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IN MEMORY OF PETER DEMBOWSKI 

Difference sets have been extensively studied in groups, principally in Abelian 
groups. Here we extend the notion of a difference set to loops. This entails 
considering the class of <v, k) systems and the special subclasses of <v, k, I\> 
principal block partial designs (PBPDs) and (v, k, A) designs. By means of a 
certain permutation matrix decomposition of the incidence matrices of a 
system and its complement, we can isomorphically identify an abstract <v, k> 
system with a corresponding system in a loop. Special properties of this de- 
composition correspond to special algebraic properties of the loop. Here we 
investigate the situation when some or all of the elements of the loop are right 
inversive. We identify certain classes of (v, k, X) designs, including skew- 
Hadamard designs and finite projective planes, with designs and difference sets 
in right inverse property loops and prove a universal existence theorem for 
<v, k, X> PBPDs and corresponding difference sets in such loops. 

1. INTRODUCTION 

Difference sets first arose in finite cyclic groups and can be traced back 
at least as far as Kirkman [lo]. They have been extensively studied since 
the important work of Singer [15]. For a rather complete survey of this 
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area see [2]. The notion of a difference set in a general finite group was 
introduced by Bruck [4] and has since been studied extensively for finite 
Abelian groups. For a partial survey of this area see [12]. Difference sets 
need not, however, be confined to groups, but may be defined and studied 
in loops generally. In a finite loop, a difference set is a type of block 
“design” in which the elements of the loop are the elements of the “design” 
and the difference set and all its left translates are the blocks of the 
“design.” Because of this connection, we define, both abstractly and in 
finite loops, certain block systems which are of direct interest. The 
strongest such systems are the familiar (v, k, X) designs or symmetric 
balanced incomplete block designs. We show that every abstract block 
system can be identified with a block system in a loop in exactly the same 
way that a (a, k, h) design with a sharply transitive collineation group can 
be identified with a block design in the group (equivalent to a group differ- 
ence set) [4, $21. This involves a major use of the well-known KSnig 
Theorem, which states that an incidence matrix of such a system can 
always be decomposed into a sum of permutation matrices. Now, special 
forms of this K&rig decomposition can be related to special algebraic 
properties of the loop. The special form we consider here is related to the 
right inverse property (RIP) in the loop. In an RIP loop, a special type of 
block system, called a principal block partial design (PBPD), is equivalent 
to a difference set. Finite projective planes, skew-Hadamard designs, and 
(v, k, h) designs having a polarity for which either all or none of the 
elements and blocks are absolute are interesting classes of block designs 
which can be identified with block designs, and hence with difference sets, 
in RIP loops. Finally, for every set of integers v, k, h satisfying 
0 < h -C k -C v - 1 and (v - I)h = k(k - I), we construct a PBPD which 
can be identified with a PBPD, and hence with a difference set, in an 
RIP loop. 

2. PRELIMINARIES 

Let O_ = {0(= I,), I, ,..., lu-3 be an additive loop of order v. The right 
negative of an element I E IL is the element (--I), which satisfies the 
equation I + (-I)R = 0, and the Ieft negative is defined similarly. Let 
D = {dl , dZ ,..., dk} be a k-subset of U-. If every element I # 0 in IL appears 
exactly h times in the set of all right differences {di + (-dJR} where 
0 < h < k < v - 1, then we call the combination (IL, D)R a (v, k, A> 
right loop difference set. Left loop difference sets are defined similarly. 
The condition 0 -C h < k < v - 1 is imposed in order to avoid the trivial 
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situations in which 1 D 1 = 0, 1, ZJ - 1, or v. By an easy counting argument, 
we see that v, k, and h satisfy 

(2.1) (v - IA = k(k - 1). 

In distinction to the situation for right and left group difference sets, a 
right loop difference set need not be a left loop difference set. Again, 
consider the loop IL of order v and the k-subset D of [L. We form the left 
translates of D, D = I,, + D, I, + D ,..., lVpl + D. This combination, 
denoted by [L, DIR, is called a (v, k) right loop system. If, in addition, 
1 D n (Zj + D)l = h for all Zj # 0 in lL, where 0 < X < k < v - 1, then 
[[L, DIR is called a (v, k, h) right loop principal block partial design (PBPD) 
where D is the principal block. If, further, I(& + D) n (I$ + D)j = X for 
all li , lj in [L, Ii # lj , then [L, DIR is called a (v, k, X) right loop design. 
Left loop systems, PBPDs, and designs are defined similarly. The para- 
meter values for a (v, k, X) right loop PBPD also satisfy (2.1). In distinction 
to the situation for right and left group PBPDs (which are the same as 
group designs), a right loop PBPD or design need not be, respectively, a 
left loop PBPD or design. Note that, if IL is the addition table for a loop [L 
involved with one of these left loop structures, then (IQ7 = [L.+ is the 
addition table for a loop k, involved with the corresponding right loop 
structure. So, henceforth, we shall consider only the right loop structures. 

