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ABSTRACT Mandel’s Q-parameter, which is determined from the first two photon count moments, provides an alternative to
PCH analysis for determining the brightness of fluorophores. Here, the definition of the Q-parameter is generalized to include
correlations between photon counts that are separated by a time t. We develop and experimentally verify a theory that takes the
effects of dead time, afterpulsing, and the finite sampling time on the generalized parameter QðtÞ into account. Qð0Þ; which
corresponds to the original Q-parameter, is severely affected by dead time and afterpulsing. QðtÞ for t. 0; on the other hand, is
quite robust with respect to nonideal detector effects. Thus, analysis of QðtÞ provides a robust method for determining the
brightness of fluorophores. We extend the theory to a mixture of species, which is characterized by an apparent brightness. The
brightnessofEGFP inCV-1cells ismeasuredasa functionof protein concentration todemonstrate the feasibility ofQðtÞanalysis in
cells. In addition, wemonitor protein association of the ligand-binding domain of retinoid X receptor in the presence and absence of
9-cis-retinoic acid by QðtÞ analysis.

INTRODUCTION

Fluorescence fluctuation spectroscopy (FFS) derives in-

formation about biomolecules from statistical analysis of

fluorescence intensity fluctuations. A number of different FFS

techniques exist and provide different information about the

sample. Fluorescence correlation spectroscopy (FCS) is the

most widely used technique and derives information about

the dynamic properties of the sample from the correlation in

the signal fluctuations (1,2). Other techniques, such as photon

counting histogram (PCH) and cumulant analysis, target

nondynamic properties of the sample (3,4). PCH analyzes the

probability distribution function of the photon counts and

determines the brightness of fluorescent molecules. The

brightness of a fluorophore is given by the average number of

photons emitted by onemolecule over a specified time period.

PCH analysis is useful for the study of particle aggregation

and has been successfully applied to observe the oligomer-

ization of proteins in living cells (5).

We briefly illustrate how brightness serves as a marker of

the oligomeric state of a protein. A fluorescently labeled pro-

tein diffuses through the observation volume and produces

a burst of detected photons. The average photon count rate of

these bursts determines the molecular brightness of the

labeled protein. If this protein associates to formahomodimer,

the new complexwill carry twofluorescent labels and produce

on average twice as many photons as the monomeric protein.

The molecular brightness of the dimer is therefore twice that

of the monomer.

Protein oligomerization and aggregation are also mea-

sured by FCS, where changes in the diffusion coefficient

induced by protein association are monitored by the auto-

correlation function (for a review, see Thompson et al. (6)).

Employing cross-correlation with dual-color detection pro-

vides a sensitive method for detecting protein interactions

(7). Another approach uses the fluctuation amplitude gð0Þ of
the autocorrelation function to detect changes in the aggre-

gation state of proteins (8,9). The idea behind this method is

that the effective number of diffusing particles decreases

upon oligomerization with respect to the monomer concen-

tration. This results in an increase of the amplitude of the

autocorrelation of the fluorescence intensity, which is used as

a marker for oligomerization. More sophisticated setups and

analysis methods, such as scanning FCS (8,10) and higher-

order FCS (11,12), have been employed as well.

The degree of oligomerization depends on protein con-

centration. To monitor oligomerization by brightness, we

measure the brightness over a wide concentration range. Be-

cause fluorescence intensity is proportional to concentration,

we measure at intensities where dead-time effects of the

detector become significant (13). This nonideal detector effect

results in an artificial decrease in the brightness and leads to

erroneous interpretation of PCH experiments. We developed

an improved PCH theory that corrects for dead-time and

afterpulsing effects and accurately determines brightness over

a wide range of intensities (14).

An alternative to determining the brightness by PCH is

moment analysis (11,15–17). Two approaches exist; the first

directly calculates higher-order moments from the photon

counts (17), whereas the other uses higher-order correlation

functions to determine moments (11). Because moments and

the probability distribution function used by PCH are math-

ematically equivalent, both methods provide the same infor-

mation. Here we limit our discussion to the first two moments

of the photon counts. They are sufficient to calculate the
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brightness of a single species. In the case of multiple species,

the first two moments determine the apparent brightness of

the sample, which represents an average brightness of all

the species present in the solution (5). Moment analysis is

attractive because it provides a very convenient and simple

approach for computing the brightness. However, just as in

the case of PCH, moment analysis suffers from dead time

and afterpulsing of the detector. Equations that treat dead-

time and afterpulsing effects on moment analysis have been

introduced for the limit of short sampling times (14).

Moment analysis is based on Mandel’s Q-parameter (18),

which is defined in terms of the first two photon count mo-

ments. In this article we generalize Mandel’s Q-parameter by

including correlations between photon counts separated by

a time t. We develop the theory that connects the generalized

Q-parameter QðtÞ to the brightness of fluorescent molecules

for arbitrary sampling times and in the presence of detector

dead time and afterpulsing. We also discuss the relationship

between QðtÞ and the autocorrelation function. To test the

theory we perform and analyze experiments using simple dye

solutions.

