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Abstract

In this paper we study the classical Codazzi equation in space forms from an abstract point of view, and
use it as an analytic tool to derive global results for surfaces in different ambient spaces. In particular, we
study the existence of holomorphic quadratic differentials, the uniqueness of immersed spheres in geometric
problems, height estimates, and the geometry and uniqueness of complete or properly embedded Weingarten
surfaces.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

The Codazzi equation for an immersed surface Σ in Euclidean 3-space R
3 yields

∇XSY − ∇Y SX − S[X,Y ] = 0, X,Y ∈ X(Σ). (1)
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Here ∇ is the Levi-Civita connection of the first fundamental form I of Σ and S is the shape
operator, defined by II(X,Y ) = I (S(X),Y ), where II is the second fundamental form of the
surface. This Codazzi equation is, together with the Gauss equation, one of the two classical
integrability conditions for surfaces in R

3, and it yields true if we substitute the ambient space R
3

by other space forms S
3 or H

3.
It is remarkable that some crucial results of surface theory in R

3 only depend, in essence,
on the Codazzi equation. This is the case, for instance, of Hopf’s theorem (resp. Liebmann’s
theorem) on the uniqueness of round spheres among immersed constant mean curvature spheres
(resp. among complete surfaces of constant positive curvature). This suggests the possibility of
adapting these results to an abstract setting of Codazzi pairs (i.e. pairs of real quadratic forms
(I, II) on a surface verifying (1), where I is Riemannian), and to explore their possible conse-
quences in surface theory (see, for instance, [5,14,18] and references therein).

The basic idea in this sense is to use the Codazzi pair (I, II) as a geometric object in a non-
standard way, i.e. so that (I, II) are no longer the first and second fundamental forms of a surface
in a space form. This abstract approach has some very definite applications to the study of com-
plete, or properly embedded surfaces in homogeneous spaces. For instance:

1. It reveals the existence of holomorphic quadratic differentials for some classes of surfaces in
space forms and, more generally, in homogeneous 3-spaces.

2. It unifies the proofs of apparently non-related theorems.
3. It gives an analytic tool to prove uniqueness results for complete or compact Weingarten

surfaces in space forms.

These applications show the flexibility of the use of Codazzi pairs in surface theory, and suggest
the possibility of obtaining further global results with the techniques that we employ here.

We have organized this paper as follows. In Section 2 we recall the notions of fundamental
pairs and Codazzi pairs, and some of their associated invariants such as the mean curvature H ,
the extrinsic curvature K and the Hopf differential. We shall also recall two basic lemmas by
T. Klotz Milnor [18] which relate the concepts of Codazzi pair, constant mean curvature (or
positive constant extrinsic curvature) and holomorphic Hopf differential.

In Section 3 we study when a real quadratic form II on a Riemannian surface is conformal
to the metric, even if the Codazzi equation is not satisfied. For that, we shall define the Codazzi
function on a surface associated with its induced metric I and a real quadratic form II. This
function will measure how far is the pair (I, II) from satisfying the Codazzi equation.

We devote Section 4 to analyze the fundamental relation between the Codazzi equation and
the existence of holomorphic quadratic differentials. Thus, given a Codazzi pair on a surface Σ ,
we shall find under certain conditions the existence of a new Codazzi pair on Σ whose Hopf
differential is holomorphic. This new pair will provide geometric information about the initial
one.

We shall apply this result to the study of Codazzi pairs of special Weingarten type, that is, pairs
satisfying H = f (H 2 − K) for a certain function f . The corresponding problem for surfaces
in R

3 and H
3 was studied by Bryant in [7]. We shall also prove that every Codazzi pair on a

surface Σ satisfying H = f (H 2 − K) can be recovered in terms of a Riemannian metric on Σ

and a holomorphic quadratic form.
In Section 5 we review some facts on surfaces in the homogeneous product spaces and explain

how some Codazzi pairs and fundamental pairs have been used in the classification of spheres
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with constant mean curvature, complete surfaces with constant Gauss curvature or complete
surfaces with positive constant extrinsic curvature in these ambient spaces.

Finally, in Section 6, we give some applications of our abstract approach to surfaces in space
forms. We begin by obtaining height estimates for a wide family of surfaces of elliptic type.
Although these estimates are not optimal, the existence of such height estimates with respect
to planes constitutes a fundamental tool for studying the behavior of complete embedded sur-
faces.

Following the ideas developed by Rosenberg and Sa Earp in [23], we show that the theory
developed by Korevaar, Kusner, Meeks and Solomon [19–21] for constant mean curvature sur-
faces in R

3 and H
3 remains valid for some families of surfaces satisfying the maximum principle

(Theorem 4).
In particular, when Theorem 4 is applied to a properly embedded Weingarten surface Σ of

elliptic type satisfying H = f (H 2 − K) in R
3 or H

3, we obtain the following conclusion: If Σ

has finite topology and k ends, then k � 2. Moreover, Σ is rotational if k = 2, and it is contained
in a slab if k = 3.

To finish the paper, we shall study the problem of classifying Weingarten surfaces of elliptic
type satisfying H = f (H 2 −K) in R

3, and for which K does not change sign [26]. We shall show
that, in the above conditions, we have: (a) if Σ is a complete surface with K � 0 then it must be
a totally umbilical sphere, a plane or a right circular cylinder, and (b) if Σ is properly embedded
with K � 0, then it is a right circular cylinder or a surface of minimal type (i.e. f (0) = 0).

2. Preliminaries

In this section we recall some classical results about fundamental pairs and Codazzi pairs,
and establish some notation. For our approach, a classical reference about this topic is [18] (see
also [14]). Besides we point out that, although we shall always assume that the differentiability
used is always C∞, the differentiability requirements are actually much lower.

We shall denote by Σ an orientable (and oriented) smooth surface. Otherwise we would work
with its oriented two-sheeted covering.