Now, let S = {x, , x1 ,..., x,-~) be a set of v elements and Y = 
{& 3 Xl >*‘*, X,-,) be a selection of v not necessarily distinct k-subsets of S 
such that each xi in S appears in exactly k of the subsets in 9. This 
combination [S, F] is called a (v, k) system, also known as a square 
tactical conjiguration. Note that a (v, k) right loop system is a (v, k) 
system. If, in addition, / X,, n Xj I = h for all j, 1 < j < v - 1, where 
0 < h < k < v - 1, then [S, 9’1 is called a <II, k, h) principal block 
partial design (PBPD) where X0 is the principal block. If, further, 
IX,nX,l=X for all i,j,i#j, O<i,j<v-1, then [S,Y] is 
known as a (v, k, h) design. Without loss of generality, we shall henceforth 
assume that the elements and sets of a (v, k) system [S, 9’1 are 
labeled SO that either xi # Xi for all i, or Xi E Xi for all i, 0 < i < v - 1. 
It is again easy to verify that the parameter values for a (v, k, h) PBPD 
satisfy (2.1). A (v, k) system [S, Y] is characterized by its incidence 
matrix A = [aij] of order 2) with rows and columns indexed, in order, 
0, l,..., v - 1, where we set 

By the definition of [S, YJ, every row and column sum of A is k, and by 
the labeling assumption in [S, 91, either tr(A) = 0 or tr(A) = v. We 
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denote the set of all 0,l matrices of order v with every row and column 
sum equal to k and with trace equal to either 0 or v by a,*(k). If [S, Y] is a 
<v, k) system, then the complement of [S, Y] is the (v, v - k) system 
[S, Sp,] where =Yc = {S - X,, , S - X1 ,..., S - X,-J. Let J be the matrix 
of order v all of whose entries are equal to 1. If A is the incidence matrix 
for [S, Y], then A, = J - A is the incidence matrix for [S, Yc]. 

3. MAIN RESULTS 

By the Kijnig Theorem [l 1, p. 239, B], J can be decomposed into a sum 
of v permutation matrices of order v in the following way: 

(3.1) 
V-l 

J= 1 Pj, PO = z, 
j=O 

where the rows and columns of a matrix of order v are labeled in order, 
0, l,..., v - 1, and where Pj denotes a permutation matrix which has its 
entry 1 of row 0 in column j. We call (3.1) a K&zig decomposition of J. 
From this K&rig decomposition of J we form an addition table i of a 
loop IL = (O(=Z,), I, ,...) I,-,} as follows: We label the rows and columns 
of [L, in order, 0, I,..., z, - 1. Then if-P, has its entry 1 of row i in column 
m,theentryinrowiandcolumnjof[Lisl,,i,j,m=0,1,...,~- l.Since 
Pj is a permutation matrix, each element of IL appears exactly once in 
column j of O_ and Zj appears in row 0 of this column, j = 0, l,..., v - 1. 
Since each Pj has exactly one entry 1 in row i and no two such permutation 
matrices have their entries 1 of row i in the same column, each element of 
IL appears exactly once in row i of 1. Furthermore, since column 0 of i is 
constructed from PO = 1, the element of [L in row i of column 0 of i is Zi , 
i = 0, l,..., v - 1. Thus, lL is the addition table for a loop IL of order v in 
which the permutation matrices of the Kiinig decomposition (3.1) 
determine the entries in the corresponding columns of IL. Conversely, 
given an addition table IL for a loop IL, we can reverse the above procedure 
and obtain a -K&rig decomposition for J as in (3. l), where the entries in the 
columns of IL determine the particular permutation matrices in the de- 
composition. Since each columnj of IL is determined by its lead element Ij , 
we have established a one-to-one correspondence between the elements of 
IL and the permutation matrices in a KGnig decomposition of J, called the 
right K&zig correspondence. 

Now, let [S, Y], S = {x0, x1 ,..., x,-.~}, Y = {X0, X, ,..., XV-1}, be a 
<v, k) system, let A E 2I,*(k) be the incidence matrix for [S, Y], and let 
A, E Q&*(v - k) be the incidence matrix for [S, YG]. Then, by the K&rig 
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Theorem, A and A, can be decomposed into sums of permutation matrices 
of order v 

k-6 

(3.2) A = SP,, + c P,, , P,, = I, s = 
t=1 t 

0, t&4 = 0, 
1, tr(A) = 1, 

and 

(3.3) 
v-k-1+6 

A, = (1 - V’s0 + c Psu, P,, = I, 
u=l 

called Kiinig decompositions of A and A,, respectively. These, in turn, 
determine the K&rig decomposition of J 

(3.4) 
k-6 v-k--1+6 

J= PO-I- c p,,+ c PSU, P, = I, 
t=1 U==l 

which, in turn, determines a loop L = {O(=I,,), Z, ,..., ZvV1} under the 
right Kiinig correspondence 

1 

PO = I+-+ 0, 

(3.5) p: PTt +-+ L 3 t = l,..., k - 6, 
psu t-) I,= > u = l,..., v-k-l+& 

In L, let D = I, + D = {&, j t = 1 - 6, 2 - 6 ,..., k - S} and form the 
left translates Z, + D, q = 1, 2 ,..., a - 1. Then [L, DIR is a (v, k) right 
loop system. We set up the one-to-one correspondence q~ : St) lL and 
Y~{li+Djli~L}givenby 

I  

Xj++lj v: xit, ri + D ; i, j = 0, l,..., V - l* 

NOW Xi E Xi if and only if Ii + I,., = lj for some IT, E D if and only if 
lj E Ii + D, for all i, j = 0, l,..., v - 1, i.e., y preserves incidence. Hence 
[S, 91 and [L, DIR are isomorphic (v, k) systems and by means of IJJ, 
[S, Y] can be identzjied with [L, DIR. A similar identification holds 
between [S, Y”,] and [L, L - DIR. We thus have the following result. 