The special caseQð0Þ corresponds to the original definition
of Mandel’s Q-parameter. We extend the theory of Mandel’s

Q-parameter by including sampling time effects into the data

analysis ofQð0Þ:Most importantly, we show thatQðt. 0Þ is
in contrast to Qð0Þ remarkably robust against nonideal de-

tector effects and only requires minor corrections to account

for dead time and afterpulsing. Thus, the generalized Q-pa-
rameter provides an attractive method for analyzing bright-

ness and is in several aspects superior to traditional analysis of

the Q-parameter. We extend the theory of QðtÞ to include

multiple species and introduce an approximation that pro-

vides a quick and convenient correction for dead-time effects.

The low brightness and large protein concentrations typically

encountered in cellular measurements present a challenge for

PCHand conventionalmoment analysis (5).QðtÞ analysis, on
the other hand, provides a robust method for determining the

brightness of fluorophores in cells. We demonstrate the fea-

sibility of QðtÞ analysis of cell data by determining the

brightness of EGFP and bymonitoring the protein association

of a nuclear receptor.

THEORY

Mandel’s parameter and brightness

PCH analysis provides a framework for determining the

brightness e in the limit of short sampling times. The bright-

ness characterizes the number of photons received per mole-

cule for a sampling time T. It is proportional to

e ¼ lT; (1)

in the short sampling time limit, where l is the photon count

rate of a single molecule (3). We previously treated both e
and l as equivalent measures that determine the brightness of

a molecule. However, e depends explicitly on the sampling

time and the simple relationship between e and l of Eq. 1 is

not valid for long sampling times. The parameter l, on the

other hand, characterizes the instantaneous brightness of a

molecule, which is independent of the sampling time. Thus,

we focus on the brightness l in this article.

Moment and cumulant analysis provide an alternative for

determining the brightness (4,17). We assume in the follow-

ing a single diffusing species with a photon count rate of l.
The brightness of a single species in the limit of short sam-

pling times is readily determined from Mandel’s Q-parameter

(3,18)

Q ¼ Æk2æ� Ækæ2 � Ækæ
Ækæ

¼ g2e ¼ g2lT; (2)

where g2 is a shape factor that depends on the point spread

function PSFðr~Þ (8). The factors gr are defined by

gr ¼
R
PSF

rðr*Þdr*R
PSFðr*Þdr*: (3)

If the PSF is normalized, PSFð0Þ ¼ 1; its volume VPSF ¼R
PSFðr~Þdr3 corresponds to the observation volume typi-

cally employed in FCS experiments, and the brightness l
and the average number of fluorophores N in the observation

volume is proportional to the average of the photon counts,

Ækæ ¼ lNT (3).

Although calculation of the brightness from the photon

count moments of Eq. 2 is fast and convenient, previous

work has shown that this method suffers from dead-time and

afterpulsing effects of the photodetectors and yields inac-

curate values of the brightness even at relatively low con-

centrations (14). An algorithm based on a first-order Taylor

expansion that takes nonideal detector effects for short sam-

pling times into account has been described (14).

Generalized Mandel’s parameter Q(t)

We now introduce an alternative method for calculating the

brightness l. It utilizes the photon count correlation function,

gkðtÞ ¼ ÆkðtÞkðt1 tÞæ� Ækæ2 � Ækæd0;t

Ækæ2
; (4)

where d0;t ¼ 0 for t 6¼ 0 and d0;t ¼ 1 for t ¼ 0:The function
d0;t was introduced to subtract the shot noise term for t ¼ 0:
The symbol kðtÞ is the number of photon counts registered in

the sampling time interval ½t; t1T�; and Æ æ indicates aver-

aging. The correlation between detected photons that are

separated by a time of t is given by ÆkðtÞkðt1tÞæ: The photon
count correlation function gkðtÞ is identical to the fluores-

cence intensity correlation function gIðtÞ of FCS in the short

sampling time limit. We now introduce a generalization of

Mandel’s Q-parameter by multiplying gkðtÞ with Ækæ;

QðtÞ ¼ gkðtÞÆkæ ¼ ÆkðtÞkðt1 tÞæ� Ækæ2 � Ækæd0;t

Ækæ
: (5)
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We develop in the following expressions that relate QðtÞ
to the brightness l. In addition, we consider the effect of

sampling time T, detector dead time ty; and afterpulsing on

QðtÞ: We will see in the following that Qð0Þ and Qðt. 0Þ
behave very differently, and it becomes necessary to treat

each case separately. We use Q0 to refer to Qðt ¼ 0Þ and Qt

to refer to Qðt. 0Þ: Note that Q0 is equal to the traditional

Q-parameter.