Definition 1. A fundamental pair on Σ is a pair of real quadratic forms (I, II) on Σ , where I is
a Riemannian metric.

Associated with a fundamental pair (I, II) we define the shape operator S of the pair as

II(X,Y ) = I
(
S(X),Y

)
(2)

for any vector fields X, Y on Σ .
Conversely, it is clear from (2) that the quadratic form II is totally determined by I and S. In

other words, to give a fundamental pair on Σ is equivalent to give a Riemannian metric on Σ

together with a self-adjoint endomorphism S.
We define the mean curvature, the extrinsic curvature and the principal curvatures of (I, II)

as one half of the trace, the determinant and the eigenvalues of the endomorphism S, respec-
tively.

In particular, given local parameters (x, y) on Σ such that

I = E dx2 + 2F dx dy + Gdy2, II = e dx2 + 2f dx dy + g dy2,
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the mean curvature and the extrinsic curvature of the pair are given, respectively, by

H = H(I, II) = Eg + Ge − 2Ff

2(EG − F 2)
, K = K(I, II) = eg − f 2

EG − F 2
.

Moreover, the principal curvatures of the pair are H ± √
H 2 − K .

We shall say that the pair (I, II) is umbilical at p ∈ Σ if II is proportional to I at p, or
equivalently:

• if both principal curvatures coincide at p, or
• if S is proportional to the identity map on the tangent plane at p, or
• if H 2 − K = 0 at p.

We define the Hopf differential of the fundamental pair (I, II) as the (2,0)-part of II for the
Riemannian metric I . In other words, if we consider Σ as a Riemann surface with respect to the
metric I and take a local conformal parameter z, then we can write

I = 2λ |dz|2,
II = Qdz2 + 2λH |dz|2 + Qdz̄2. (3)

The quadratic form Qdz2, which does not depend on the chosen parameter z, is known as the
Hopf differential of the pair (I, II). We note that (I, II) is umbilical at p ∈ Σ if, and only if,
Q(p) = 0.

All the above definitions can be understood as natural extensions of the corresponding ones
for isometric immersions of a Riemannian surface in a 3-dimensional ambient space, where I

plays the role of the induced metric and II the role of its second fundamental form.
A specially interesting case happens when the fundamental pair satisfies, in an abstract way,

the Codazzi equation for surfaces in R
3.

Definition 2. We say that a fundamental pair (I, II), with shape operator S, is a Codazzi pair if

∇XSY − ∇Y SX − S[X,Y ] = 0, X,Y ∈ X(Σ), (4)

where ∇ stands for the Levi-Civita connection associated with the Riemannian metric I and
X(Σ) is the set of smooth vector fields on Σ .

Many Codazzi pairs appear in a natural way in the study of surfaces. For instance, the first and
second fundamental forms of a surface isometrically immersed in a 3-dimensional space form
constitute a Codazzi pair. The same happens for spacelike surfaces in a 3-dimensional Lorentzian
space form. More generally, if the surface is immersed in an n-dimensional (semi-Riemannian)
space form and has a parallel unit normal vector field N , then its induced metric and its second
fundamental form associated with N constitute a Codazzi pair.

Classically, Codazzi pairs also arise in the study of harmonic maps. Many other examples
of Codazzi pairs also appear in [3,5,14,18,22] and references therein. All of this shows that the
results on Codazzi pairs can be used in different contexts.
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Let us also observe that, by (3) and (4), a fundamental pair (I, II) is a Codazzi pair if and only
if

Qz̄ = λHz.

Thus, one has (see [18]):

Lemma 1. Let (I, II) be a fundamental pair. Then, any two of the conditions (i)–(iii) imply the
third:

(i) (I, II) is a Codazzi pair.
(ii) H is constant.

(iii) The Hopf differential of the pair is holomorphic.

We observe that Hopf’s theorem [13, p. 138], on the uniqueness of round spheres among
immersed constant mean curvature spheres in Euclidean 3-space, can be easily obtained from
this result.

For our purposes, we shall need the following lemma [18], which also shows the existence of
a geometric holomorphic quadratic form associated with any Codazzi pair with positive constant
extrinsic curvature.

Lemma 2. Let (I, II) be a fundamental pair with positive extrinsic curvature K . Then, any two
of the conditions (i)–(iii) imply the third:

(i) (I, II) is a Codazzi pair.
(ii) K is constant.
(iii) The Hopf differential of the new fundamental pair (II, I ) is holomorphic. That is, the (2,0)-

part of I with respect to the Riemannian metric II is holomorphic.

Liebmann theorem, about the characterization of the round spheres among complete surfaces
of constant positive curvature in the Euclidean 3-space, can be easily obtained from Lemma 2
(see [16]).

3. The Codazzi function

Under certain natural conditions, it is possible to obtain important consequences about a sur-
face endowed with a fundamental pair although the Codazzi equation is not satisfied. In order to
study these conditions, next we define a tensor associated with the pair and the Codazzi function,
which will play an essential role in our study.

Definition 3. Given a fundamental pair (I, II) on a surface Σ with associated shape operator S,
we define the tensor TS :X(Σ) × X(Σ) → X(Σ) by

TS(X,Y ) = ∇XSY − ∇Y SX − S[X,Y ], X,Y ∈ X(Σ).
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Although the definition above has been made in an abstract context, this tensor appears nat-
urally in the study of isometric immersions of surfaces. Specifically, the Codazzi equation of a
surface isometrically immersed in a 3-dimensional manifold M3 is

∇XSY − ∇Y SX − S[X,Y ] = −R(X,Y )N, X,Y ∈ X(Σ).