THEOREM 3.1. A (v, k) system [S, 9’1 can be ident$ed with a (v, k) 
right Ioop system [Q, D]R according to (3.4). Furthermore, under this 
ident&ation, 

(i) [S, 9’1 is a (v, k, h) PBPD with principal block X,, if and only if 
[Q, DIR is a (v, k, h) right loop PBPD with principal block D, and 

(ii) [S, 9’1 is a (v, k, h) design if and only if [Q, DIR is a (v, k, X} right 
loop design. 

It should be noted that, although the (v, k) right loop system identified 
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with a (v, k) system is unique combinatorially, the particular loop 
involved in the identification is not unique algebraically. If different 
Kiinig decompositions of A and A, are employed, different loops may 
be obtained. The question of which loops are obtainable for a given 
(a, k) system [S, Y] is worth investigating; we do not, however, pursue 
it here. 

Now let lL be a loop and M be a subset of L. We say that an element a E [L 
is right inversive if, for each x E IL, (x + a) + (-a)R = x, and that A4 is 
right inversive if every element of A4 is right inversive. If IL is right inversive 
then L is said to have the right inverse property (RIP) and is called an 
RIP loop. Suppose that M is a right inversive subset of IL. Then, for a E M, 
((-a)R + a) + (-a)R = (-a)Ror(-a)R + a = 0, whence(-a)R = -a, 
that is, every element a E A4 has a unique two-sided negative and so does 
every element of -A4 = (-a 1 a E M). Now let -a E - M. Then for each 
x E lL there exists a y E [L such that (x + (-a)) + a = y. Since M is right 
inversive, this becomes x + (-a) = y + (-a) or x = y, whence, since 
x E IL and -a E -A4 were arbitrary, -A4 is also right inversive. Thus, if 
M C II is right inversive, the elements of M have unique two-sided,negatives 
and --M is also right inversive. We now relate two of the combinatorial 
loop structures we have considered: 

THEOREM 3.2. Let [L be a loop of order v and D be a right inversive 
k-subset of [L. Then (II, D)R is a (v, k, A> right loop d@erence set if and 
only if [IL, DIR is a (v, k, A> right loop PBPD with principal block D. 

Proof. Suppose (iL, D)R is a (v, k, A) right loop difference set. Since 
the elements of D have unique two-sided negatives, for each If 0 in 
L there are exactly h ordered pairs of elements di , dj E D such that 
di - dj = 1. Since -D is right inversive, this equation becomes di = I + dj , 
so that for all 1 # 0 in IL we have 1 D n (I + D)i = A. Then, since 
0 < h < k < v - 1, [L, DIR is a (v, k, A) right loop PBPD with principal 
block D. Since D is right inversive, this argument is reversible, which 
yields the converse. 

In the last section of this paper we shall construct a (v, k, A) right 
loop PBPD, and hence a right loop difference set, in an RIP loop for 
every set of integers v, k, h satisfying 0 < A < k < v - 1 and (v - 1)h = 
k(k - 1). Since these PBPDs are in general not (u, k, A> designs, this will 
show that, in distinction to the situation for right group difference sets, 
a (v, k, A) right loop difference set, even in an RIP loop, need not be a 
(v, k, A) design. 

We now investigate some of the relationships between the algebraic 
structure of a (v, k) right loop system and the structure of its incidence 
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matrix. If B = [bij] and C = [cij] are two 0,l matrices of size nz x n, 
we write B r\ C = [eij] for the matrix of size m x n where eij = 
min{b,, , cij} for all i andj. If B r\ C = B, we say that C contains B or that 
B is contained in C. Now let A E Q&,*(k), 0 < k < v. Then A has a K&rig 
decomposition as given in (3.2). Suppose that for every PTt in this decom- 
position either P,‘, n A = 0 or P,‘1 n A = Pru for some PT, in the 
decomposition. We call such a decomposition a type RI K&zig decompo- 
sition of A. If A = 0 or A = I then A is considered to vacuously have a 
type RI K&rig decomposition. (Note: A type RI K&rig decomposition is 
called a special K&zig decomposition in [9].) When P,‘, n A = 0, PTt = [pij] 
has the properties that tr(P,,) = 0 and for no i,j, i # j, does pij = pji = 1. 
Such a permutation matrix is called skew. When P,‘, n A = PTa + I for 
some PTu in the decomposition, then PTu = P,‘, and either P,t 1s skew or 
else P,‘, = PTt and tr(P,,) = 0. In the latter case P,* is called a O-symmetric 
permutation matrix. Thus, a type RI Kijnig decomposition of A has the 
form 