The statistics of the photoelectron counts is closely related

to the statistics of the integrated intensity

WðtÞ ¼
Z 1T=2

�T=2

Iðt1 t
�Þdt�: (6)

If the intensity IðtÞ does not vary significantly over the

sampling time period T, Eq. 6 simplifies to

WðtÞ ¼ IðtÞT: (7)

The validity of Eq. 7 specifies the short sampling time

limit. In other words, the short sampling time limit requires

that the timescale of intensity fluctuations is much larger than

the sampling time. For purely diffusing fluorophores, the char-

acteristic timescale of fluctuations is given by the diffusion

time tD: Thus, the short sampling time limit is valid for

sampling times that are much shorter than the diffusion time

T � tD: In this limit the photon count correlation function

equals the fluorescence intensity correlation function,

gkðtÞ ¼ gIðtÞ ¼ ÆIðtÞIðt1 tÞæ� ÆIæ2

ÆIæ2
: (8)

However, in the following we will mainly consider long

sampling times where Eq. 8 is no longer valid. We later

discuss the relationship between gIðtÞ and the generalized

Mandel’s parameter QðtÞ:
In the absence of dead time, the probability distribution

function (pdf) of the integrated intensity pðWÞ is related to

the pdf of the photon counts pðkÞ by Mandel’s formula (19)

pðkÞ ¼
Z

pðWÞPoiðk;WÞdW; (9)

where Poiðk; xÞ is the Poisson distribution with average x.

Notation

To be consistent with previous work (14), we label dead-

time-affected variables with a prime and afterpulsing affected

variables with a star. For example, we denote the ideal pdf of

observing k photons during the sampling time T by pðkÞ;
whereas the afterpulsing and dead-time-affected pdf is

referred to as p9�ðkÞ:

Dead-time effect on the generalized Q-parameter

Dead-time influences the moments of the photon counts and

therefore changes the Q-function

Q9ðtÞ ¼ Æk0ktæ9� Ækæ92 � Ækæ9d0;t

Ækæ9
: (10)

Equation 10 has the same form as Eq. 5, but every moment

is replaced by the dead-time-affected moment. In addition,

we introduced a shorthand notation, where kðtÞ is written as

kt:We also assumed a stationary process, so that correlations

only depend on the time difference t. Dead time does not

change the fact that photon detection is a doubly stochastic

process, and the probability distribution functions of k andW
are related by

p9ðkÞ ¼
Z

pðWÞP9ðkjWÞdW; (11)

which generalized to a bivariate distribution function is

given by

p9ðk0; ktÞ ¼
Z Z

pðW0;WtÞP9ðk0jW0; ktjWtÞdW0dWt:

(12)

In the absence of dead time the detection process of each

photon is statistically independent from the detection process

of others, which yields a Poissonian probability function

PðkjWÞ ¼ Poiðk;WÞ (19). However, dead-time effects de-

stroy the statistical independence of the detection process.

After the detection of one photon event, no other can be

detected for a period of time equal to the dead time. As a

result, the dead-time-affected conditional probability P9ðkjWÞ
is no longer Poissonian.

O’Donell (20) developed an analytical expression for

P9ðkjWÞ using a Taylor expansion in the dead-time param-

eter d for nonparalyzable detectors. The parameter d is de-

fined as the quotient of the dead time ty and the sampling

time (d ¼ ty=T). The expression to first order in d is

P9ðkjWÞ ’ Poiðk;WÞf11 d½kW � kðk � 1Þ�g: (13)

The bivariate conditional probability p9ðk0jW0; ktjWtÞ of
detecting k0 photons given an integrated intensity of W0 and

of detecting kt photons a time t later given an integrated

intensity of Wt is given by

P9ðk0jW0; ktjWtÞ ’ P9ðk0jW0Þ 3 P9ðktjWtÞ: (14)

The detection of photons is essentially instantaneous, but

dead time introduces a statistical dependence for times less

than the dead time. Thus, as long as t. ty and for integrated
intensities W0 and Wt that do not temporally overlap (t$ T)
Eq. 14 is valid. These conditions are always fulfilled in our

experiments.

A consequence of Mandel’s formula is that the factorial

moments of the photon counts are identical to the moments

of the integrated intensity (21), Ækðk � 1Þ . . . ðk � rÞæ ¼
ÆWr11æ: If we use this relationship and combine Eqs. 13

and 14 with Eqs. 11 and 12, we obtain a relation between the

dead-time-affected moments of the photon counts and the

ideal moments of W,
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Æk0ktæ9 ¼ +
k0 ;kt

k0kt p9ðk0; ktÞ ¼ ÆW0Wtæ� 2dÆW2

0Wtæ

Ækæ9 ¼ +
k

k p9ðkÞ ¼ ÆWæ� dÆW2æ; (15)

where we used ÆW2
0Wtæ ¼ ÆW0W

2
t æ: Next, we express the

ordinary moments of W as cumulants of W (see Appendix

A), where ÆÆ ææ denotes the cumulant. Thus, Eq. 15 written in

terms of integrated intensity cumulants is

Æk0ktæ9� Æk0æ92 ¼ ÆÆW0Wtææ� 2dðÆÆW2

0Wtææ
1 2ÆÆWææÆÆW0WtææÞ

Ækæ9 ¼ ÆÆWææ� dðÆÆW2ææ1 ÆÆWææ2Þ: (16)

Inserting Eq. 16 into Eq. 10 and ignoring higher order terms

in d we arrive at an expression of the dead-time-affected

Q-parameter for t. 0;

Q9tðtÞ ¼ ÆÆW0Wtææ
ÆÆWææ

� d 3ÆÆW0Wtææ1 2
ÆÆW2

0Wtææ
ÆÆWææ

�

�ÆÆW0WtææÆÆW2ææ
ÆÆWææ2

�
: (17)

