Dlscrete Mathematics 21 (1978) 297--308.

Aaile TX ATl d Pho L bl
u NuLLII-rIuiana l"uUllbllll!g LUlllpdl Y

A GEOMETRKICAL INTERPRETA{ION OF THE HUN-
GARIAN METHOD

Hans Jeoackim SCHMID

Mathematisches Institut, Universitit Erlangen—Niiraberg, Bismarckstr. 1 1/2, 8520 Erlangen,
Federal Republic of Germany

Received 21 June 1977
Revised 8 August 1977

In this paper a geometrical interpretation of the Hungarian method will be given. This special
algorithm to solve the dual transportation proble:n is not restricted to the edges of the convex
polyhedron of feasible solutions. Each covering-s:ep can be considered as a determination of a
direction of steepest descent, each reduction-step as movement along that direction to a
boundary point of the polyhedron. The dimension of the face that will be crossed depends on
the covering that is chosen.

1. Introduction

The Hungarian method is a well-known solution of the dual transportation
problem, based on a combinatorial theorem of the Hungarians Kdénig and
Egerviry. Kuhn [5] used a constructive proof of this theorem to solve the
assignment problem. This procedure led to combinatorial solutions of the trans-
. portation problem (fo: references see [3]). The main difficulty in these aigorithms
was the determination of a minimal covering. Many variants were studied solving
ihe covering problem by primal-dual means (e.g. [2]). By the pseudo-Boolean
approach to this problem (see [4]) the Hungarian method was reduced to a pure
dual algorithm.

In spite of the great number of articles on this algorithm no geometrical
interpretation—analogous to that of the simplex method in [1, chapter 7}--was
made, as far as the author knows. Using the compact form of the Hungarian
method in [4] and a characterization of the counvex polyhedron of feasible
solutions we shall give such an interpretation. This paper is based on results from
[7] which will be simpiified and slightly extended.

2. The transporiation problem

Let a=(a,, ay,....a,) and b=(b,, b,,..., b,) be given, satisfying X", a; =
Yy b,=r, where a, r; are positive integers, and let C=(¢;) be an m>Xn matrix
with nonnegative integer entries.
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wtys<c, i=1,2,...,m; j=1,2,...,n | (2.6)

From the?dixality thecrem of linear programming, cf. "1}, it follows that either
both problems have no optimal solution or they have the same objective value. In
the latter case both problems have optlma! solutlons. !or our purpose the dual
problem ﬁts better in an eqmva]ent form. We put

a-‘*—c,, - Uy~ v, forallzand] R R (2.7)

and rewrite Pi'oblem, D in matrix form.

Problem D,.. Find an mX n matrix A =(g;) such that

:p(A)--— Z }: agyub; = min, (2.8)
i—l;
and
a; =0, i=1,2,...,m; j=1,2,...,n, (2.9)

A+ a; 03— 0;=CH ;T G Cys

2.10
i=2,3,....m; j=2,3,...,n (

To show that (2.7) trans!orms Problem D into Problem D,, and vice versa, w~
remark that (2.6) is equivalent to (2.9). Matr.ces A =(a;) satisfying (2.7) are
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generated by subtracting real values from all elements of each row and each
column of C Hence sich matrices are characterized by

Gt =y — a4 = ¢+ ey~ Cy—¢,; foralli j, k, L (2.11)

Thé‘sna,et?}uati‘ons-have ‘an (m+n—1) parameter solution set which enables us to
solve back for u;, v; and to reduce (2.11) to (2.10). Finally a short computation
eads to

e(A)= 2 i ciab; (Z wa; + Z bv) (2.12)

ri=h j=1

Hence a maximum of (2.5) yields a minimal value of (2.8 and a minimum of (2.8)
yields a maximal value of (2.5). We use Problem D,, to state the dual problem,
since geometrical properties of the feasible solutions of the dual problem can be
easily recognized in matrix form. On the other hand, an optimal solution X = (x;)
of Problem P can be derived at once fiom an optimal solution A =(a;) of
Problem D,,. We have to set x;; =0 whenever a; > (0 and 10 determine the rest of
the variables x; via (2.2), (2.3) and (2.4). The forthcoming results c2n be
translated back to the usual dual variables of Problem D.