(3.7) A = @ll + 2 pvm + c (P,, + P&) + 1 PT, ) P, = z, 
e 6 Y 

where 

(3.8) 
a = 

i 

0, MA) = 0, 

1, tr(A) = ZI, 

and where the P,,‘s are the skew permutation matrices whose transposes 
do not occur in the decomposition, the P,,‘s are the skew permutation 
matrices whose transposes do occur in the decomposition, and the PTY’s 
are the O-symmetric permutation matrices in the decomposition. The 
question of when a given A E ‘u,*(k) has a type RI K&rig decomposition 
has been investigated in [9] and more or less satisfactorily settled; we 
shall use these results as needed. We now derive an important relationship: 

THEOREM 3.3. A (v, k) right loop system [L, DIR where D is right 
inversive has an incidence matrix A E S,*(k) which has a type RI Kiinig 
decomposition. Conversely, a matrix A E ‘SW*(k) which has a type RI 
Kiinig decomposition is the incidence matrix of a (v, k) right loop system 
[L, DIR where D is right inversive. 

Proof. Let [L, DIR be a (v, k) right loop system where D is right 
inversive, and let A E 2&,*(k) be its incidence matrix. Under the right 
K&rig correspondence p between [L and the KGnig decomposition of J, 
each element I E [L corresponds to a permutation matrix which we specially 
denote by Pi, and for D = (dl ,..., d&} we have A = Pd, + *.. + Pd . 
Since D is right inversive, the elements of D have unique two-sidid 
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negatives and -D is right inversive. Consider d E D and -d E -D where 
p : dt, Pd and -dt, P--d , Pd = [pii] and P--d = [qij]. Now, pTS = 1 if 
and only if I, + d = 1, if and only if 1, + (-d) = 1, if and only if qSv = 1 
for all r, s = 0, l,..., v - 1; hence, P--d = PdT. If -d = d, then Pd = PdT 
and either d = 0 and Pd = I or Pd is a O-symmetric permutation matrix 
and PdT n A = Pd . If -d # d, then PdT n A = P-, or 0 according as 
-d E D or -d $ D. Thus A has a type RI Kiinig decomposition. Now 
suppose that A E 2&*(k) has a type RI K&rig decomposition as given in 
(3.7) and (3.8). Since each P,‘, is contained in A,, we can construct a 
K&rig decomposition of A, in which all of the PK’s appear: 

(3.9) Ac = (1 - W’, + C PT’, + C P,~. 

The sum of these K&rig decompositions of A and A, is the KGnig 
decomposition of J: 

(3.10) J = P,, + 1 U’raf P’T,> + C CC8 + P&l + c P,,, + C P, , 
oi 6 Y 6 

P, = I. 

Under the right Kijnig correspondence p we obtain from (3.10) a loop 
IL = {O(= lo), II )...) I,-,) where p:P,t,&, i=O,I ,..., v-l. Let 
D = {Q ,..., dk} be the elements in [L corresponding to the permutation 
matrices in (3.7), which we denote here by Pdl ,..., Pdk , respectively. Then 
[L, DIR is a (v, k) right loop system. Let d E D where p : Pd t--f d. If 
Pd = P,, = 1, then d = 0 is trivially right inversive. If P, = Pry = PC , 
then d = l+-?, and we have for each 1, E [L that I, + d = 1, and I, + d = 1, 
for some I, E [L, whence (IT + d) + d = I, . Hence d is right inversive and 
-d = d. If P, = PrS and Pd, = PG , d, E D, then d = IV@, and we have 
for each I, E IL that I, + d = I, and I, + d, = I, for some I, E L, whence 
(I, + d) + d, = I,. . Hence d is right inversive and d, = -d. Finally, if 
Pd = Pva and Pd, = PL , d, $ D, we again have by this last argument 
that d is right inversive and d, = -d, Thus D is right inversive. 
Taking k = 2, in this theorem we obtain the following result: 

COROLLARY 3.4. Let a loop IL and a K6nig decomposition of J be 
related by the right Kiinig correspondence. Then k is an RIP loop if and 
only if the Kiinig decomposition is of type RI. 