The introduction of cumulants in Eq. 17 is useful, because

the integrated intensity cumulants are connected to proper-

ties of the sample,

ÆÆWðt1ÞWðt2Þ . . .WðtrÞææ ¼ grðlTÞrNf ðrÞT ðt1; t2; � � � ; trÞ; (18)

as derived in Appendix A. We introduced in Eq. 18 the nor-

malized correlation function of the integrated intensity

f ðrÞT ðt1; t2; � � � ; trÞ[ T�r

Z T1t1

t1

Z T1t2

t2

� � �
Z T1tr

tr

f
ðrÞðt91; t92; � � � ; t9rÞdt91dt92 � � � dt9r: (19)

The function f ðrÞðt1; t2; � � � ; trÞ is closely related to the r-th
order cumulant correlation function of the intensity,

ÆÆIðt1ÞIðt2Þ . . . IðtrÞææ ¼ grðlTÞrN f
ðrÞðt1; t2; � � � ; trÞ: (20)

Note, that f ðrÞðt1; t2; � � � ; trÞ is normalized ( f ðrÞð0; 0; � � � ; 0Þ
¼ 1), because ÆÆIrææ ¼ grðlTÞrN (4). This implies according

to Eq. 19 that f
ðrÞ
T ð0; 0; � � � ; 0Þ � 1 for short sampling times.

The correlation function f ðrÞðt1; t2; � � � ; trÞ depends only on

the shape of the point spread function and the physical process

responsible for generating correlations. We assume through-

out this article that the physical process is stationary, so that

the correlation function depends on time differences only,

t2 ¼ t2 � t1; t3 ¼ t3 � t2; � � � ; tr ¼ tr� tr�1: We now use the

stationary property to rewrite the integrated intensity cumulant of

Eq. 18

ÆÆWðt1ÞWðt2Þ . . .WðtrÞææ ¼ grðlTÞrN f
ðrÞ
T ðt2; t3; � � � ; trÞ:

(21)

Inserting Eq. 21 into Eq. 17 allows us to finally arrive at an

expression for the dead-time-affected Q-function for t. 0

Q9tðtÞ ¼ g2ðlTÞf ð2ÞT ðtÞ

1� dðlTÞ 3N1 2
g3

g2

f
ð3Þ
T ð0; tÞ
f
ð2Þ
T ðtÞ � g2 f

ð2Þ
T ð0Þ

 ! !
: (22)

This equation is used to connect the experimentally

determined Q9t with the brightness l. In the absence of dead

time (d ¼ 0) Eq. 22 describes the ideal Qt parameter

QtðtÞ ¼ g2ðlTÞf ð2ÞT ðtÞ: (23)

The function f
ð2Þ
T ðtÞ describes the sampling time de-

pendence of the Q-parameter. The value of the function

f
ð2Þ
T ðTÞ tends to one in the limit of short sampling times.

Thus, QtðTÞ ¼ g2lT is identical to the original Q-parameter

Q0 (Eq. 2) in the limit of short sampling times.

To derive an expression for Q at t ¼ 0; we start with Eq.

10 and repeat all of the above steps in the derivation of Qt;
but evaluate the expressions for t ¼ 0: Because of the shot

noise term in Qð0Þ; and the unique dead-time dependence of

each moment, we arrive at a very different expression to

describe Q9
0: As we later show, Q9

0 is significantly more

sensitive to dead-time effects than Q9
t: We found that we

need to include second-order terms in d to describe exper-

imental data accurately by Q9
0; whereas a first-order cor-

rection in d is sufficient for Q9
t: We describe in Appendix B

the derivation of an expression for Q9
0 to second order in d.

The result is given by

Q9ð0Þ ¼ lTðq0 1 q1d1 q2d
2Þ; (24)

with

In the limit of short sampling times, and by only keeping

the first-order terms in d, we recover the dead-time correction

of moment analysis as previously described (14). Equations

24 and 25 extend the previous theory to second order and

include the effects of sampling time on Q.

q0 ¼ f ð2ÞT ð0Þ
q1 ¼ 2N1 g22 f

ð2Þ
T ð0Þ1 lTððg2 f

ð2Þ
T ð0ÞÞ2 � 3Ng2 f

ð2Þ
T ð0Þ � 2g3 f

ð3Þ
T ð0; 0ÞÞ

q2 ¼ ðN1 g2 f
ð2Þ
T ð0ÞÞ1 lT

2
ð6N2 1 25Ng2 f

ð2Þ
T ð0Þ � 5ðg2 f

ð2Þ
T ð0ÞÞ2 1 12g3 f

ð3Þ
T ð0; 0ÞÞ

1 ðlTÞ2 g2 f
ð2Þ
T ð0Þð6N2 1 3Ng2 f

ð2Þ
T ð0Þ1 ðg2 f

ð2Þ
T ð0ÞÞ2Þ1 f

ð3Þ
T ð0; 0Þð8N � 3g2 f

ð2Þ
T ð0ÞÞ1 3g4 f

ð4Þ
T ð0; 0; 0Þ

� �
: (25)
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To calculate QðtÞ we need a physical model that describes

our fluctuation experiments.We consider the case of diffusing

molecules and assume a three-dimensional Gaussian (3DG)

