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Abstract
This paper extends FARSITE (a software used for wildfire modeling and simulation) to incor-
porate data assimilation techniques based on noisy and limited spatial resolution observations
of the fire perimeter to improve the accuracy of wildfire spread predictions. To include data
assimilation in FARSITE, uncertainty on both the simulated fire perimeter and the measured
fire perimeter is used to formulate optimal updates for the prediction of the spread of the wild-
fire. For data assimilation, fire perimeter measurements with limited spatial resolution and a
known uncertainty are used to formulate an optimal adjustment in the fire perimeter prediction.
The adjustment is calculated from the Kalman filter gain in an Ensemble Kalman filter that
exploits the uncertainty information on both the simulated fire perimeter and the measured fire
perimeter. The approach is illustrated on a wildfire simulation representing the 2014 Cocos fire
and presents comparison results for hourly data assimilation results.
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1 Introduction

As wildfire occurrence has increased over the last several decades, so too has interest in the
modeling of wildfire behavior. Wildfire modeling involves the numerical simulation of wildfires
in order to understand the properties and predict the fire behavior. A software widely used
for this purpose by the U.S Forest Service and other federal and state agencies is FARSITE
[8]. While FARSITE’s rate of fire spread model is sophisticated, it should be noted that it
does not incorporate any stochastic aspects when simulating the actual wildfire. Simulations in
FARSITE, under a given set of inputs and parameters and without the probabilistic generation
of embers, is largely a deterministic process. FARSITE also does not possess any features for
incorporating noisy and finite spatial resolution measurements of the fire perimeter during the
simulation and thus has no data assimilation capabilities.

∗Funded by NSF 1331615 under CI, Information Technology Research and SEES Hazards programs

Procedia Computer Science

Volume 80, 2016, Pages 897–908

ICCS 2016. The International Conference on Computational
Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

897

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82060796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.328&domain=pdf


The use of data assimilation techniques in wildfire spread models is an active field of re-
search [13, 14]. Due to the highly large-scale spatial-temporal simulations required in wildfire
simulation, merging simulations and measurements may use Monte Carlo methods for data
assimilation techniques [23]. Other approach provided detailed models of the wildfire in inter-
action with the atmosphere [12] where Tikhonov regularization is used to avoid nonphysical
states. Some of the most recent data assimilation techniques for wildfire spread prediction
[18, 17] heavily rely on Ensemble Kalman filtering [7, 9, 3, 11] also use in many earth science
applications [6]. Although most of these methods can assimilate gridded data, the use of noisy
and finite spatial resolution measurements via the explicit incorporation of uncertainty in both
the simulate and measured fire perimeter for optimal adjustment of the predicted fire perimeter
is often overlooked. Existing methods use a fixed dimension of the state, representing a finite
number of points on the fire perimeter, during the assimilation process. The methodology in
this paper allows the dimension of the state to increase, improving resolution of fire perimeters
that tend to grow larger in size over time.

The aim of this paper is to include data assimilation on the fire perimeters in FARSITE
via standard ensemble averaging and optimal adjustments via Kalman filter computations.
Uncertainty on both the simulated fire perimeter and the measured fire perimeter is used to
formulate optimal updates for the prediction of the spread of the wildfire. For that purpose, the
estimate of the initial fire perimeter is augmented with a confidence region that is characterized
by a covariance matrix. Ensemble sampling based on the mean and covariance information
is then used to propagate the uncertainty through FARSITE for a stochastic update of the
wildfire spread simulation. Although FARSITE also allows for the use of adjustment factors
to alter wildfire spread for different fuel types [5], only adjustment on fire perimeters are used.
Fire perimeter measurements with limited spatial resolution and a known uncertainty are used
to to formulate an optimal adjustment in the fire perimeter prediction. The adjustment is
calculated from the Kalman filter gain in an Ensemble Kalman filter that exploit the uncertainty
information on both the simulated fire perimeter and the measured fire perimeter.