Our results have application to some interesting classes of (v, k) 
systems. Let [S, P], S = {x0, x1 ,..., x,-I}, Y = {X0 , X, ,..., Xuel> be 
a (v, k) system. We call [S, Sp] skew (coskew) if xi $ Xi (xi E Xi) for 
all i = 0 ,..., z, - 1, and xi E Xj if and only if xi 6 Xi for all i, j = 0, l,..., 
v - 1, i f j. Here v = 2k + 1 if [S, Y] is skew and v = 2k - 1 if 
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[S, 9’1 is coskew. The incidence matrix for a skew (v, k) system satisfies 
A + AT = J - Z and can be interpreted as a tournament matrix for a 
round-robin tournament in which all the contestants are tied. We call 
[S, Y] O-symmetric (cosymmetric) if xi 6 Xi(xi E XJ for all i = 0, I,..., 
v-l, and xigXj if and only if xjgXi for all i,j=O,l,..., v-1, 
i # j. The incidence matrix A for a O-symmetric or cosymmetric (u, k) 
system satisfies AT = A and is called O-symmetric and cosymmetric, 
respectively. A particularly interesting class of skew (v, k) systems are the 
skew-Hadamard designs. These are the skew (v, k) systems which are 
(v, k, X) designs. For further discussion of these designs and the special 
subclass of these designs which are Abelian group difference sets, the 
reader is referred to [7], [S], and [16]. The class of designs complementary 
to the skew-Hadamard designs are called coskew-Hadamard. An O-sym- 
metric (cosymmetric) (u, k) system is one that has a polarity for which 
none (all) of the elements and blocks are absolute. An interesting class of 
O-symmetric and cosymmetric (v, k) systems are those which are (v, k, h) 
designs. A special subclass of these designs are the Abelian group 
difference sets having the inverse multiplier [6]. The O-symmetric (v, k, h) 
designs are equivalent to (v, k, h) graphs. For further discussion of 
(v, k) systems and (v, k, h) designs having a polarity and of (u, k, h) 
graphs, the reader is referred to [l], [3], [5], and 1131. Finally, a finite 
projective pIane of order IZ is a <u, k, A) design in which u = n2 + n + 1, 
k = n + 1, and h = 1, n > 2 an integer. For a survey of finite projective 
planes, the reader is referred to [5]. We can now obtain several results for 
these special classes of systems and designs: 

THEOREM 3.5. A skew (coskew) (v, k) system [S, 9’1 can be ident$ed 
with a (v, k) right loop system [U, DIR in an RIP loop L where 0 $ D 
(0 E D) and where I E D if and only if --I $ D for all if 0 in L; and 
conversely. 

ProoJ Let [S, 91 be a skew (v, k) system. Then the incidence matrix 
A of [S, 9’1 satisfies A n AT = 0, whence any Kiinig decomposition of 
A is of type RI, 

(3.11) A = c Pra, 
oi 

where the P,=‘s are all skew permutation matrices. Corresponding to 
(3.1 I) is the type RI Kiinig decomposition of A, : 

(3.12) A,= P,+CP;‘, P,=z. 
oi 
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The sum of these two K&rig decompositions is a type RI K&rig decompo- 
sition of J. Under the right KGnig correspondence p this K&rig decompo- 
sition of J corresponds, by Corollary 3.4, to an RIP loop iL and the K&rig 
decomposition of A in (3.11) corresponds to a k-subset D C [L. Thus 
A is the incidence matrix of the (a, k) right loop system [IL, DIR. Since 
r, f 0 in (3.11) we have 0 $ D, and, by the proof of Theorem 3.3, if 

T p:I,t,P,thenp:l,t,P, for all 1, E IL. Hence, by (3.1 l), I E D if and 
only if --I 4 D for all I # 0 in [L. Now suppose that [IL, DIR is a <v, k) 
right loop system in an RIP loop U where 0 $ D and where I E D if and 
only if --I $ D for all I # 0 in L. Then, by Theorem 3.3, the incidence 
matrix A of [[L, DIR and A, have type RI KGnig decompositions whose 
sum is the corresponding type RI Kijnig decomposition of J. Since 
0 $ D, P,, = I must be in the Kijnig decomposition of A, . By the proof 
of Theorem 3.3, if p : I, t, P, then p : -1, t) PTT for all 1, E [i. Hence, P, 
is contained in the Kbnig decomposition of A if and only if PTT is contained 
in the K&rig decomposition of A, , forallP,#I.SinceJ==A+A,= 
A + AT + I, A is the incidence matrix of a skew (v, k) system [S, Y]. 
A similar proof obtains when [S, Y] is coskew and 0 E D. Here we merely 
need to put P, = Z into the type RI Kijnig decomposition of A. 

By Theorems 3.5 and 3.2 we then have the following result: 

COROLLARY 3.6. A skew (coskew) Hadamard design [S, 9’1 can be 
ident$ed with a right loop design [IL, DIR in an RIP loop IL where 0 # D 
(0 E D) and where I E D if and only if --I $ D for all I # 0 in O-; and 
conversely. Furthermore, (L, D)R is a right loop diference set. 

THEOREM 3.7. A O-symmetric (cosymmetric) (v, k) system [S, Y’] 
whose incidence matrix has a type RI Kiinig decomposition cati be identified 
with a (v, k) right loop system [L, DIR where D is right inversive, 0 $ D 
(0 E D), and where 1 E D if and only if --I E D for all I # 0 in IL; and 
conversely. 