PSF. The second to fourth order normalized intensity cor-

relation functions f ðrÞðt2; � � � ; trÞ are given by Qian (16),

where tD is the average diffusion time through the obser-

vation volume and r is the squared ratio of the radial and

axial beam waist. The correlation functions f
ðrÞ
2DG for a two-

dimensional Gaussian (2DG) PSF are formally obtained

from f
ðrÞ
3DG by taking r/N:

To calculate the dead-time-affected Q-function Q9
t we

need to evaluate f
ð2Þ
T ðtÞ; f ð2ÞT ð0Þ; and f

ð3Þ
T ð0; tÞ according

to Eq. 22. To calculate Q9
0 requires the evaluation of f

ð2Þ
T ð0Þ;

f
ð3Þ
T ð0; 0Þ; and f ð4ÞT ð0; 0; 0Þ: In general this requires numerical

integration, however, it is possible to derive analytical

solutions for special cases. We first consider the function

f
ð2Þ
T ðtÞ and transform the integral of Eq. 19 using the fact that

the integrand is stationary (4,22)

f
ð2Þ
T ðtÞ ¼ 1

T2

Z 1T

�T

ðT � jtjÞf ð2Þðt1 tÞdt: (27)

For diffusing particles with a two-dimensional Gaussian

PSF an analytical solution of f
ð2Þ
T ðtÞ is easily derived,

f
ð2Þ
2DG;Tðt ¼ 0; xÞ ¼ 2x

�2fx � ðx1 1ÞLogð11 xÞg

f
ð2Þ
2DG;Tðt. 0; xÞ ¼ ð11 t̃Þ

x
2 Log 1� x

2

ð11 t̃Þ2
� �

1
1

x
Log

t̃1 x1 1

t̃ � x1 1

� �� �
; (28)

where we introduced the sampling factor x ¼ T=tD and

t̃ ¼ t=tD: The functions f
ð3Þ
T and f

ð4Þ
T ; which are needed for

the evaluation of Q9
t and Q9

0; are evaluated numerically.

We later discuss an approximation for Q9
t; which only de-

pends on f
ð2Þ
T and therefore avoids the need for numerical

integration.

Multiple species

Eqs. 22 and 24 describe the effect of dead time on the

Q-function for a single species. It is straightforward to expand

the theory to multiple species, because cumulant functions

are additive for statistically independent variables (23),

ÆÆWt1Wt2 . . .Wtr ææ ¼ +
i

ÆÆWt1Wt2 . . .Wtr ææi

¼ +
i

grðliTÞrNi f
ðrÞ
T;i ðt1; t2; � � � ; trÞ: (29)

The subscript i characterizes parameters of the i-th species.
We now explicitly derive an expression for Q9ðt. 0Þ for

multiple species. Using Eqs. 17 and 29 we get

Q9ðtÞ ¼ QðtÞ � d 3+
i

ÆÆW0Wtææi 1 2

+
i

ÆÆW2

0Wtææi

+
i

ÆÆWææi

0
B@

�
+
i

ÆÆW0Wtææi +
i

ÆÆW2ææi

+
i

ÆÆWææi

� �2

1
CCCA: (30)

Inserting Eq. 21 into above equation allows us to model

Q9t for multiple species. However, it is not possible to

determine individual brightnesses from the parameter Q9t:
Only a single brightness, which we refer to as apparent bright-

ness, can be inferred. The apparent brightness lapp is not a

physical brightness, but represents the best average bright-

ness of the mixture, and is defined by Mandel’sQ-parameter,

Q ¼ g2lappT (15). The apparent number of molecules is

determined from the average photon counts Ækæ ¼ lappTNapp:
We now extend the concept of apparent brightness to QðtÞ
analysis.

The diffusion coefficient of the individual species within

a mixture often differs less than a factor of two, and we ap-

proximate the individual normalized intensity correlation

functions of second order f
ð2Þ
T;i ðtÞ by an averaged correlation

function f
ð2Þ
T ðtÞ: We define Napp and lapp by

ÆÆW0Wtææ ¼ +
i

g2NiðliTÞ2f ð2ÞT;i ðtÞ ¼ g2NappðlappTÞ2f ð2ÞT ðtÞ

ÆÆWææ ¼ +
i

NiliT ¼ NapplappT: (31)

Note that the ideal Qt ¼ ÆÆW0Wtææ=ÆÆWææ equals

g2lappTf
ð2Þ
T ðtÞ; which is consistent with our earlier definition

for short sampling times, QtðTÞ ¼ g2lappT; because for

short sampling times f
ð2Þ
T ðTÞ � 1: With this definition, we

write Eq. 30 in terms of the apparent brightness and apparent

number of particles:

f
ð2Þ
3DGðt2Þ ¼ 11

t2
tD

� ��1
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ð4Þ
3DGðt2; t3; t4Þ ¼ 2

ffiffiffi
2

p
4
t2t3t4
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2
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; (26)
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Q9ðtÞ � g2ðlAppTÞf ð2ÞT ðtÞ � d

�
3NAppg2ðlAppTÞ2f ð2ÞT ðtÞ

1 2

+
i

ÆÆW2

0Wtææi

NApplAppT
� g

2

2ðlappTÞ2f ð2ÞT ðtÞf ð2ÞT ð0Þ
�

:

(32)
We now introduce an approximation to express

+
i
ÆÆW2

0Wtææi in terms of Napp and lapp

+
i

ÆÆW2

0Wtææi � g3ðlAppTÞ3NApp f
ð3Þ
T ð0; tÞ: (33)

We will later discuss the validity of this approximation.