Here N is the unit normal vector field of the immersion, S the associated shape operator and R

the curvature tensor of M3

R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z,

where ∇ is the Levi-Civita connection of M3.
A straightforward computation shows that the tensor TS satisfies the following properties:

Lemma 3. Let (I, II) be a fundamental pair on a surface Σ with associated shape operator S.
Then:

1. TS is skew-symmetric, i.e. TS(X,Y ) = −TS(Y,X) for all X,Y ∈ X(Σ).
2. TS is C∞(Σ)-bilinear, that is,

TS(f1X1 + f2X2, Y ) = f1TS(X1, Y ) + f2TS(X2, Y )

for all vector fields X1,X2, Y ∈ X(Σ) and all smooth real functions f1, f2.
3. Moreover, given vector fields X,Y ∈ X(Σ) and a smooth real function f on Σ , it holds

Tf S(X,Y ) = f TS(X,Y ) + X(f )SY − Y(f )SX.

Associated with the tensor TS we define the Codazzi function, from which we can measure
how distant the pair is from satisfying the Codazzi equation.

Definition 4. Let (I, II) be a fundamental pair on a surface Σ with associated shape operator S.
We call the map TS :Σ → R the Codazzi function of (I, II), given by

I
(
TS(v1, v2), TS(v1, v2)

) = TS(p)
(
I (v1, v1)I (v2, v2) − I (v1, v2)

2),
where v1, v2 ∈ TpΣ , p ∈ Σ .

Observe that TS is a well-defined smooth function since TS is skew-symmetric. Besides,
TS vanishes identically if, and only if, (I, II) is a Codazzi pair.

Lemma 4. Let (I, II) be a fundamental pair on a surface Σ with associated shape operator S,
mean curvature H and extrinsic curvature K . Let z be a local conformal parameter for I such
that

I = 2λ |dz|2, II = Qdz2 + 2λH |dz|2 + Qdz̄2. (5)
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Then

|Qz̄|2 = λTS̃

2(H 2 − K)
|Q|2,

where S̃ is the traceless operator S − H id. Here, idp is the identity map on the tangent plane at
p ∈ Σ .

Proof. Let z be a local conformal parameter for the Riemannian metric I . From (5) the Levi-
Civita connection is given by

∇ ∂
∂z

∂

∂z
= λz

λ

∂

∂z
, ∇ ∂

∂z

∂

∂z̄
= 0

and the shape operator S becomes

S
∂

∂z
= H

∂

∂z
+ Q

λ

∂

∂z̄
.

Hence,

K = H 2 − |Q|2
λ2

. (6)

Thus, using the definition of TS we have

TS̃

(
∂

∂z
,

∂

∂z̄

)
= ∇ ∂

∂z
S̃

∂

∂z̄
− ∇ ∂

∂z̄
S̃

∂

∂z
= ∇ ∂

∂z

Q

λ

∂

∂z
− ∇ ∂

∂z̄

Q

λ

∂

∂z̄

= 1

λ

(
Qz

∂

∂z
− Qz̄

∂

∂z̄

)
. (7)

Therefore, the Codazzi function satisfies 2
λ
|Qz̄|2 = TS̃λ2, and the proof finishes using (6). �

Given a fundamental pair (I, II) on a surface Σ , we shall denote by ΣU ⊆ Σ the set of
umbilical points of the pair. Then we have

Theorem 1. Let (I, II) be a fundamental pair on a surface Σ with associated shape operator S,
mean curvature H and extrinsic curvature K . Let us suppose that every point p ∈ ∂ΣU has a
neighborhood Vp such that

TS̃

H 2 − K
is bounded in Vp ∩ (Σ − ΣU),

where S̃ = S − H id. Then either the Hopf differential of (I, II) vanishes identically or its zeroes
are isolated and of negative index.

In particular, if Σ is a topological sphere then the pair is totally umbilical.
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Proof. If p ∈ ∂ΣU , then there exists an open neighborhood Vp and a constant m0 such that
TS̃

H 2−K
� m0 in Vp ∩ (Σ − ΣU). Thus, using Lemma 4,

|Qz̄|2 � m0
λ

2
|Q|2 (8)

in Vp ∩ (Σ − ΣU). Besides, since this inequality is also satisfied in the interior of ΣU , we
conclude that (8) holds in Vp .

Therefore, using [15, Lemma 2.7.1], we have that p is an isolated zero of negative index of
the Hopf differential, as we wanted to prove.

In particular, if Σ is a topological sphere, we get by the Poincaré index theorem that the Hopf
differential Qdz2 must vanish identically on Σ . Therefore, the pair is totally umbilical. �
Remark 1. The above result can be globally used not only for topological spheres. Indeed, if Σ

is a topological torus that satisfies the assumptions of Theorem 1, then we deduce that the pair
(I, II) is either totally umbilical or umbilically free. Analogously, if Σ is a closed topological
disk and its boundary ∂Σ is a line of curvature for (I, II), then the pair is totally umbilical.
(See [9] for the case of surfaces with non-regular boundary and applications to homogeneous
spaces.)

If (I, II) is a Codazzi pair we have

TS̃

(
∂

∂z
,

∂

∂z̄

)
= −∇ ∂

∂z
H

∂

∂z̄
+ ∇ ∂

∂z̄
H

∂

∂z
= Hz̄

∂

∂z
− Hz

∂

∂z̄
.

Therefore, its Codazzi function is

TS̃ = 2

λ
|Hz|2 = ‖∇H‖2,

where ‖∇H‖ stands for the modulus of the gradient of H for the Riemannian metric I . Thus,
Theorem 1 can be applied for Codazzi pairs whenever the quotient ‖∇H‖2/(H 2 − K) is locally
bounded.

However, as we will see in Section 5, this result can be also applied to fundamental pairs
which are not Codazzi pairs.

4. Holomorphic quadratic differentials

In this section we shall see that, under certain assumptions on a Codazzi pair, it is possible to
obtain a new Codazzi pair with vanishing constant mean curvature which is geometrically related
to the first one. By using this second Codazzi pair, we shall show the existence of a holomorphic
quadratic differential which will provide important information on the geometric behavior of the
initial pair.