Proof. Let [S, 9’1 be a O-symmetric (v, k) system whose incidence 
matrix A has a type RI KGnig decomposition. By Theorem 3.3, [S, Y] can 
be identified with a <v, k) right loop system [k, DIR where D is right 
inversive. Since A is O-symmetric, we have by the proof of Theorem 3.3 

T that if p : Id++ Pd then p : --Irlf+ Pd for all I, E D; whence 0 $ D, and 
IE D if and only if --IE D for all I # 0 in IL. Now suppose that [ll, DIR is 
a (v, k) right loop system where D is right inversive, 0 6 D, and where 
I E D if and only if -1 E D for all I# 0 in IL. Then, by Theorem 3.3, the 
incidence matrix A of [IL, DIR has a type RI Kbnig decomposition. By the 
proof of Theorem 3.3, if p : Id t) P, then p : -Zd t+ PdT for all Id E D. Thus, 
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since 0 # D, PO = I is not in the K&rig decomposition of A, and since 
1, E D if and only if -1, E D for all I, # 0 in iL, we have P, is in the KGnig 
decomposition of A if and only if P,’ is, for all r # 0. Hence AT = A 
and &(A) = 0, whence [S, Y] is O-symmetric. A similar proof obtains 
when [S, Y] is cosymmetric and 0 E D. Here we include P,, = I in the 
type RI Kiinig decomposition of A. 

Note that in Theorem 3.7 we need to assume that the incidence matrix 
of [S, Y] has a type RI KGnig decomposition. In [9] the authors have, 
in fact, constructed counterexamples of O-symmetric and cosymmetric 
(v, h-, X) PBPDs whose incidence matrices do not have type RI Kijnig 
decompositions. On the other hand, the following result was verified there: 

LEMMA 3.8. The matrix A E Y&,*(k) has a type RI K&zig decomposition 
when 

(i) A is O-symmetric and k is even, 

(ii) A is cosymmetric and k is odd. 

The authors also showed there that, regardless of the value of k, an 
O-symmetric or cosymmetric incidence matrix A for a <v, k, X) design 
always has a type RI K&rig decomposition. Then A, is a cosymmetric 
(O-symmetric) incidence matrix for a (a, u - k, v - 2k + X) design 
and hence also has a type RI KGnig decomposition. Since the sum of these 
two Kijnig decompositions is a type RI K&rig decomposition of J, we have 
by Theorems 3.l(ii), 3.2, and 3.7 and Corollary 3.4 the following result: 

COROLLARY 3.9. A O-symmetric (cosymmetric) (v, k, h) design (i.e., one 
having a polarity for which none (all) of the elements and blocks are absolute) 
can be identified with a (v, k,X) right loop design [L, DIR in an RIP loop [L 
whereO~D(O~D)andwhereI~Difandonlyif--I~Dforall1~Oin 
[L; and conversely. Furthermore, ([L, D)R is a right loop dtrerence set. 

We now consider the class of finite projective planes: 

THEOREM 3.10. A Jinite projective plane of order n can be identified 
with an (n” + n + 1, n + 1, 1) right loop design [L, DIR in an RIP loop 
II where 0 E D. Furthermore, (L, D)R is a right loop dcrerence set. 

Proof. Let [S, 91, S = {x, , x1 ,..., x,2+,}, Y = (X0,X, ,..., X,,,,}, be 
a finite projective plane of order n. Since [S, Y”] has a system of distinct 
representatives, we may assume that the elements and blocks are labelled 
so that the incidence matrix A = [aij] of [S, Y] has tr(A) = n2 + n + 1. 
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Let 

(3.13) A = pcl + c P,, , PO = I, 
t 

be any Kijnig decomposition of A. If a,,., = 1 for r # s, then asr = 0, 
else with arr = ass = 1 we would have j X, n X, 1 2 2, a contradiction. 
Hence P,‘, n A = 0 for every rt # 0, whence (3.13) is a type RI K&rig 
decomposition. We construct a partial K&rig decomposition of A, , 

(3.14) A, = c P,‘, + A,*, 
t 

where the summation consists of the transposes of the non-identity 
permutation matrices in (3.13) and 

(3.15) A,*=J+I-(A+AT) 

is a O-symmetric matrix in ‘%$+n+l(n2 - n). Now, since ra2 - iz is always 
even, A,* has a type RI K&rig decomposition by Lemma 3.8(i). The sum 
of this K&rig decomposition of A,* and the type RI Kiinig decomposition 
Et Pt yields, by (3.14), a type RI K&rig decomposition of A, . Then the 
sum of this K&rig decomposition of A, and the K&rig decomposition 
(3.13) forms a type RI KGnig decomposition of J. Hence, by Theorem 
3.l(ii) and Corollary 3.4, [S, 91 is identified with an (n” + IZ + 1, n + 1, 1) 
right loop design [IL, DIR in an RIP loop 11. Since p : 0 ++ PO = I and PO 
is contained in A, we have 0 E D. By Theorem 3.2, (IL, D)R is a right loop 
difference set. 

4. CONSTRUCTIONS OF (v, k, h) RIGHT LOOP PBPDsINRIP LOOPS 

We denote the set of all 0,l matrices of size m x it with every row sum 
equal to r and every column sum equal to s by ‘2&&r, s). The term rank 
of a matrix A E %Cna,n(r, s), denoted by p(A), is the maximum number of 
entries equal to 1 in A such that no two of them occur in the same row or 
the same column. The following result follows readily from two theorems 
in Ryser [14, p. 63 and p. 561. 

LEMMA 4.1. Suppose m, rz and r, s are integers such that 0 < r < n, 
0 < s < m, and mr = n.s. Then ‘&Jr, s) # ,@ and p(A) = min{m, n} for 
every A E ‘21c,,,(r, s). 

