yl,Y2,--, !I~~)+ Such vectors lmave coefficients Xi, yj E (ol 1). We put Xi = 1, 
whenever i is in t&e covering set, and ,Y~ =z 0, whenever j is @I that set. Then x and 
y determke” Ii e&@$ng ,uf r(t, if s 

Jvi s .ri for all i and j with ,! = 0. (4.1) 
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3%e quantity 

m 

c Ui&++JL f bjYj 
i-_ I j-l 

(4.2) 

is the cap&y of the covering. We define a covering as follows. An m x IZ matrix 
Z = (Zij) is called a covering of A = (aq) E 4, if there are Boolean vectors :c and y 
satisfying (4.1) such that 

Zij = Xi - yj for all i and j. (4.3) 

An argument analogous to that folIowing problem Problem D, shows that a 
covering 2 of A is characterized by 

OS jtij whenever aij = 0, 

zij E { - 1, 0, 1) for all i and i, 

Zl] + Zij - Zil- Zlj = 0 for all i and j. 

As in (2.12) we find 

(4.4) 

(4.5) 

(4.6) 

f a&+?‘- i bjYj=r+Q(Z). 
i=l j-1 

(4.7) 

Let A be nclz-isolated, then Z is a minimal covering; of 11, if Q(z)< t&Z”‘) for all 

coverLlgs Z* of A. 
In our notation the Hungarian method can be derived as follows. We start by 

constructing a non-isolated matrix from C. This will ble done by subtracting the 
minimum of each row from each element of that row, air sl thereafter correspond- 

ingly for each cohjmn. This operation decreases the objsctive function and leads 
to a noksolated matrix A E &. The algorithm continues with the 

Couering-step: A minimal covering 2 of A has to be determined. This can be 
done as proposed in [2]. We shali refer later on to another method which was 
introduced in [4]. 

The reduction-step is the constructive proof of 

meorem 4.1 [S]. Let A EM be non-Sated and Z be a minivnal covering of A 

with Q(Z)< 0. Then there is an ar > 0 such that Is = A -i- arZ is a nonAiso/uted 

element of A, satisfying q(B)< Q(A). 

Proof. 

Redrpc tion - step : By peunutatiOn oJ row and colatrnns a. covering 2 of A 

can be transformed into 



MOW 

B= ( ) 4 & 
.i!& I?2 

=A+& (4.8) 

isa feasM& solr#m Si&sfyi&g. q(BJ ,= f#&$) r)- cWq$Z) C t+Q. $ince the zeros in A, 
wj A, are‘ p&smved by the ~educf&&ep (4,,&,: ,& and 3& ’ ate no&solated, 
S;~imce I3 is non-i3olated. , I 

A&I.& we ordy need a covering 25 vi& +%Z) < W to .&crease the objective 
function, but @be differen= cp(A) - cp(B) will be maxima& if we take a minimal 
covering. I 

The a?gorithm proceeds with covering-steps and reduction-steps. If we have 
mnstructed an .A E J& “su& ~that each. winimaf covering- 2 of A %atis$esL (s(Z) = 0, 
then A is optima!. This crite-lriu:m~which ,goes back. to a theorem of Kiinig and 
Egerv&y (see - [5],!- --cm lx segarded .as a consequence of our geometrical in- 
terpretation of minimal coverings, cf. Coro@yr 5;6. 

Since there is. only a -finite. nvmber of pes&@tks to foirn, a- dovering 2 for 
JPI X n mat&es, xe ha’% cp&Z)-* i for alI .goReiings 2 -with $(E):< 0% whore y 
depgnds::on ai and ,b, +xGy~ T&c reduEtion~~~ep.,~rese~~~ ‘the &&get: ,varue$ of the 
matrices, he&e each a chosen ii a reduction-step s&&es a a 1, Sd the algorithm 
must obtain an optimum of Frebliem I& in a finite number of- steps; since jdd is 
bounded. 

5. G~mebical Werpretation 

As a consequence of Thenrem 3,4 the matrices generated by the reduction-step 
need not to be vertices of J(C+. We shalH now :s&y tllc precise geometrical 
movement of the Hungarialq method in udc,. 