3. Characterization of feasible solutions

Let (%, ||-|)) be the normed linear space of real n: X n matrices over the field of
real numbers with

lAll=max {|la;|:i=1,2,...,m;j=1,2,...,n} (3.1)

for A €. Let Problem D,, be given with a fixed ratrix C and fixed vectors a, b.
The set of icasible solutions of Problem D,, consists of matrices A € & satisfying
(2.9) and (2.10). We denote M = M(C, a, b) the set of those feasible solutions A
satisfying

o(A)=<¢(O). (3.2)

It is easily checked that ./ is a convex polyhedron in (%, || [)). We assume that C
itself is not an optimal solution of Problem D,, since otherwise a geometrical
interpretation is trivial. Hence any algorithm so ving Problem D,, determines
matrices from

M, ={AcM: o(A)< ()}

M., is a convex subset of # and ea:h vertex of A, is vertex of M. We recall some
fundamental definitions from the theory of convex polyhedra. The intersection of
a polyhedron with some boundary hypeiplanes is calied face. Hence A€ is an
element of a face, if a; =0 for at least one pai- (i, j) or if e(A)=¢@(C). The
dimension of & face & is defined tu be the dirension of the smallect linear



is not connected, A

Lemma 3.1 [7 Si Ef A e.ﬂ+ is connected then .S“A -{A} o

l'roof. Assume that» ere isa BC.YA w1th B# A lﬂrom (2 1. and the remark
following (2.11) we obtain u; v; such that b,,-—a,, Tt O £ -1, 2,.. ,m; j=
1,2,...,n. Since B# A, there must be at least one U == a# 0. The connectedness
of G, implies that for eact. ke{l,2 2,...,n}we can find. a path fxom k. to l which
is represented by sequeace of zeroes of the form

kjr = Qiggy = iy, =7 15

L 4 =" where j,,=1 and r=0,

or

ak,i= ak.ig =z ;‘(,”, R a.:

injrs1

=0, where j,,=1 and r=0.
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'-VA“Wék"get v, = —a forall ke{l,2,...,n}. since b; =0 whenever a; = 0. For each
iedl. 2. . ml there must be a JF” 2.... n]- such that a; =0, since A is

s ‘_, =23 =il RIIXIQL VNG — 1~y &5 5 S=v2l LAdal SaaE

:non-lsolated Hence we gct u,=a for all i. ThlS implies B = A, in contradiction to

'emark 3.2. The proof of Lemma 3.1 can be used to show that every connected
matrlx A in M is a vertex of .

‘We ‘shél]' prove the converse of Lemma 3.1.
Lemma 3.3 [7, 8). If Ae M. is not connected, then A is no vertex of AL,.

Proof. Since A is not connected, we may assurne A to be of the form

(A As)
A (A4 A’

where A, and A, contain all zeros of A. Let E;, E, be matrices corresponding to
Aj, A, and containing only entries equal to 1. We define B, = (b{) for k=1,2
by

0 E;

*'31=A+a1(__E 0
4

-E
) and B,= A+a2(0 3),

E, O

where a;, @,>0, a; <min{a;: a; in A,}, aad a;<min {a;: ¢; in Aj}. By, B, are
feasible solutions. Since @(A)< o(C) and

o(By) = ‘P(A)+ak— z z bg‘)aibj, k=1,2.
i=1j=1

we can find a,, a, such that ¢(B,)<¢(C). This leads to A =a,/(a;+a3)B;+
/(e +5) By, By, B,€ M, hence A is no vertex of M..

By Lemma 3.1 and Lemma 3.3 the vertices of ., are characterized as
connecte! matrices of /.. This result can be extended to

Theorem 3.4 [7]. Let A M. be non-isolated, then a(A) and dim ¥, are linked
by o(A)—1=dim &,.

Proof. We assume A in a form

Au AIZ e Alk
A= 621 /_\22 B -/?ZR . k=a(A),
Am Akz e Ak

where the A,’s are connected and contain all zeros of A. Correspondingly we
define submatrices B; for B e $,4.



i=2, 3. ok Wc can determme somc B ‘fg whteh'can be ~epresented by (3.3)
i each [3,960 Each elément of thie linear mar ‘
represented by (3.3). Since the C’s are linea

have drm.‘?A—k i. '4 o

dependent by constructlon we

4. The Hgngariiagi method

[4] and [6] sulve”" the dual transportatlon

The” Hungamn method ; see e.g

. d‘covermg-step
ng (of rix A= (a,,)e.,{t is.a set
of row-indices and colummmdlces contammg at leastone of the »mdnres i'and Jif
a;=0. The sum of the corresponding 4; and b; is called capacity of the covering.
A covering of A with a minimum capacity in respect to ail poss:ble coverings of A
is called minimal covermg of A