If (u, v) are doubly orthogonal parameters for a fundamental pair (I, II), then we can write

I = E du2 + Gdv2, II = k1E du2 + k2Gdv2,

where k1, k2 are the principal curvatures of the pair.
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Hence, if S is the shape operator of the pair, the tensor TS can be expressed as

TS

(
∂

∂u
,

∂

∂v

)
= ∇ ∂

∂u
S

∂

∂v
− ∇ ∂

∂v
S

∂

∂u
= ∇ ∂

∂u
k2

∂

∂v
− ∇ ∂

∂v
k1

∂

∂u

= (k2)u
∂

∂v
− (k1)v

∂

∂u
+ (k2 − k1)

(
Ev

2E

∂

∂u
+ Gu

2G

∂

∂v

)

= − 1

E

(
(k1E)v − HEv

) ∂

∂u
+ 1

G

(
(k2G)u − HGu

) ∂

∂v
, (9)

where H is the mean curvature of (I, II).
We observe that doubly orthogonal parameters exist in a neighborhood of every non-

umbilical point, as well as in a neighborhood of every point in the interior of ΣU =
{umbilical points of (I, II)}. Thus, the set of points around which doubly orthogonal parame-
ters exist is dense in Σ . Consequently, all the properties that we prove by using this kind of
parameters will be extended to the whole surface by continuity.

In what follows, let II′ denote the quadratic form given by

II′ = II − HI,

where (I, II) is a fundamental pair.

Lemma 5. Let (I, II) be a Codazzi pair on a surface Σ with mean and extrinsic curvatures H

and K , respectively. Let ϕ be a smooth function on Σ such that the function sinhϕ/
√

H 2 − K

can be smoothly extended to Σ . Then

A = coshϕI + sinhϕ√
H 2 − K

II′,

B =
√

H 2 − K sinhϕI + coshϕII′,

is a fundamental pair with mean curvature H(A,B) = 0 and extrinsic curvature K(A,B) =
−(H 2 − K). Moreover, if we denote by S̃ the shape operator associated with (A,B), then

TS̃(X,Y ) = ω(Y )X − ω(X)Y, ω := 1

2

(
dH −

√
H 2 − K dϕ

)
, (10)

for all X,Y ∈ X(Σ).

Proof. Let (u, v) be doubly orthogonal parameters for the Codazzi pair (I, II) such that

I = E du2 + Gdv2, II = k1E du2 + k2Gdv2,

being k1 � k2.
Then we can write (A,B) as

A = eϕE du2 + e−ϕGdv2, B = k1 − k2 (
eϕE du2 − e−ϕGdv2).
2
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Hence, A is a Riemannian metric on Σ and the mean and extrinsic curvatures of the pair are
given by H(A,B) = 0 and K(A,B) = −(H 2 − K).

In addition, from (9) and taking into account that (I, II) is a Codazzi pair, we get

TS̃

(
∂

∂u
,

∂

∂v

)
= − 1

eϕE

(
k1 − k2

2

(
eϕE

))
v

∂

∂u
− 1

e−ϕG

(
k1 − k2

2

(
e−ϕG

))
u

∂

∂v

= −1

2

(
(k1)v − (k2)v + (k1 − k2)ϕv − 2(k1)v

) ∂

∂u

− 1

2

(
(k1)u − (k2)u − (k1 − k2)ϕu + 2(k2)u

) ∂

∂v

= ω

(
∂

∂v

)
∂

∂u
− ω

(
∂

∂u

)
∂

∂v
.

Finally, we obtain (10) from the linearity of TS̃ . �
Under the assumptions of Lemma 5, if z is a conformal parameter for A and we consider

A = 2λ |dz|2, B = Qdz2 + Qdz̄2, (11)

then from (7) and (10) we get

Qz̄ = λω

(
∂

∂z

)
= λ

2

(
Hz −

√
H 2 − Kϕz

)
.

Moreover, we obtain from (10) that the pair (A,B) given by (11) is a Codazzi pair if and only
if dH − √

H 2 − K dϕ = 0, or equivalently Qz̄ = 0.
With all of this we have

Corollary 1. Let (I, II) be a Codazzi pair on a surface Σ with mean and extrinsic curvatures H

and K , respectively. Let ϕ be a smooth function on Σ such that the function sinhϕ/
√

H 2 − K

can be smoothly extended to Σ . Then the fundamental pair

A = coshϕI + sinhϕ√
H 2 − K

II′,

B =
√

H 2 − K sinhϕI + coshϕII′, (12)

has mean curvature H(A,B) = 0 and extrinsic curvature K(A,B) = −(H 2 − K). In addition,
the following conditions are equivalent:

• (A,B) is a Codazzi pair,
• the Hopf differential of (A,B) is holomorphic for the conformal structure induced by A,
• dH − √

H 2 − K dϕ = 0.

Next, we see some situations where the corollary above can be used. In order to do that, and
following the classical notation, we give the following definition.
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Definition 5. We say that a Codazzi pair (I, II) is a special Weingarten pair if there exists a
smooth function f defined on an interval J ⊆ [0,∞) such that its mean curvature H and extrin-
sic curvature K satisfy

H = f
(
H 2 − K

)
.

Now let us assume that the mean and extrinsic curvatures of a Codazzi pair (I, II) satisfy a
general Weingarten relation W(H,K) = 0, where W is a smooth function defined on an open
set of R

2 containing the set of points {(H(p),K(p)): p ∈ Σ}. Let us parametrize H = H(t),
K = K(t), for t varying in a certain interval. Then, if we look for a solution of the type ϕ = ϕ(t)

for the previous equation dH − √
H 2 − K dϕ = 0, we have

√
H(t)2 − K(t)ϕ′(t) = H ′(t).