Equation 32 together with Eq. 33 allow us to write an expres-

sion for Q9t; which is identical to the single species case (see

Eq. 22, if one replaces the brightness and the number of

molecules by their apparent parameters.

Afterpulsing

In addition to dead time, afterpulsing is another experimental

artifact of the detector that affects PCH and moment analysis.

An afterpulse constitutes a spurious photoelectron event

that is triggered by the detection of a real event in the

photodetector. The generation of afterpulses and its statistics

has been studied in detail elsewhere (24,25). Its effects on

PCH and moment analysis have also been characterized (14).

The probability to observe an afterpulse at time t after a real
event is characterized by a function aðtÞ: The probability of

observing an afterpulse decreases rapidly with increasing

time t. Thus, aðtÞ � 0 for t greater than a characteristic time

t0: For avalanche photodiode (APD) detectors, as commonly

used in FFS experiments, the probability essentially drops to

zero for times greater than a few microseconds. Hence, if we

use a sampling time that is larger than the characteristic time

t0; we may safely assume that all afterpulses detected during

a sampling period are caused by the real events detected in

the same sampling period. In other words, there is no cross talk

between neighboring sampling periods in terms of afterpulsing.

We calculated in Appendix C the effect of afterpulsing on the

generalized Mandel’s parameter for sampling times larger than

t0: The effect of afterpulsing on the Q-function is given by

Q
�ðtÞ ¼ ð11PaÞQðtÞ; (34)

where Pa is the integrated probability of aðtÞ over the

sampling period (T. t0)

Pa ¼
Z T

0

aðtÞdt �
Z N

0

aðtÞdt: (35)

MATERIALS AND METHODS

Instrumentation

Amode-locked Ti:sapphire laser (Tsunami, Spectra Physics,MountainView,

CA) pumped by an intracavity doubled Nd:YVO4 laser (Spectra Physics)

serves as source for two-photon excitation. The laser produces 100-fs pulses

with a repetition frequency of 80 MHz (tunable between 700 and 1000 nm).

The experiments were carried out using a Zeiss Axiovert 200 microscope

(Thornwood, NY) with a 633 plan apochromat oil immersion objective

(N.A. ¼ 1.4). An excitation wavelength of 780 nm was used for the dye

experiments, and awavelength of 905 nmwas used for the cellmeasurements.

The power at the sample was determined by measuring the laser power

directly after the objective. The excitation power was ,3 mW for solution

measurements, and was 0.25 mW for cell measurements. No photobleaching

was detected for any of the samples measured. A dichroic filter (Chroma

Technology, Brattleboro, VT) was used to separate the fluorescence from

the excitation light. Photon counts were detected with an avalanche

photodiode (SPCM-AQ-14, PerkinElmer, Vaudreuil, Quebec). The

output of the APD, which produces TTL pulses, was directed to a data

acquisition card (ISS, Champaign, IL). The card records the complete

sequence of photoelectron counts to computer memory. The data shown

were taken using sampling times between 10 and 200 ms: The data were

analyzed using programs written for IDL version 5.4 (Research Systems,

Boulder CA).

Sample preparation

Alexa488 was purchased from Molecular Probes (Eugene, OR) and

dissolved in pure water. Initial concentrations of the stock solutions were

determined from absorption measurements using the excitation coefficients

provided by Molecular Probes. Samples for the FFS experiments were

prepared by diluting the stock solution either in water or in a 60:40 (v/v)

glycerol/water solution.

CV-1 cells were obtained from ATCC (Manassas, VA) and maintained in

10% fetal bovine serum (Hyclone Laboratories, Logan, UT) and EMEM

media. EGFP-C1 and EGFP-RXRLBDb vectors were generated as

described previously (5). Transfections were carried out by using transfectin

(Bio-Rad, Hercules, CA) according to manufacturer’s instructions. Cells

were subcultured into eight-well coverglass chamber slides (Naglenunc

International, Rochester, NY) 48 h before measurements. Before measure-

ments, the growth media was exchanged to Leibovitz’s L-15 medium (no

phenol red) with 10% fetal bovine serum (Invitrogen, Carlsbad, CA); 9-cis
retinoic acid (Sigma-Aldrich, St. Louis, MO) was added to the media at 300

nM concentration. FFS measurements were performed 5 min after the

addition of ligand.

Data analysis

Q90 is directly determined from the photon count moments of the FFS data.

The generalized Q-function Q9ðtÞ is calculated from the raw data according

to Eq. 10 for t ¼ T: The dead time of the detector was determined by

exposing it to light of;10 kcps and observing the output signal with a digital

oscilloscope (Tektronix TDS 3034, Wilsonville, OR). The dead time is

determined by the shortest time interval between consecutive pulses. We

found a value of 50 6 1 ns, which agrees with the manufacturer’s specifica-

tion. The autocorrelation function of the FFS data was used to determine the

diffusion time of the fluorophores.