2 FARSITE

2.1 Forward Model for Wildfire Simulations

FARSITE [8], largely based on Rothermel’s model [19], is widely used by the U.S. Forest Service
as an effective tool of simulating the growth of natural fires in wilderness areas. It can be seen
as a dedicated forward-prediction model taking the form of equation 1 which uses spatial and
temporal information on the parameters θk and driving inputs uk to predict a fire perimeter on
a two-dimensional plane, denoted by x̄k+1|k.

x̂k+1|k = f(x̂k|k, θk, uk)

ŷk+1|k = Ck+1x̂k+1|k
(1)

For the considered wildfire data assimilation, the (measured) output yk+1 refers to a spa-
tially downsampled (coarse) measurement of the actual fire perimeter, whereas wildfire related
parameters θk may include topography and fuel parameters, and driving input uk can refer to
weather and wind conditions.

The FARSITE function f(·) in (1) is an implicit and high dimensional forward model that
models fire growth via a vector approach and includes fire behavior models for surface fire
spread [19], crown fire initiation [22], crown fire spread [20] and dead fuel moisture [4, 15].
Furthermore, the dimension nk of the two-dimensional perimeter x̂k−1|k−1 ∈2nk−1 typically
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changes to nk ≥ nk−1 for x̂k|k−1 over the course of the fire simulation. The implicit knowl-
edge of the forward model f(·) and changing dimension of the state x̂k|k−1 makes FARSITE
and ideal application candidate for ensemble based state estimation to extend FARSITE with
data assimilation capabilities to improve wildfire simulation and any success in this regard will
enhance the FARSITE-based data assimilation capabilities for improved wildfire simulation.

2.2 FARSITE data inputs

FARSITE requires an input parameters set that describes the environment where the wildfire
is taking place. The parameters can be classified depending on variability of such values in
time and/or space. The static values (which varies mostly spatially) describing the topography,
are raster maps which are combined in one single file known as FARSITE landscape file. This
file contains digital elevation model information as slope, elevation or aspect as well as the
description of the vegetation land cover and the fuel map [1], [2], [21].

The ignition boundary is introduced into FARSITE in a vectorial file format. In such vecto-
rial format, some input parameters as the fire line intensity(FLI) and the rate of spread(ROS)
for each point of the boundary are included. Finally, the time varying parameters are mostly
weather values. This Linux FARSITE version uses a brief daily description of the weather
except for the wind values. Those values are introduced every 10 minutes using a gridded for-
mat file. In this manner, an important parameter for wildfires as the wind could be updated
frequently.

The weather information used in this work has been obtained from weather stations of
the High Performance Wireless Network for Education and Research (HPWREN) [16, 10].
HPWREN allows requesting data in real time from the most near station to the centroid of the
initial fire perimeter. The weather data is obtained in XML format and the request is parsed
and written for FARSITE.

3 Ensemble Kalman Filter with FARSITE

The Ensemble Kalman Filter (EnKF) [7] is a Monte-Carlo implementation of the Bayesian
update problem. Given a probability distribution of the system (the prior) and measurement
likelihood, the Bayes theorem is used to to obtain the probability distribution with the data
taken into account (the posterior). The state estimate is the mean of the posterior distribution.
The data likelihood is the conditional probability distribution of the measurement given the
current state. The EnKF assumes a Gaussian Distribution for the state variables implying that
the state can be entirely characterized by the mean and the covariance of the ensemble.

3.1 Forward simulations

Unlike the Kalman Filter which uses linear equations to propagate the mean and covariance in
time, the EnKF propagates the uncertainty by advancing each ensemble member through the
forward model. This advantage of the EnKF provides an incentive to use it in high spatial-
temporal simulations such as the FARSITE simulation software. For a brief overview of using
the EnKF in FARSITE, consider the following computational steps [9]:

1. Initialize the distribution by defining a mean and a covariance of the state.

xk|k ∼ (x̄k, P
x
k|k), xk|k ∈ Rnk .
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2. Generate the ensembles by sampling from this distribution.