We are now ready to proceed with our constructions. 
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THEOREM 4.2. For every set qf integers v, k, A satisfying (v - 1)h = 
k(k - 1) and 0 < X < k < v - I, there exists a (v, k, A) right loop 
PBPD [II, DIR in an RIP loop L. Furthermore, (IL, D)A is a right loop 
d@erence set. 

ProoJ For each set of integers v, k, X satisfying the conditions of the 
theorem we shall construct an incidence matrix A E a,*(k) for a (v, k, A) 
PBPD such that A and A, have type RI KGnig decompositions whose sum 
is a type RI Kijnig decomposition of J. Then, by Theorem 3.1(i) and 
Corollary 3.4, we shall have constructed a (v, k, h) right loop PBPD 
[e, DIR in an RIP loop [L, and, by Theorem 3.2, (e, D)R is a right loop 
difference set. The constructions depend on the parities of v, k, and )I, and 
on the parities of the complementary values k, , h, where k, = v - k and 
& = v - 2k + h. Now, the k, h set of values and the k, , h, set of values 
pair off in exactly six possible ways according to parities: 

v odd: (a) k even, h even o k, odd, X, odd, 

(b) k odd, h even o k, even, X, odd, 

(c) k even, h odd o k, odd, h, even, 

(d) k odd, X odd e k, even, h, even; 

v even: (e) k even, X even o k, even, h, even, 

(f) k odd, X even o k, odd, h, even. 

Note that when we have constructed a matrix A for case (a) we will 
have automatically constructed a matrix for case (d), and likewise for 
cases (b) and (c). This does not happen for cases (e) and (f); however, 
in these two cases a further simplification occurs by choosing k < v/2 
(k = v/2 is impossible). For, when we have constructed a matrix A for 
case (e) with k < v/2 we will have automatically constructed a matrix 
for case (e) with k > v/2, and likewise for case (f). Thus, our constructions 
essentially reduce to the four cases (a), (b), (e), and (f), with k < v/2 in 
(e) and (f). A fifth case (al) comes in because of the impossibility of the 
given construction in case (a) when h, = 1. 

Case (a): v odd, k even, h even, h, > 1. Let e = (I,..., 1) of length k and 
0 = (O,..., 0) of length v - k - 1. Since h < k - 2 and h is even, we can 
form a O-symmetric circulant matrix FE Q*(h) not containing the 
O-symmetric circulant permutation matrix of order k. Since 
O<k-A-l<v-k-l, O<h<k, and k(k-A-l)= 
(v - k - l)h, we have ‘%?l,,,-,-,(k - h - I, A) # 0 by Lemma 4.1. Let 
E E %21k,v--k-.-l(k - x - I, A). Since h, 3 3 or k - A < v - k - 3 and 
k - h is even, we can form a O-symmetric circulant matrix G E a& 



162 JOHNSEN AND STORER 

(k - A) not containing the O-symmetric circulant permutation matrix of 
order v - k - 1. We then construct 

A= 

0 e 0 
~-~ 
eT F E 

OT ET G 

E T&,*(k). 

Since the inner product of the first row of A with any other row is h, 
A is the incidence matrix of a (u, k, h) PBPD. Since A is O-symmetric 
and k is even, we have by Lemma 3.8(i) that A has a type RI Kijnig 
decomposition. Furthermore, A, E ‘u,*(v - k) and the inner product of 
the first row of A, with any other row is A,, whence A, is the incidence 
matrix of a (u, k, , A,) PBPD, and since A, is cosymmetric and ZJ - k is 
odd, we have by Lemma 3.8(ii) that A, has a type RI K&rig decomposition. 
Since A and A, are both symmetric, the sum of their KSnig decompositions 
is a type RI KGnig decomposition of J. 

Case (al): u odd, k even, X even, A, = 1. Here, instead of A, we construct 
A, = J - A. Note that the parameter values for A, are ZJ = n2 + n + 1, 
k, = n + 1 (odd), and A, = 1. Let e = (l,..., 1) of length n and 0 = 
(O,..., 0) of length TZ. Let Z, be the identity matrix of order II, 0, the zero 
matrix of order n, and P = [pij] the circulant permutation matrix of 
order n determined by pol = 1. We then construct 

A, = 

1 1 e / 0 1 .*f 1 0 / 0 

--A-‘-‘-- 
OT I, / z, ... P P 

__~ ____~__ . . . . . . 
. . . . . . 

3. . . . -~__~~__ 

Since the inner product of the first row of A, with any other row is 
h, = 1, A, is the incidence matrix of a (v, k, , A,) PBPD. Since 
AcT n A, = Z, every K&rig decomposition of A, is of type RI. We now 
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proceed as in the proof of Theorem 3.10 with the roles of A and A, 
interchanged, to obtain the desired type RI Kijnig decomposition of J. 
We note that the inner product of the first row of A with any other row 
is n2 - IZ = A, whence A is the incidence matrix of a (v, k, A) PBPD. 