Our goal is to determine the brightness l from the experimentally

measured dead-time-affected Q-value. However, the mathematical

models for Q90 and Q9t depend on both the brightness and the number

of molecules, Q9ðl;NÞ: Thus, to determine the brightness we need

another experimental observable. This observable is the dead-time-

affected average number of photon counts Ækæ9: According to Eq. 15 Ækæ9

is given by

Ækæ9 ¼ lTNð1� dlTðg2f
ð2Þ
T ð0Þ1NÞÞ: (36)

We solve above equation for N,
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N ¼ 1

2dlT

n
ð1� g2dlTf

ð2Þ
T ð0ÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� g2dlTf

ð2Þ
T ð0ÞÞ2 � 4dTÆkæ9

q o
: (37)

Inserting Eq. 37 into the formulas for Q9ðl;NÞ; we find an equation that

only depends on the brightness and is solved numerically. The algorithms

for data analysis were implemented into programs written in IDL language

and used for data and error analysis. Errors in both Q90 and Q9t were

determined experimentally by dividing each data set into segments of equal

length, and the value of the Q-parameter was calculated for each segment.

We determined the standard deviation and mean of theQ-parameters for data

analysis.

The functions f
ðrÞ
T depend on the diffusion time tD; which is determined

from analysis of the autocorrelation function. We empirically found that the

diffusion time is a robust parameter that is little affected by dead-time

effects. The determination of the diffusion time from experimental data is

reliable as long as we make sure that photobleaching is absent. We calibrated

the observation volume VPSF by measuring an Alexa488 solution of known

concentration c and determined N and l from Q9t and Ækæ9 according to Eqs.
22 and 37. The volume is determined by N ¼ cVPSF:

RESULTS AND DISCUSSION

Dead-time effects on Qt and Q0

Let us first compare traditional moment analysis, which uses

the Q0 parameter, with Qt-correlation analysis. To simplify

the comparison we neglect afterpulsing and undersampling,

and concentrate on the effects of dead time only. In the

absence of dead time we would measure the ideal QtðtÞ
value. Dead time leads to a biased value Q9ðtÞ: The relative
deviation rQðtÞ[ ðQ9ðtÞ � QðtÞÞ=QðtÞ captures the bias

introduced by deadtime. Let us evaluate QðtÞ for t ¼ T and

t ¼ 0: We refer to the generalized Q-parameter at t ¼ T as

QT: Note that in the short sampling time limit f
ðrÞ
T ¼ f ðrÞ: In

addition, f ðrÞ � 1 for correlation times t � tD: Because the
times t ¼ T and t ¼ 0 are much less than tD; all functions
f
ðrÞ
T in Eqs. 22 and 25 are set equal to one, which results in

very simple equations. Fig. 1 shows the dead time induced

relative deviation rQðTÞ together with rQð0Þ for traditional

moment analysis as a function of fluorescence intensity ÆIæ:
We calculated QT and Q0 in the limit of short sampling times

according to Eqs. 22 and 24 for a brightness of l ¼ 10,000

cps, a sampling time T ¼ 10 ms, and a dead time of 50 ns,

which corresponds to a dead-time parameter d of 0.005.

These are values we typically encounter in actual experi-

ments. The number of molecules N was varied, which trans-

lates into intensity as ÆIæ ¼ lN: Fig. 1 shows the behavior of
rQ up to intensities of 23 106 cps, which is close to the upper

limit of most photon counting experiments. At low in-

tensities the relative deviation is small for both, QT and Q0;
because dead-time effects are negligible in this regime. Both

Q-values decrease with increasing intensity due to dead time,

but the rQ ofQT is much less than that ofQ0: For example, an

intensity of 300,000 cps leads to a dead-time-induced rela-

tive deviation of 100% for Q0; whereas QT experiences only

a relative decrease of 5% at the same intensity.

To better understand the difference in the behavior of Q90
and Q9T for t. 0; we take a closer look at the moments used

to calculate them. Both definitions differ in their numerator,

ÆDk2æ9 � Ækæ9 for Q0 and ÆDkðtÞDkðt1 TÞæ9 for Q9T: The

relative deviation of both numerators due to dead time is

shown as an inset of Fig. 1 as a function of intensity. The

figure clearly demonstrates that the second factorial moment

m½1;1�ðtÞ ¼ ÆDkðtÞDkðt1 tÞæ is significantly less affected by

dead time than the second factorial moment m½2� ¼ ÆDk2æ�
Ækæ: Thus the primary reason for the robustness of QT versus

Q0 analysis lies in the different transformation behavior of

the factorial moments with respect to dead time. We also

show the dead-time-induced relative deviation of the average

number of photon counts Ækæ for comparison.

