progression is €150,000–350,000 for each therapy but glatiramer acetate (66,517,796). Probabilistic sensitivity analysis confirmed subcutaneous interferon beta-1a and interferon beta-1b as the most cost-effective therapies (confidence intervals remained below €45,000 per avoided relapse). Estimated budget impact of assuming 5-9% annual increase in the cost of Kinetra® for 15-19 years (no other benefits were considered) is a decrease in the total cost per patient. The substitution of Kinetra® for Activa PC® family involves a small net budget impact per patient.

COST ANALYSIS OF ACTIVA RC®: RECHARGEABLE NEUROSTIMULATOR FOR DEEP BRAIN ESTIMULATION THERAPY (DBS)

OBJECTIVES: Neurostimulators (NS) for DBS are replaced when the battery goes to an end-of-life (EOL). Activa RC® neurostimulator, Medtronic’s rechargeable NS, offers guaranteed 9 years longevity. The objective was to perform a cost analysis of Activa RC®, vs. Kinetra® (previous non-rechargeable NS), based on the number of EOL replacements needed. METHODS: The following costs were included (hospital perspective, 6, 9, 12 months post-EOL): 1) surgical procedure cost; 2) surgical procedure + NS cost; 3) NS replacement cost; 4) EOL surgical replacement cost; 5) NS’s replacement cost; 6) EOL surgical replacement cost; 7) cost of complications associated with EOL surgical replacement; 8) EOL surgical replacement cost. RESULTS: The Activa RC® was associated with a cost savings of €13,196 (p < 0.001). The overall cost savings from Activa RC® compared to Kinetra® was €11,730 (p < 0.001). Total cost savings were €27,569 (p < 0.001). CONCLUSIONS: Activa RC® is associated with lower cost and improved cost-effectiveness compared to Kinetra®.

COST-EFFECTIVENESS AND BUDGET IMPACT MODELLING OF LACOSAMIDE IN THE TREATMENT OF PARTIAL-ONSET SEIZURES IN FINLAND

OBJECTIVES: Economic evaluation of Lacosamide (LCM) and standard treatment with commonly used antiepileptic drugs (ST) vs. ST alone in the Finnish setting. METHODS: A probabilistic decision tree based cost-effectiveness analysis (CEA) with a second-order Monte Carlo simulation and a 2-year time-frame was done to assess the net monetary impact of LCM launch to the refractory epilepsy budget. Only direct costs were included in CEA. Conservatively, generic prices were used in all analyses. RESULTS: Assuming the first LCM-ST was associated with a lower cost (related to seizure management and drug acquisition), a gain of 0.20 QALYs and 5.16 seizure avoided compared to ST alone. LCM-ST was associated with a cost of €21,336 per QALY gained and €106 per seizure avoided compared to ST alone. According to the cost-effectiveness acceptability frontier, the probability of LCM’s cost-effectiveness was 67.1% and 85.5% with €30,000 and €50,000 per QALY gained, respectively. The results were robust in sensitivity analyses. According to BIM, the expected annual budget increase due to launch of LCM is €0 in 2008, €16,792 in 2009, €27,580 in 2010, €234,947 in 2011, and €232,609 in 2012. The relative increase in the annual epilepsy budget due to LCM is 0.08% in 2009, 0.46% in 2010, 1.31% in 2011, and 2.23% in 2012. CONCLUSIONS: LCM is a cost-effective and suitable alternative to ST for the treatment of refractory epilepsy.

NEW ACTIVA PC® FAMILY: COST ANALYSIS OF THE NEW FEATURES FOR DEEP BRAIN STIMULATION THERAPY (DBS)

OBJECTIVES: Activa PC® family is an effective, safe and reversible therapy for Parkinson disease, essential tremor and dystonia. A cost analysis was performed to estimate the economic benefits related to 2 features of Activa PC® family, new DBS generation devices, and the net Budget impact (BI) for Spanish hospitals, compared to Kinetra®. METHODS: The 2 features: neurostimulator’s (NE) lower size and new stretchable extensions; both can avoid some adverse events (AEs) associated with Kinetra®. A literature review was done to include clinical trials and non-randomized studies. RESULTS: 2 safety studies were selected. The 2 features could avoid 6 AEs, 2 related to NEs (hematoma in the NE implant site; infection/erosion); 4 with the extension (lead broke after a fall; extension fracture; skin ulceration in the connector; local discomfort). In total, avoiding these AEs involved 516 saved/patient treated with Activa PC® family (SA obtained similar data). Including Activa PC® instead of Kinetra family in Spanish Hospitals involved a net BI per patient of €1.781. CONCLUSIONS: The new Activa PC family may avoid AEs related to the previous generation, Kinetra, with a decrease in the total cost per patient. The substitution of Kinetra® for Activa PC® family involves a small net budget impact per patient.