Xk|k = (x1
k|k, x

2
k|k, x

3
k|k, .., x

N
k|k), Xk|k ∈ Rnk×N

We now define the ensemble perturbation/error matrix Exk|k

Ex
k|k = (x1

k|k − x̄k, x
2
k|k − x̄k, x

3
k|k − x̄k, ..., x

N
k|k − x̄k), Ex

k|k ∈ Rnk×N (2)

3. Advance each ensemble member through the forward model (FARSITE)

xi
k+1|k = f(xi

k|k, uk), i = 1, 2, . . . , N, xk+1|k ∈ Rnk+1 (3)

4. Calculate the mean and sample covariance of the forward ensemble. The mean is calcu-
lated simply by taking an average of the members of the forward ensemble. The sample
covariance can be calculated using the forward ensemble error matrix, Ex

k+1|k, which can

be calculated similar to (2), replacing xk|k by xk+1|k:

x̄k+1|k =
1

N

i=N∑
i=1

xi
k+1|k

P x
k+1|k =

1

N − 1
Ex

k+1|k(E
x
k+1|k)

T

We will now shortly describe how the above variables and steps are defined and carried out
in a wildfire data and assimilation context using FARSITE. The mean x̄0|0 at k = 0 is the
state which describes the ignition boundary (initial fire perimeter) in eastern ei and northern
ni coordinates

x̄0|0 =
[
e1 n1 e2 n2 · · · em nm

]T
(4)

where (ej , nj) is the jth coordinate of the ignition boundary and n0
0|0 = 2m is the dimen-

sion of the state variable x̄0|0. Let (ec, nc) indicate the centroid of the ignition boundary in
eastern/northern coordinates, then the covariance of the state P x

0|0 at k = 0 is the matrix

P x
0|0 = AP xc

0|0A
T + P x̄

0|0 (5)

where P xc

0|0 is the 2 × 2 covariance matrix for the center point xc = [ec nc]
T and P x̄

0|0 is the

n0
0|0×n0

0|0 covariance matrix of the state x̄0|0. The matrix A is a n0
0|0×2 transformation matrix

that relates x̄0|0 to the vector xc = [ec nc]
T via x̄0|0 = A[ec nc]

T .

Describing the initial state covariance matrix as in (5) allows us to maintain the overall shape
and size of the ignition boundary while still giving us freedom to impose a large uncertainty on
the actual location of the ignition boundary via a covariance matrix P xc

0|0 on the center point

xc = [ec nc]
T . Having defined the initial mean and covariance matrix, step 2 is implemented by

simply sampling from a normal distribution described by tits mean and covariance. Each of the
ensemble members xi

k|k constitutes an independent ignition boundary which is used to compute

an update ensemble xi
k+1|k through a forward model (FARSITE) simulation. The simulations

in (3) can be carried out in parallel n order to increase computational speed. Note that each
of the runs use the same parametric and input conditions during the FARSITE simulation.
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3.2 Fire Perimeter Adjustment Using Observations

The output perimeters xi
k+1|k obtained from the forward model (FARSITE) simulation consti-

tute the members of the forward/forecasted ensemble. These forward perimeters are generally
vectors with a size different and larger than the initial size n0

0|0. Furthermore, at each time time

step k+1, the output perimeters xi
k+1|k may even have different sizes n1

k+1|k, n
2
k+1|k, . . . , n

N
k+1|k

depending on the ensemble xi
k|k used to compute xi

k+1|k. To allow state updates with the EnKF

approach for a varying state dimension, each new output perimeters xi
k+1|k is re-interpolated

in 2D (eastern/northern) to a new size

nk+1|k = max(n1
k+1|k, n

2
k+1|k, . . . , n

N
k+1|k)

in order to preserve resolution at each time step k+1. Finally the mean x̄k+1|k and sample co-
variance P x

k+1|k are calculated using the interpolated output perimeters of the forward ensemble
and allow us to continue the computational steps for data assimilation as follows.

5. We now define the distribution of observations with a mean, yk+1 ∈ Rm and the obser-
vation covariance matrix, Vk+1 ∈ Rm×m and generate the ensemble of observations by
sampling from this distribution:

Yk+1|k = (y1k+1|k, y
2
k+1|k, ..., y

N
k+1|k), Yk+1|k ∈ Rm×N

and the ensemble of perturbations/error for the observations:

Ey
k+1|k = (y1k+1|k − yk+1, y

2
k+1|k − yk+1, ..., y

N
k+1|k − yk+1), Ey

k+1|k ∈ Rm×N

The sample covariance of the observations and sample cross covariance between the state
and observations can now be calculated via

P y
k+1|k =

1

N − 1
Ey

k+1|k(E
y
k+1|k)