Therefore, if there exists a primitive ϕ(t) of the function

H ′(t)√
H(t)2 − K(t)

for which sinhϕ(t)/
√

H(t)2 − K(t) is well defined even at the umbilical points, then the Codazzi
pair (A,B) given as (12) will exist on the whole surface Σ .

In addition, if (I, II) is a special Weingarten pair satisfying H = f (H 2 − K), then we can
consider H 2 − K = t2 and H = f (t2) as above. This allows us to take

ϕ(t) =
t∫

0

2f ′(s2)ds (13)

whenever there exist umbilical points (i.e. t = 0 has sense), or any primitive of 2f ′(t2) otherwise.
Thus, for special Weingarten pairs, the metric A defined as in Corollary 1 is always well

defined, because so is the function sinhϕ(t)/t .
The metric A for special Weingarten surfaces in R

3 and H
3 was first defined by R.L. Bryant

in [7]. In that work, he also found a holomorphic quadratic form for the metric A which agrees
with the Hopf differential of the pair (A,B). Using this, Bryant provided an easy proof of the
fact that every topological sphere in R

3 or H
3 satisfying a special Weingarten relation must be a

totally umbilical round sphere.
The abstract formulation which we have adopted in this work allows us to extend this result

to general special Weingarten surfaces.
Another remarkable consequence of our abstract approach is that we can describe all special

Weingarten pairs as follows:

Corollary 2. Let Σ be a surface and f a smooth function defined on an interval J ⊆ [0,∞).
Let us take a primitive ϕ(t) of 2f ′(t2) on that interval such that the function sinhϕ(t)/t is well
defined. Then every special Weingarten pair (I, II) on Σ satisfying H = f (H 2 − K) is given by
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I = − sinhϕ(t)

t
Q + coshϕ(t)A − sinhϕ(t)

t
Q,

II − f
(
t2)I = − coshϕ(t)Q + t sinhϕ(t)A − coshϕ(t)Q, (14)

where A is a Riemannian metric on Σ and Q is a holomorphic 2-form for A such that the
image of the function t :Σ → [0,∞) defined as 2|Q| = tA is contained in J . In particular,
t2 = H 2 − K .

Proof. It suffices to observe that given a special Weingarten pair (I, II), if we take H 2 − K = t2

(and therefore H = f (t2)), we have already proved that there exists a primitive ϕ = ϕ(t) of
2f ′(t2) in the conditions of Corollary 1. Thus, there exists a fundamental pair (A,B) for which
B can be written as B = Q + Q, since H(A,B) = 0. Besides, the Hopf differential Q of (A,B)

is a holomorphic 2-form for the metric A and

t2 = H 2 − K = −K(A,B) = 4
|Q|2
|A|2 .

So, using (12), we can see that the pair (I, II) can be written as (14) in terms of the pair
(A,B). Finally, it is a straightforward computation to check that any pair (A,B) as above gives
a Codazzi pair (I, II) which is special Weingarten. �
5. Surfaces in homogeneous product spaces

A remarkable theorem by U. Abresch and H. Rosenberg showed that every surface with con-
stant mean curvature in the homogeneous product spaces S

2 × R or H
2 × R has a holomorphic

quadratic differential (see [1] and also [2]). This fact was used to classify the spheres with con-
stant mean curvature in these spaces, and has inspired many research works on surfaces in these
ambient spaces. In this section we explain how some natural Codazzi pairs appear in the context
of homogeneous product spaces.

Let M
2(ε) denote H

2 or S
2 depending on whether ε = −1 or ε = 1, respectively. Con-

sider a surface Σ and an immersion ψ :Σ → M
2(ε) × R, with unit normal vector field N . Let

π : M2(ε) × R → R be the usual projection and consider the height function h := π ◦ ψ and the
angle function ν := dπ(N) on the surface Σ .

If ψ is an immersion with constant mean curvature H , then it was proved by Abresch and
Rosenberg [1] that the quadratic differential(

2HQ − εh2
z

)
dz2

is holomorphic. Here, z is a conformal parameter for the induced metric I and Qdz2 is the Hopf
differential of the pair (I, II).

The real quadratic form

B = 2H II − ε dh2 + ε

4

(
1 − ν2)I

is then locally given by

B = (
2HQ − εh2

z

)
dz2 + 4H 2λ |dz|2 + (

2HQ − εh2
z̄

)
dz̄2,

where we have used [4, Eq. 2.2].
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Thus, since the mean curvature of the pair (I,B) is given by H(I,B) = 2H 2 then (I,B) is
a Codazzi pair from Lemma 1. It is expected that this pair could play an important role in the
research of surfaces with constant mean curvature in S

2 × R and H
2 × R.

For an immersion ψ :Σ → M
2(ε) × R with constant Gauss curvature K(I), a Codazzi pair

is found when the quadratic form

A = I + 1

εK(I) − 1
dh2

is Riemannian [3]. In particular, if K(I) /∈ [0,1] in S
2 × R or K(I) /∈ [−1,0] in H

2 × R, then A

is a Riemannian metric.
The pair (A, II) is a Codazzi pair with constant extrinsic curvature K(A, II) = K(I) − ε.

Thus, from Lemma 2, if K(I) > 1 in S
2 × R or if K(I) > 0 in H

2 × R, the (2,0)-part of A with
respect to II is holomorphic. This fact was used in [3] in order to classify the complete surfaces
of constant Gauss curvature. In addition, the existence of a Codazzi pair for constant K(I) < −1
was used to obtain a Hilbert type theorem in S

2 × R and H
2 × R (see [3]).

The case of immersions in M
2(ε) × R with positive constant extrinsic curvature is of special

interest since a Codazzi pair has not yet been found, but there exists a fundamental pair for which
Theorem 1 applies.

In fact, if ψ :Σ → M
2(ε) × R is an immersion with positive constant extrinsic curvature

K = K(I, II) then (II,C) is a fundamental pair where

C = I + g(ν) dh2.