Case (b): u odd, k odd, X even. Let e = (l,..., 1) of length k - 1 and 
0 = (O,..., O)oflengthv-k.Sinceh- 1 <k-2andX- lisodd,we 
can form a cosymmetric circulant matrix FE %,*_,(A - 1) not containing 
the O-symmetric circulant permutation matrix of order k - 1. Since 
0 < k - X < v - k, 0 < h < k - 1, and (k - l)(k - A) = (v - k)h, 
we have rU,-,,,-,(k - A, A) # .O by Lemma 4.1. Let E E Ql,-,,,-,(k - h, A). 
Since k - X < v - k - 1 and k - X is odd, we can form a cosymmetric 
circulant matrix G E %$-_,(k - A) not containing the O-symmetric circulant 
permutation matrix of order v - k. We then construct 

A= 

1 e 0 
--__ : 1 eT F E 
--- 

OT ET G 

E K,*(k). 

By an argument similar to that in case (a), we verify that A and A, are 
the incidence matrices of the desired PBPDs and have type RI K&rig 
decompositions whose sum is the desired type RI K&rig decomposition 
of J. 

Case (e): u even, k even, h even. We assume here that k < v/2. Let 
e = (l,..., 1) of length k - 1 and 0 = (O,..., 0) of length v - k. Since 
h - 1 < k - 1 and h - 1 is odd, we can form a cosymmetric circulant 
matrix FE ‘%~-,(A - 1). Since 0 < k - X < v - k, 0 -=c h ,< k - 1, and 
(k - l)(k - A) = (v - k)h, we have by Lemma 4.1 that ‘%k--l,v--K 
(k - A, A) # m and that p(E’) = min{k - 1, v - k} = k - 1 for every 
E’ E &+,,,-,(k - A, A). By permutation of columns of an E’ we can 
obtain a matrix E E ‘U,-,,,-,(k - A, A) of the form 

0 
0 

E= 

I 
----_---_ 
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where the entries in E other than the circled l’s are unspecified. Since 
0 < k - h - 2 d v - k - 4 and k - h - 2 is even, we can form a 
cosymmetric matrix G E %z-_,(k - A) of the form 

G= 

-2 

‘1 1 
1 1 

1 1 
1 1 

----------- I 
-I- 
I 

j( 
10 
31 

10 
01 

where the unspecified entries in G are the corresponding entries from the 
sum of (k - X - 2)/2 pairs of circulant permutation matrices and their 
transposes, no circulant permutation matrix being O-symmetric. We then 
construct 

1 e 0 
--- 

A= 

i 1 

eT F E E a,*(k). 
--- 

OT ET G 

Since the inner product of the first row of A with any other row is A, 
A is the incidence matrix of a (v, k, h) PBPD. Now, the first 1 in e, the 
first 1 in eT, the circled I’s in E, the corresponding circled l’s in Er, and 
the circled l’s in G together form a O-symmetric permutation matrix Q 
contained in A. The matrix A - Q E Nc,*(k - 1) is cosymmetric and 
k - 1 is odd, hence by Lemma 3.8(ii) A - Q has a type RI KSnig 
decomposition. Furthermore, A, E ZI,*(v - k) and the inner product of 
the first row of A, with any other row is h, , whence A, is the incidence 
matrix of a (v, k, , A,) PBPD, and, since A, is O-symmetric and v - k is 
even, we have by Lemma 3.8(i) that A, has a type RI KGnig decomposition. 
Since Q, A - Q, and A, are all symmetric matrices, the sum of Q and 
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these type RI Kbnig decompositions of A - Q and A, is a type RI Kiinig 
decomposition of J. 

Case (f): u even, k odd, h even. Let e = (l,..., 1) of length k and 
0 = (O,..., O)oflengthu-k-l.Sinceh<k-landXiseven,we 
can form a O-symmetric circulant matrix FE %,*(A) of the form 

F= 

3 1 1 
1 0 @ 

00 1 
1 0 0 

0 0 

Since 0 < k - X - 1 < u - k - 1, 0 < X < k, and k(k - h - 1) = 
(a - k - 1)X, we have cLI,,,-,-,(k - h - 1, A) # m by Lemma 4.1. Let 
E E ‘i!&,-,-,(k - X - 1, A). S ince A, 3 2 or k - h < v - k - 2 and 
k - X is odd, we can form a O-symmetric circulant matrix G E ‘$I,*_,, 
(k - A) of the form 

G= 

0 Co 1 1 
00 1 

1 0 0 
00 **. 

1 
1 

0 Cc 
(iJo 1 

1 0 a 
1 1 0 0 

) 

where G explicitly contains the O-symmetric circulant permutation matrix 
of order v - k - 1. We then construct 

A= 

O / e / ---2-I- 
eT ; F / 

_‘_ 
I 

OT 1 ET 

0 

E 

G 1 E ‘u,*(k). 
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Since the inner product of the first row of A with any other row is A, 
A is the incidence matrix of a (0, k, A) PBPD. Now, the first 1 in e, the 
first 1 in eT, the circled l’s in F, and the circled l’s in G together form a 
O-symmetric permutation matrix Q contained in A. The remainder of the 
verification is similar to that in case (e). 
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