In [4] the indices are repreaented by Boolean vecton x= (xl,xz, ey X)),
Y=(¥1,¥25 - - -, ¥a). Such vectors have coeﬂ‘ments X y,e{!) 1}. We put x,=1,
whenever i is in the covering set, and yj 0 whenever } isin that set. Then x and
y determine a w,, ng of A nf f

v;<x foralliand j with ,=0. @)
] H
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The quantity

m

Y, ax+r- Y. by, (4.2)

i=1. i=1

is the capac1ty of the covering. We define a covering as follows. An m x n matrix
Z= (z‘,) is called a covering of A =(a;)€ M, if there are Boolean vectors :c and y
satisfying (4.1) such that

z;=x—y; foralliandj. ‘ 4.3)

An‘arg‘umen‘t‘analogous to that foliowing problem Prcblem D,, shows that a
covering Z of A is characterized by

0=<z; whenevera;=0, (4.4)
z;€{-1,0,1} foralliandj, 4.5)
211+Zi"-zi1-21j=0 fOI‘ all i al'ld ] (4.6)

As in (2.12) we find

m

Z ax;+r— Z by, =r+¢(Z). (4.7)

i=1

Let A be nua-isolated, then Z is a minimal coverin: of A, if ¢(Z)< ¢(Z*) for all
coverings Z* of A.

In our notation the Hungarian method can be derived as foliows. We start by
constructing a non-isolated matrix from C. This will be done by subtracting the
minimum of each row from each element of that row, ard thereafter correspond-
ingly for each column. This operation decreases the obj=ctive function and leads
to a non-isolated matrix A € #. The algorithm continues with the

Covering-step: A minimal covering Z of A has to be determined. This can be
done as proposed in [2]. We shall refer later on to another method which was
introduced in [4].

The reduction-step is the constructive proof of

Theorem 4.1 [5]. Let A € M be non-isolated and Z be a minimal covering of A
with ©(Z)<0. Then there is an a>0 such that B= A+aZ is a non-isoluted
element of M, satisfying ¢o(B)< ¢(A).

Proof.

Reduction-step: By permutation o, rows and colurans a covering Z of A
can be transformed into

_ (0 -E
Z- 3)
(54 5 )



‘one. Hence we my and Z

/B; R3

B (34 B,

isa ieasxble solutzm satlsfymg tp(B) : f‘i)v+ oup(Z) < ¢(A) Smce the zeros in A,

md Az are proserved by the. reductlon-step @ 8) Bl and. B, are non-isolated,
, ;‘r.ence Bis: nom-bolatea : ,

Aciually we ordy need a oov‘.rmg z thh e(Z)< 0 to decrease the obJectxve
function, but the difference qo(A) (p(B) wnll be maxxmal 1f we take a minimal
covering. ;

The ‘a'gorithm proceeds thh covermg steps and reducuom-s;eps If we have
constructed an A € A ‘such that each minimat covering Z of A satisfies o(Z) =0,
then A is optima:. This cntexrxumm-whtch goes back to a theorem of Konig and
Egerviry (see-{S}}--can be regarded as a consequence: of our geometrical in-
terpretation of minimal coverings, cf. (,orollary 5.6.

Since there is- ‘only a- finite. number of possibi tles to form a covenng Z for
mxn mamces, we have p Z)>y for all ¢ ‘vermgs Z: wﬁhi’ (Z)<0, where y
depends n g and b, mﬂy Thc reduction-step preserves the mtege itues of the
matrices, hence each a chosen in a reductwn—step satisfies a = 1. So the algomhm

must obtain an optimum of Problem D,, in a finite number of steps; since M is
bounded. '

) A+;xZ ey

5. Geonietrjcal iliterpietation

As a consequence of Theorem 3.4 the matrices generated by the reduction-step
need not to be vertices of #M,. We skall now swtudy the precise geometrical
movement of the Hungarian method in AL, .

An mXn matrix W= =(wy) is called a nctmed dlrect.o'x at AeM, if the
following conditions hold,

there is an a >0 such that A+a\WVe M, (5.1
Iwi<1. (5.2)
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From (4.5) and Theorem 4.1 it follows that a covering Z of A with ¢(Z)< 0 is a
normed directio.i at A. Let W be a normed direction at A, we call W a d'rection
of sicepest descent, if @(W)<@(W¥*) for all normed directions W* at A.
Therefore the determination of a direction of steepest descent corresponds to
minimizing { W¥).