Here, g : R → R is the analytic function given by

g(t) = t2 − 1 + εK(e
ε(1−t2)

K − 1)

(1 − t2)2
.

From [10, Lemma 7.1] this pair fulfills the conditions of Theorem 1. This fact was used in order
to classify the complete immersions in S

2 × R and H
2 × R with positive constant extrinsic

curvature [10].

6. Applications to space forms

In this section we focus our attention on surfaces in space forms. We shall obtain several
results as a consequence of the previous study.

We start by giving a geometrical argument for obtaining height bounds for a large class of
families of surfaces which satisfy a maximum principle. The proof is based on some ideas used
in [10].

Definition 6. We say that a family A of oriented surfaces in R
3 satisfies the Hopf maximum

principle if the following properties are fulfilled:

1. A is invariant under isometries of R
3. In other words, if Σ ∈ A and ϕ is an isometry of R

3,
then ϕ(Σ) ∈ A.

2. If Σ ∈ A and Σ̃ is another surface contained in Σ , then Σ̃ ∈ A.
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3. There is an embedded compact surface without boundary in A.
4. Any two surfaces in A satisfy the maximum principle (interior and boundary).

Note that a large amount of families of surfaces verify the Hopf maximum principle. Classical
examples of this fact are the family of surfaces with constant mean curvature H = 0 and the
family of surfaces with positive constant extrinsic curvature K . And, more generally, the family
of special Weingarten surfaces in R

3 satisfying a relation of the type H = f (H 2 − K), where
f is a smooth function defined on an interval J ⊆ [0,∞) with 0 ∈ J , such that f (0) = 0 and
4tf ′(t)2 < 1 for all t ∈ J (see [23]).

We also point out that if a family of surfaces A satisfies the Hopf maximum principle, then
there exists, up to isometries of R

3, a unique embedded compact surface Σ without boundary
in A. Such surface is, necessarily, a totally umbilical sphere.

To see this, it suffices to observe that the Alexandrov reflection principle works for surfaces
in A. Thus, for every plane P ⊆ R

3 there exists a plane, parallel to P , which is a symmetry plane
of Σ . Therefore, Σ is a round sphere.

In addition, there cannot be two totally umbilical spheres Σ1,Σ2 in A which are non-
isometric. Otherwise, up to isometries, we can suppose that one of them, let us say Σ1, is
contained in the bounded region determined by Σ2. If we move Σ1 until it first meets Σ2 and
at the contact point the normal vectors to Σ1, Σ2 coincide, from the maximum principle we
can conclude that Σ1 = Σ2. If the normal vectors at that point do not coincide, we keep on
moving Σ1 in such a way that its center moves along a half-line, until it meets Σ2 at the last
contact point. At that contact point the normal vectors do necessarily coincide, which allows us,
as before, to assert that Σ1 = Σ2.

Now, let us see that there exists a constant cA such that for all compact embedded surfaces
Σ ∈ A whose boundary is contained in a plane P , the maximum distance from a point p ∈ Σ

to P is bounded by cA. This bound only depends on the radius of the unique totally umbilical
sphere contained in the family A.

Although we shall not provide optimal estimates here, the existence of such height estimates
with respect to planes will allow us to get interesting consequences regarding several aspects of
embedded surfaces in R

3 (see [19–21,23]).
We shall start by studying graphs Σ with boundary contained in a plane P of R

3. Up to an
isometry, we can assume that P is the xy-plane, and so

Σ = {(
x, y,u(x, y)

) ∈ R
3: (x, y) ∈ Ω ⊆ R

2}.
Theorem 2. Let A be a family of surfaces in R

3 satisfying the Hopf maximum principle, and let
Σ ∈ A be a compact graph on a domain Ω in the xy-plane with ∂Σ contained in this plane.
Then for all p ∈ Σ , the distance in R

3 from p to the xy-plane is less than or equal to 4RA. Here,
RA stands for the radius of the unique totally umbilical sphere in the family A.

Proof. Let Σ ∈ A be a graph on a domain Ω in the xy-plane and let Σ0 be the unique totally
umbilical sphere of A. Let P(t) be the foliation of R

3 by horizontal planes, where P(t) is the
plane at height t .

Claim 1. For every t > 2RA, the diameter of any open connected component bounded by Σ(t) =
P(t) ∩ Σ is less than or equal to 2RA.
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Indeed, let us suppose that this claim is not true. Then, for some connected component C(t)

of Σ(t), there are points p, q in the interior of the domain Ω(t) in P(t) bounded by C(t) such
that dist(p, q) > 2RA. Let Q be the domain in R

3 bounded by Σ ∪ Ω . Let β be a curve in Ω(t)

joining p and q , and so that β and C(t) are disjoint.
Let Π be the rectangle given by

Π = {
αs(r): s ∈ I, r ∈ [0, t]}

where I is the interval where β is defined, and αs is the geodesic with initial data αs(0) = β(s)

and α′
s(0) = −e3, r being the arc length parameter along αs and e3 = (0,0,1).

Since Σ is a graph and β is contained in the interior of the domain determined by C(t), then
Π ⊂ Q. Let p̃ ∈ Π be a point whose distance to ∂Π is greater than RA. Note that, according to
our construction of Π , the point p̃ necessarily exists.

Let η(r) be a horizontal geodesic passing through p̃ and such that every point in η(r) is at a
distance from ∂Π greater than RA. Observe that such a geodesic can be chosen as the horizontal
line in the plane P(t1) that contains the point p̃ and is orthogonal to the segment joining p and q .
Let q̃1 be the first point where η meets Q, and let q̃2 be the last one.

Now, let us consider at each point of η(r) the sphere Σ0(r) ∈ A centered at η(r). Note that
these spheres can be obtained from the rotational sphere Σ0 by means of a translation of R

3.
Then, there exists a first sphere in this family (coming from q̃1) which meets Σ . If the nor-

mal vectors of both surfaces coincide at this point, we conclude that both surfaces agree by the
maximum principle. On the other hand, if the normal vectors are opposite, we argue as follows.