An m x n matrix W = (wij) is called a nstmed direction at A E A, if the 
following conditions hold, q 

t4ere is an a! > 0 su& that A + ar\“ir~ :/u, (5.1) 

(5 2) 
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From (4.5) and Theorem 4.1 it follows that a covering Z of A with q(Z) c.0 is a 

normed directio,i at A. Let W be a normed direction at A, we call W a d rection 
of wqpest descent, if q( W)G q( W*) for all nofmed directions W* at A. 
TIMrefore the determination of a direction of steepest descent corresponds to 
minimizing cp( W*). 

l%e reduction-::ep can be interpreted geometrically as movement along 2 from 
A to A + c&Z. To give a concise char3izterization we introduce the c>overing 
number pz(A) of a covcaing 2 of .4. 

Let A be a non-isolated matrix in .M with a covering 2 = (z& By perr(lutation 
of rows and cclumns we get 

A1 A3 A=. A ( > 4 2 

such that all Zij corresponding to A1 ancl Az are 0: those corresponding to A3, 
resp.. Ad, are --- 1, resp. 1. Since A1 and A2 are non-isolated, a(A1) and v(A2) are 
defined. Now ,u,(A) = a(A1) + ~(-4,) is called the covering number of Z. 

Theorem 5.1[7]. Let A E ~64 be non-isohed with a covering Z satisfying p(Z) < 0. 
Then the reduction-step is a movement from A to A+ a2 crossing a face 54 of 
dimension pz(A) - 1. 

Proof, We descend from A to B - A + arZ via the matrices B, = A + gZ, p E 
(0, a). Since all the zeros of sP are in the positions corresponding to ,4, and AZ% 
each B, belongs to the same face Sp- ,Y”@. Applying Theorem 3.4 we obtain 
dim 9’= pz(A)- 1. 

Now we characterize the special ncrmed directions which are cht,sen by the 
Hungarian method (working with min’mal coverings). We have 

Lemma 5.2. Let A b? a matrix of A. If W I= (Wij) is a normed direction at A, there 
are vectors (pl, p;, . . . , p,,) and (ql, q2,. . . , q,,) such that 

wij = pi - qj for all i and j, (5.3) 

and, 

max eipi - qjl: for all i and j] G 1. (5.4) 

Proof. If W is a normed dire&or;, there is an cx > 0 such that .4 + CY VJ is an 
element of JK This yields (5.3). Eq. (5 A) Es t;vident. 

L~~MNN 5.3, Lt*t W be zny normed direction at A E AX. Tkten there lcre 

(P I? pa, - - * , pm! and (ql, q2, . . . , a,? such ;!hat (5.3), (5.4) OPT s~tisfi~! and p, E 
[0,2], yE[--l,;l]. 



CorrrIhy 5.6. Let A E Al be uon-isolated, iken A is optimai, ie and only if each 
minimd covering Z af A satisfies q(Z) = 0. 

fffx=(x,,x,,...,x,?andy=(yl,~*,..., 1~~) an’e Bookall vectors, (5.7) can be 
expressed by 

(5.8) 



Wber@~ 4 +k &j = a}, j = l,2, . . . , rz. So we get for (5.5) 

q,(W)= f iZjX#- $ bjlf Xi* (5 -9 
’ 

._, ,+:*. y’; ?.. 
i-1 ,, f-1 ial, 

,‘A 

No&;. the ‘covering-step consists in finding a Boolean vector x ilrhich minimizes 
($%);‘an &~&thm sohkng this problem can be found in [3]. This apprclach to the 
cov&ng problem was proposed in [4]. 

With each covering-step the Hungarian method chooses a normed direction of 
steepest descent, From this point of view the Hungarian method seems superior to 
the simplex algorithm which can choose direction5 of steepest descent being 
generated by edges of 3dc only. 

6. Hungarian method and simplex algorithm 

If we start the Hungarian method with a conneckd matrix of JU and determine 
Cth each covering-step a minimal covering with covering number 2, the Hun- 
gi:rian method is restricted (by Theorem 5.1) to the edges of JU. Such an algorithm 
h,?s been developed in [7]. 

The determination of these special coverings is performed by using a Boolean 
algorithm of 133. Now (5.9) has to be minimized subject to two restrictions. It can 

bz shown that this special version of the Hungarian method is equivalent to the 
simplex algorithm, applied to Problem D,. In this case a minimal covering with 
covering number 2 is equivalent to the pivot column of the simplex table&u. In 

tXs sense the Hungarian method is a generalization of the simplex method 
applied to the dual transportation problem. 
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