T

P xy
k+1|k =

1

N − 1
Ex

k+1|k(E
y
k+1|k)

T

6. The Kalman gain is now calculated using the above computed sample covariances

Kk+1 = P xy
k+1|k(P

y
k+1|k)

−1

7. The next step is the update step given by

xi
k+1|k+1 = xi

k+1|k +Kk+1(y
i
k+1 − Ck+1x

i
k+1|k)

x̄k+1|k+1 =
1

N

i=N∑
i=1

xi
k+1|k+1

where yik+1 = yk+1 + vik+1 and yk+1 is the actual (noisy and downsampled) observation
of the fire perimeter and vik+1 is a zero mean random variable with N ∼ (0, Vk+1).

8. Finally the updated sample covariance is calculated using the ensemble of the updated
state via

P x
k+1|k+1 =

1

N − 1
Ex

k+1|k+1(E
x
k+1|k+1)

T

where, Ex
k+1|k+1 is again similar to (2) with xk+1|k+1 replaced by xk+1|k and x̄k+1|k+1

replaced by x̄k|k. At any time instant, the estimate of the state, x̂k+1|k+1, is the mean of
the ensemble, x̄k+1|k+1.
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For the continued iteration along the time index k, one replace k −→ k + 1 and repeat steps
2 to 8. The above steps can be described in context for wildfire data assimilation. It is clear
that yk+1 in in step 5 is defined as the downsampled version of the “true” fire perimeters given
by yk+1 = Ck+1xk+1 where Ck+1 is the spatial downsampling matrix and xk+1 is the true (yet
unknown) state data of the fire perimeter.

At this step we also introduce the observation covariance matrix Vk+1. In the wildfire con-
text, this characterizes the variance on our measurements of the fire perimeters yk+1. The mean
and covariance matrix of the observations allows us to apply uncertainty on our measurements
which is very important in calculating the Kalman gain Kk+1 in step 6. In the next step we
update each of our interpolated perimeters, xi

k+1|k which we obtained from the output of the
FARSITE, using the Kalman gain and a sample measurement from the ensemble of observa-
tions. The ensemble of observations is characterized by its mean yk+1 and covariance matrix
Vk+1 described earlier. These updated perimeters xi

k+1|k+1 are the fire perimeters which will
be used to resume our simulation from the k + 1th time step. In the remaining steps we do a
similar calculation as in the first 4 steps and obtain the updated mean of the fire perimeters
x̄k+1|k+1 and the updated sample covariance matrix P x

k+1|k+1.

4 Application in WildFire Data Assimilation

4.1 Reference Data for Simulation

In this section we collect topography data and weather conditions from the May 2014 Cocos Fire
in San Marcos and use this to generate parametric conditions and input data for a FARSITE
wildfire simulation. These parametric conditions and input data are used to produce the “true”
fire perimeters xk+1 that will be used as a reference for the performance evaluation of the data
assimilation tools in this paper. The simulated fire perimeters are depicted in Fig. 1 over a
18 hour time period with a one hour time resolution and a 90m spatial resolution along the
perimeter, starting from a given square 30m×30m ignition boundary x0 at t = k = 0.

For testing the data assimilation tools, the “true” data with a 90m spatial resolution along
the perimeter is down-sampled to generate the output yk+1 by

yk+1 = Ck+1xk+1 + vk+1,

where Ck+1 is a downsampling matrix, and measurements yk+1 are produced at a spatial
resolution of only 360m along the perimeter. The measurements are perturbed by a white noise
vk+1 with a standard deviation of 50m. In addition, it is assumed that the ignition boundary
x0 is not known at the start of the data assimilation procedure. Instead, an initial estimate
x̂0|0 �= x0 along with a covariance matrix is used.