Let us consider the first sphere Σ0(r0) in the family above (coming from q̃1) which meets Π

at an interior point of Π .
For every r > r0 we consider the piece Σ̃0(r) of the sphere Σ0(r) which has gone through Π .

Since these spheres leave Q at q̃2 and none of them meets ∂Π , there exists a first value r1 such
that Σ̃0(r1) first meets ∂Q ∩ Σ at a point q̃0. Thus, applying the maximum principle to Σ0(r1)

and Σ at q̃0, we conclude that both surfaces agree, which is a contradiction.
Therefore we obtain that, for the height t = 2RA, the diameter of every open connected com-

ponent bounded by Σ(t) = P(t) ∩ Σ is less than or equal to 2RA.
To finish, we shall see that P(t) ∩ Σ is empty for t > 4RA. To do that, it suffices to prove the

following assertion:

Claim 2. Let Ω1 be a connected component bounded by Σ(2RA) in P(2RA). Then, the distance
from any point in Σ (which is a graph on Ω1) to the plane P(2RA) is less than or equal to the
diameter of Ω1.

Let σ be a support line of ∂Ω1 in P(2RA) with exterior unit normal vector v, and let us take
η(r) a geodesic such that η(0) ∈ σ and η′(0) = 1√

2
(v + e3).

Now, let us consider for every r the plane Π(r) in R
3 passing through η(r) which is orthog-

onal to η′(r) = η′(0). Such planes intersect every horizontal plane in a line parallel to σ , being
π/4 the angle between them.

If Claim 2 was not true, there would exist a point p ∈ Σ over Ω1 whose height over the plane
P(2RA) would be greater than the diameter of Ω1.

Let Σ1 be the compact piece of Σ which is a graph on Ω1. Observe that, for r big enough,
Π(r) does not meet Σ1. In addition, for r = 0 the plane Π(0) contains the line σ , and the
reflection of p with respect to Π(0) is a point whose vertical projection on P(2RA) is not
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in Ω1. Therefore, using the Alexandrov reflection principle (see for instance [13]) for the planes
Π(r) with r coming from infinity, there exists a first value r0 > 0 such that: (a) the reflection
of the piece of Σ1 which is over Π(r) meets first Σ1 at an interior point, or (b) both surfaces
are tangent at a point in the boundary. But any of these is a contradiction, by the maximum
principle.

This finishes the proof. �
As a consequence of this result, we are able to bound the maximum height attained by an

embedded compact surface whose boundary is contained in a plane.

Corollary 3. Let A be a family of surfaces in R
3 satisfying the Hopf maximum principle. Then

every embedded compact surface Σ ∈ A whose boundary is contained in a plane P verifies that
for every p ∈ Σ the distance in R

3 from p to the plane P is less than or equal to 8RA. Here,
RA denotes the radius of the unique totally umbilical sphere contained in A.

This result follows from Theorem 2 as a standard consequence of the Alexandrov reflection
principle for planes parallel to P .

Remark 1. The techniques used in Theorem 2 and Corollary 3 are valid not only in R
3, but

also more generally for hypersurfaces in R
n. Even more, they can easily be adapted to study

hypersurfaces in H
n.

The existence of a maximum principle and height estimates with respect to planes for a fam-
ily of surfaces A allows us to extend the theory developed by Korevaar, Kusner, Meeks and
Solomon [19–21] for constant mean curvature surfaces in R

3 and H
3 to our family A. On

the other hand, in [23] Rosenberg and Sa Earp showed that those techniques are also suitable
to study some families of surfaces satisfying a relation of the type H = f (H 2 − K). Actu-
ally, they do not use that the surfaces satisfy H = f (H 2 − K), but only that they satisfy the
Hopf maximum principle and that there exist height estimates for them. Thus, following [23] we
get

Theorem 3 (Cylindrical bounds). Let A be a family of surfaces in R
3 satisfying the Hopf maxi-

mum principle and let Σ ∈ A be an annulus (i.e. Σ is homeomorphic to a punctured closed disk
of R

2). If Σ is properly embedded, then it is contained in a half-cylinder of R
3.

A unit vector v ∈ S
2 is said to be an axial vector for Σ ⊆ R

3 if there exists a sequence of
points pn ∈ Σ such that |pn| → ∞ and pn/|pn| → v. In particular, the theorem above asserts
that for any properly embedded annulus there exists a unique axial vector. In addition, this vector
is the generator of the rulings of the cylinder.

Finally, following [23] for properly embedded complete surfaces, we have

Theorem 4. Let A be a family of surfaces in R
3 satisfying the Hopf maximum principle. If Σ ∈ A

is a properly embedded surface with finite topology in R
3, then every end of Σ is cylindrically

bounded. Moreover, if a1, . . . , ak are the k axial vectors corresponding to the ends, then these
vectors cannot be contained in an open hemisphere of S

2. In particular:
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• k = 1 is impossible.
• If k = 2, then Σ is contained in a cylinder and is a rotational surface with respect to a line

parallel to the axis of the cylinder.
• If k = 3, then Σ is contained in a slab.

Definition 7. Let (I, II) be a Codazzi pair on a surface Σ . We shall say that the pair is spe-
cial Weingarten of elliptic type if its mean and extrinsic curvatures H and K satisfy that
H = f (H 2 − K), where f is a smooth function defined on [0, a), 0 < a � ∞, such that

4tf ′(t)2 < 1

for all t ∈ [0, a).

It was proved by Rosenberg and Sa Earp [23] (see also [6]) that the set of Weingarten surfaces
of elliptic type in R

3 and H
3 with f (0) = 0 is a family satisfying the Hopf maximum principle.