The reductior -:tep can be interpreied geometrically as movement along Z from
A to A+caZ To give a concise characterization we introduce the covering
number p,(A) of a covering Z of A.

Let A be a non-isolaied matrix in 4¢ with a covering Z = (z;;). By perrautation
of rows and cclumns we get

- [A; A
S

A, A,
such that all z; corresponding to A, and A, are {, those corresponding to A,

resp. A,, are 1, resp. 1. Since A, and A, are non-isolated, o(A;) and 7(A,) are
defined. Now pz(A)=0(A,)+0(A,) is called the covering number of Z.

Theorem 5.1 [7}. Let A € 4 be non-isolated with a covering Z satisfying ¢(Z)<Q.
Then the reduction-step is a movement from A to A+aZ crossing a face & of
dimension puy(A)—1.

Proof. We descend from A to B= A +aZ via the matrices By = A +BZ, Be
(0, @). Since all the zeros of B, are in the positions corresponding to .A; and A,
each Bg belongs to the same face ¥—.fp,. Applying Theorem 3.4 we obtain
dim = p,(A)-1.

Now we characterize the special ncrmed directions which are chosen by the
Hungarian method (working with min‘mal coverings). We have

Lemma 5.2. Let A b2 a matrix of M. If W =(w;;) is a normed direction at A, there
are vectors (py, p., ..., Pm) and (q1,Ga, - . ., q,) such that

w;=pi—q; foralliandj (5.3)
and,

max {ip,— q;: for all i and ji=<1. (54)

Proof. If W is a normed directior:, there is an « >0 such that A+aW is an
element of M. This yields (5.3). Eq. (5.4) is cvident.

Lemma 5.3. Lei W be any normed direction at AeJ. Then there ure
(P1, P2y - -+ s Pwm) and (qy, 7. ..., @, such that (5.5), (5.4) are satisfied and p €
[0,2], g,e[-1,1].



where Po qJ are. chosen as'u: Lex,
a>0, we muﬁt have

A3

[U 2 j If p, > 1, ﬂlvﬂ cha :,_gtng p; to 1 glves ‘better alne in (5. 5), hence pi e[() 1]
Now (5 4) is satistied and it rcmams the pmblem to mmnmze (5.5) wnth respect to
(5.7) subject to O<p;< 1, i=1,2,...,m. The convex polyhedron of feasible
solutions of: this line: gl mmmg pmblc m has a sxmple structure: All vertices
are Bool ean, henc.e tl ere must be an optimal soluuon which is albo Boolean. Eq.
(5.7) asserts that 1(/11, q2,- - - > qy) is Boolean too.’

From Theorem 5.4 we ggt two important corollaries.

Corollary 5.5. Let Ae M be non-isolated, then a minimal covering Z with ¢(Z)<
0 is a normed direction of steepest descent.

Corollary 5.6. Let A ¢ M be non-isolated, ihen A is optimal, if and only if each
minimai covering Z of A satisfies ¢(Z)=0.

If x=(x,%5,...,x,) and y=(yy, ¥a, .. .. ¥,) are Booiean vectors, (5.7) can be
expressed by

Vo

=[] x, (5.8)

iel;
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whége\-Ii #—s‘,k{‘i}ai,- =0}, j=1,2,..., n. So we get for (5.5)

f‘(p.('W)= ‘Z Z;X; — zn: b 17 % | (5.9)

j* iclj

: ; ‘each covermg step the Hunganan method chooses a normed direction of

‘Steepest descent. From this point of view the Hungarian method seems superior to
the simplex algorithm which can chcose directions of steepest descent being
generated by edges of ./ only.

6. Hungarian method and simplex algorithm

If we start the Hungarian method with a connected matrix of # and determine
v'th each covering-step a minimal covering with covering number 2, the Hun-
gerian method is restricted (by Theorem 5.1) to the edges of . Such an algorithm
hos been developed in [7].

The determination of these special coverings is performed by using a Boolean
aigorithm of [3]. Now (5.9) has to be minimized subject to two restrictions. It can
bz shown that this special version of the Hungarian method is equivalent to the
simplex algorithm, applied to Problem D,,. In this case a minimal covering with
covering number 2 is equivalent to the pivot column of the simplex tableau. In
this sense the Hungarian method is a generalization of the simplex method
applied to the dual transportation problem.
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