4.2 Forward Simulation Without Data Assimilation

To illustrate the need for data assimilation, a forward simulation from FARSITE is initialized
at x̂0 �= x0. The ignition boundary (initial fire perimeter) x̂0 is also characterized by a square
30× 30m fire perimeter, but with the center of the perimeter 215m off in eastern direction and
730m off in in northern direction compared to the “true” x0. A side-by-side comparison can
be made between the reference data (the “true” fire perimeters) xk+1 in Fig. 1 and the fire
perimeters x̂k+1 obtained by the forward simulation from FARSITE initialized at x̂0 �= x0 in
Fig. 2. It is clear that the relatively small initial error due to x̂0 �= x0 between the initial fire
perimeters leads to a growing divergence of the fire perimeters over time.
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Figure 1: Noise free reference data of the “true” hourly fire perimeters xk starting at x0 over a 18
hour time period and a spatial resolution of 90m along the fire perimeters. A noise perturbed
and down-sampled measurement yk of this data with a spatial resolution of 360m along the
perimeter is used for data assimilation.

Figure 2: Forward (FARSITE) simulation of hourly fire perimeters x̂k over a 18 hour time
period with a spatial resolution of 90m along the fire perimeters started at an off-set initial fire
perimeter x̂0 �= x0.

The diverging error can be characterized via the Root Mean Square (RMS) error

Ermsk =

(∑i=nk

i=1 (xk − x̂k)
2)

nk

)1/2

(6)
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where nk is the state size, representing the number of points on the fire perimeter. Evaluating
the RMS error for the forward simulation of hourly fire perimeters x̂k shown earlier in Fig. 2,
leads to the progress of the RMS error summarized in Fig. 3. It is clear from this figure
that a simple forward simulation with FARSITE, without the corrections provided by data
assimilation, does not improve the RMS error and eventually leads to a diverging RMS error.
Data assimilation is needed to stabilize the RMS error and correct for the initial error in the
fire perimeter x̂0 �= x0.
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Figure 3: RMS error of hourly fire perimeters x̂k computed via forward (FARSITE) simulation
started at an off-set initial fire perimeter x̂0 �= x0.

4.3 Data Assimilation with Hourly Updates

Using noisy and down-sampled measurements yk+1 at time index k+1, an estimate x̂k+1|k+1 is
formulated of the “true” fire perimeter xk+1 via the ensemble Kalman filter (EnKF) approach
outlined earlier in Section 3. To initialize the data assimilation procedure, the same inaccurate
value of the initial fire perimeter x̂0|0 �= x0 will be used, where x̂0|0 is a square 30 × 30m fire
perimeter, but with the center of the perimeter 215m off in eastern direction and 730m off in
in northern direction.

As each point on the fire perimeter consists of a eastern and northern coordinate, the initial
square fire perimeter of 4 perimeter points requires an 8 dimensional state estimate x̂0|0. The
ensembles are created using an 8× 8 covariance matrix P x̄

0|0 for the mean x̄0|0 = x̂0|0 �= x0 and

a 2×2 covariance matrix P xc

0|0 for the center xc of the square ignition boundary. The covariance

matrices are given by

P x̄
0|0 = diag {P, P, P, P} , P =

[
5 0
0 5

]
, P xc

0|0 =

[
150 0
0 150

]

and indicate a relative large uncertainty on the center point and a smaller uncertainty on
the individual corner points of the square ignition boundary. The covariance information is
combined via (5) to get the complete initial covariance matrix P x

0|0 to create initial ensembles

xi
0|0, i = 1, 2, . . . , N that are advanced through the forward model (FARSITE) in (3) where

N = 100.
During the subsequent steps of the EnKF method outlined in Section 3, the comparison of

the updated perimeter and the perimeter of the reference fire along with a confidence region
on one of the coordinates of the reference fire is depicted in Fig. 4. It can be observed that the
predicted and reference fire perimeter converge fairly quickly. This is also confirmed by the plot
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of the RMS Error convergence rate for this simulation in Fig. 5. Clearly the error decreases by
a very large amount in the first update and then decreases by only small amounts in subsequent
updates, showing the quick convergence and effectiveness of the data assimilation technique to
account for errors in the initial fire perimeter.
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Figure 4: Comparison of Updated Perimeter x̂k|k and Reference Perimeter xk for time steps
(a) k = 1 (b) k = 2 and (c) k = 3. The circles indicate the 99% confidence interval (3 times
standard deviation of 50m or variance of 2500m2) of the observations.
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Figure 5: RMS Error Between the Updated Perimeters x̂k|k and the ”true” Fire Perimeters xk

with hourly updates and a measurement variance of 2500m2. It is assumed the first measure-
ment and data assimilation update is performed at k = 1.