Thus, the above theorems are true for this kind of surfaces. Actually these results were also
proved in [23], although under the additional hypothesis f ′(t)(1 − 2f (t)f ′(t)) � 0.

The special Weingarten surfaces in R
3 and H

3 satisfying H = f (H 2 − K) have been widely
studied. In particular, an exhaustive study of the rotational surfaces was developed by Sa Earp
and Toubiana [24–27].

An open problem of this context, posed in [26], is the classification of the surfaces satisfying
H = f (H 2 −K) whose extrinsic curvature does not change sign. More specifically, the problem
is if such surfaces are totally umbilical spheres, cylinders or surfaces of minimal type (i.e. with
f (0) = 0). Observe that this fact is known for surfaces with constant mean curvature. In fact,
a minimal surface has non-positive extrinsic curvature at every point, and a complete surface
with non-zero constant mean curvature and whose extrinsic curvature does not change sign, must
be a sphere or a cylinder [12,17].

Next, and as a consequence of the study developed for Codazzi pairs, we study the problem
above for the general case of special Weingarten surfaces of elliptic type.

Theorem 5. Let Σ be a special Weingarten surface of elliptic type in R
3 satisfying H =

f (H 2 − K). Let us suppose that its extrinsic curvature does not change sign.

1. If Σ is complete and K � 0 at every point, then Σ is a totally umbilical sphere, a plane or
a right circular cylinder.

2. If Σ is properly embedded and K � 0 at every point, then Σ is either a right circular
cylinder or a surface of minimal type (i.e. f (0) = 0).

In order to prove this theorem, we shall first establish the following general lemma for Codazzi
pairs.

Lemma 6. Let (I, II) be a special Weingarten pair of elliptic type on a surface Σ , with mean
and extrinsic curvatures H and K , respectively. If H 2 − K = 0 on Σ , then the new metric

g0 =
√

H 2 − KA

is a flat metric on Σ . Here, A is the metric given by (12) for the function ϕ defined in (13).
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Moreover, if I is complete and H 2 −K � c0 > 0 then the metric g0 is complete. In particular,
Σ with the conformal structure given by A (or by g0) is conformally equivalent to the complex
plane, the once punctured complex plane or a torus.

Proof. From Corollary 2 we get that 2|Q| = tA, where t = √
H 2 − K and Q is a holomorphic

quadratic form for A. Thus, since H 2 − K > 0, g0 = 2|Q| is a well-defined flat metric on Σ .
Let us see that g0 is complete if I is complete. In such a case g0 would be a complete flat

metric and, so, the universal Riemannian covering of Σ for the metric g0 would be the Euclidean
plane. Hence, Σ would be conformally equivalent to the complex plane, to the once punctured
complex plane or to a torus.

Observe that, from (14), we get that

I � 2 coshϕ(t)A. (15)

On the other hand, since (I, II) is a special Weingarten pair of elliptic type it follows that
4s2f ′(s2)2 < 1 and so, from (13),

s2ϕ′(s)2 < 1, or equivalently − 1

s
< ϕ′(s) <

1

s
.

Hence, by integrating between a fixed point s0 > 0 and s one gets that there exists a constant
c1 > 0 such that |ϕ(s)| � |log s| + c1. Therefore, since

lim
s→∞

cosh log(s)

s
= 1

2

and t � √
c0, we deduce the existence of a constant c2 > 0 such that coshϕ(t) � c2t .

Finally, from (15) it follows that

I � 2c2tA = 2c2g0,

that is, g0 is complete. �
Proof of Theorem 5. Firstly, let us suppose that Σ is a complete surface in R

3 with K � 0.
If K vanishes identically, then it is easy to conclude that Σ is either a plane or a right circular

cylinder (see [24]).
If there exists a point where the extrinsic curvature is positive, then Σ is properly embedded

and it is homeomorphic either to a sphere or to a plane [28]. In addition, we have f (0) = 0
(see [24]).

In the first case, Σ must be a totally umbilical round sphere. This can be deduced from the
existence of the holomorphic quadratic form given in Section 4, or from the classical results [8],
[11] or [13].

The second case is not possible, as follows from Theorem 4 applied to our family of special
Weingarten surfaces with H = f (H 2 − K).

Now, let us suppose that Σ is properly embedded and K � 0. Then we have that

0 � K = H 2 − (
H 2 − K

) = f
(
H 2 − K

)2 − (
H 2 − K

)
.
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Hence, if f (0) = 0, since the function f (s)2 − s is continuous for s � 0 and takes a positive
value at s = 0, then there exists s0 > 0 such that f (s)2 − s > 0 for s ∈ [0, s0]. Consequently
H 2 − K � s0 > 0 on Σ since K � 0.

From Lemma 6, Σ is homeomorphic to the plane, to the once punctured plane or to a torus.
Using once again Theorem 4, Σ cannot be homeomorphic to a plane. In addition, every compact
surface in R

3 must have a point with positive extrinsic curvature, and so Σ cannot be homeo-
morphic to a torus. With all of this, Σ must be homeomorphic to the once punctured plane. So,
from Theorem 4, Σ must be a rotational surface and must be contained in a cylinder C of R

3.
To finish, let us see that Σ is a right circular cylinder. In fact, up to an isometry of R

3, we can
suppose that Σ is a rotational surface with respect to the z-axis. Let us denote by

α = Σ ∩ {
(x, y, z) ∈ R

3: x > 0, y = 0
}

a generatrix curve of Σ . It is clear that α is a line of curvature of Σ and its signed-curvature on
the plane y = 0 changes sign if and only if K changes sign.

Since K � 0, the sign of the curvature of α on the plane y = 0 does not change, and so α is a
convex curve. But, since α is contained in the strip determined by the z-axis and the parallel line
C ∩ {(x, y, z) ∈ R

3: x > 0, y = 0}, we conclude that α must be a parallel line to the z-axis, as
we wanted to prove. �
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