4.4 Effect of Measurement Uncertainty on Convergence Rate

For the hourly updates, the convergence was shown to occur in only a single update step of the
EnKF algorithm, despite the error on the initial fire perimeter. The fast convergence is due to
the relatively large covariance on the initial fire perimeter and relatively small covariance on
the fire perimeter observations. Next we investigate the effect of varying this uncertainty in
the measurements of the reference fire perimeter on the convergence rate. The simulation is
initialized with a smaller initial uncertainty to see a more pronounced effect of this variation.
We apply the same covariance matrix on the coordinates of the mean perimeter and then give a
smaller 2×2 covariance matrix for the center of the ignition boundary compared to the previous
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simulation.

P x̄
0|0 = diag {P, P, P, P} , P =

[
5 0
0 5

]
, P xc

0|0 =

[
50 0
0 50

]

For the first simulation we update the perimeters with a time resolution of 1 hour but
with measurements, yk+1 + v50k+1, where v50k+1 is zero mean white noise with 2500m2 variance.
Whereas for the second simulation we use noisier measurements, yk+1+v200k+1, where v

200
k+1 is zero

mean white noise with a 40000m2 variance. A comparison of the respective RMS progression
curves can be found Fig. 6.
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Figure 6: Comparison of RMS Errors between data assimilation using measurements of 2500m2

variance and measurements of 40000m2 variance

From Fig. 6 we can clearly see that the simulation that uses fire perimeter observations
with a 40000m2 variance would take a larger number of steps to converge to the same error
when compared to the simulation which uses more accurate fire perimeter observations with a
2500m2 variance.

4.5 Data Assimilation with Reduced Update Frequency

To complete the analysis of the EnKF filter for data assimilation performance, we repeat the
procedure with the same initial fire perimeter and covariance matrices as used in the simulation
presented in Section 4.3. For performance evaluation we now plot the (mean) RMS Error and
the variance of the RMS Error during the course of the simulation. In this case the assimilation
steps occur do not occur hourly, but are further apart. Compared to Figure 4, data assimilation
is only done at the time steps k = 1 and k = 4 instead of every hourly time step. The results
in Figure 7 show the effect of both the mean and variance of the RMS error and indicate a
significant drop in the mean RMS error and its variance whenever a data assimilation step is
performed. Even though the mean RMS error does not increase considerably when no data
assimilation step is performed, the uncertainty does increase significantly during time steps
without data assimilation. This large uncertainty in the RMS error informs us that even though
the (mean) RMS error itself may remain small between the reference and offset perimeters, the
uncertainty on the fire perimeter may grow without frequent data assimilation steps.

Wildfire Spread Prediction and Assimilation for FARSITE Thayjes Srivas et al.

906



0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

time [hr]

R
M

S
 e

rr
or

 [k
m

]
mean of RMS error at forward simulation step
mean of RMS error at data assimilation step
variance of RMS error (3 sigma confidence interval)

Figure 7: Progress in mean RMS Error and variance of RMS Error when data assimilation
steps are performed only at the time steps k = 1 and k = 4 hours.

5 Conclusions and Future Work

Data assimilation in FARSITE is accomplished by characterizing both simulated and actual
measured fire perimeter with a mean and covariance matrix (confidence regions) to formulate
optimal updates for the prediction of the spread of the wildfire. Optimal updates are computed
via a fire perimeter adjustment, weighted by a Kalman filter gain that is computed via an
Ensemble Kalman filter approach. Application of the proposed FARSITE data assimilation to
a wildfire simulation representing the 2014 Cocos fire confirmed an inverse relation between the
rate of convergence of the fire perimeter and the uncertainty on the fire perimeter measurements.
In the presence of incorrect ignition boundary, it is shown that convergence to the actual wild
fire perimeter is obtained in only a few data assimilation steps in case of a relatively small
(50m) standard deviation on the measured fire perimeters measured at a resolution of 360m.
The simulation study also includes results on convergence for larger uncertainty in the measured
fire perimeters and when data assimilation steps are not performed regularly. State updates
only involved the fire perimeter and future work will extend this to fuel adjustment factors used
in FARSITE to account for wildfire spread variations over homogeneous fuel types.
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