To experimentally mimic the situation where only dead

time affects Qt; we prepared a dye solution in a glycerol/

water mixture. FCS analysis of the sample determined a

diffusion time of 425 ms (data not shown). We measured the

dye solution using a sampling time of T ¼ 10 ms and

determined Q9T: This measurement was repeated after each

dilution of the sample and the corresponding Q9T is shown as

a function of the fluorescence intensity in Fig. 2. The value of

Q9T decreases with increasing intensity as expected. Because

the diffusion time is much larger than the sampling time, we

are in the short sampling time limit. Note that the experi-

mental fluorescence intensity is altered by dead time, ÆIæ9 ¼
Ækæ9=T; albeit only slightly. We accounted for this bias while

fitting the data to Eq. 22. The solid line is a description of the

data by theory for a dead time of ty ¼ 50 ns and a brightness

of l ¼ 18:3660:04 kcps. Our theory successfully describes

the experimentally observed Q9T:

FIGURE 1 Relative deviation of Q0 (dashed line) and QT (solid line)

introduced by dead time as a function of fluorescence intensity in the short

sampling time limit for l ¼ 10 kcsm; T ¼ 10ms; and ty ¼ 50 ns: The inset

shows the relative deviation of the numerators of Q0 (solid line) and Qt

(dashed line), as well as of the common denominator Ækæ9 (dotted line) as

a function of the fluorescence intensity.
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Dead time and sampling time dependence of Q(t)

Most experiments are performed in aqueous solution, where

the diffusion time is much faster than in glycerol mixtures.

As a consequence the effect of sampling time on QðtÞ
usually has to be accounted for. To test our theory in this

regime we performed a dilution experiment on an aqueous

Alexa488 solution with a sampling time of T ¼ 40 ms. The
diffusion time of the sample is 40 ms as determined from the

autocorrelation function, which results in a sampling factor

x ¼ T=tD ¼ 1: The value of QðTÞ as a function of intensity

is shown in Fig. 3 A together with the best fit of the data to

Eq. 22 for a dead time of 50 ns. The fit determined a

brightness of l ¼ 8:666 0:04 kcps and describes the data

within experimental error.

To demonstrate the robustness of our technique with

respect to sampling time, we rebinned the received photon

counts in software by adding together neighboring photon

counts to get a new sequence with a twice longer sampling

time. The sampling time of the new sequence is TR ¼ 80ms;
which results in strong undersampling with a sampling factor

x ¼ 2. We graph in Fig. 3 B QðTRÞ as a function of intensity.
The solid line represents the best fit of the data to Eq. 22 with

a dead time of 50 ns. Again, theory and experiment agree

with one another. Because brightness is a property of the dye

we expect it to be independent of the sampling frequency.

The fitted brightness of l ¼ 8:716 0:04 kcps for a sampling

time of 80 ms is in excellent agreement with the brightness

determined for a sampling time of T ¼ 40 ms, and provides

an additional check of the theory.

After we demonstrated that the theory describes the

dead-time-affected Q-parameter, we now apply the theory to

directly determine the brightness for each measurement. Fig.

3 C shows the brightness for each dilution measurement

presented in Fig. 3, A and B, as a function of the fluorescence
intensity. The brightness was determined from Q9T and Ækæ9

FIGURE 2 Dilution experiment of Alexa488 in a 60:40 (v/v) glycerol/

water mixture. After each dilution the sample is measured with a sampling

time of T ¼ 10ms: The parameter Q9T was evaluated for each measurement

and is graphed as a function of the experimentally collected fluorescence

intensity ÆIæ9: A diffusion time of 425ms was determined by autocorrelation

analysis. Because T=tD � 1 we fit the data to Eq. 22 in the limit of short

sampling times. The fit (solid line) with a reduced x2 of 1.1 determines

a brightness of 18.36 6 0.04 kcps.

FIGURE 3 Dilution experiment of

Alexa488 in water. The dye solution is

measured with a sampling time of 40 ms

and is repeatedly diluted in-between mea-

surements. (A) The parameter Q9T is

graphed as a function of the fluorescence

intensity ÆIæ9 and fit to Eq. 22 using a

diffusion time of 40 ms as determined by

autocorrelation analysis. The brightness

determined by the fit (solid line) is 8.666
0.04 kcps. (B) The fluctuation data are

rebinned to a sampling time of 80 ms, and

Q9T is reanalyzed for the new sampling

time. The fit (solid line) of the data to Eq.

22 yields a brightness of 8.716 0.04 kcps.

(C) The brightness of each individual

measurement ofQ9T presented in panels A
and B is directly calculated from Eq. 22.

The circles and squares represent the

brightness determined from Q9T with

sampling times of 40 ms and 80 ms;

respectively. (D) Q90 is plotted as a func-

tion of the intensity ÆIæ9 for a sampling

time of 40 ms. The data are fit to Eq. 24,

using a dead time of ty ¼ 51ns after

correcting for afterpulsing with Eq. 72.

The fit (solid line) with a reduced x2 ¼ 1.2

leads to a brightness of 8.846 0.05 kcps.
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as described in Materials and Methods and corrects for

undersampling and dead time. The brightness of the dye is

concentration independent as expected. Note that intensity is

proportional to the dye concentration. The brightness

recovered for the two different sampling times is within

error identical and concentration independent, as expected.

Q(T) analysis versus Q(0) analysis

We reanalyze the Alexa488 dilution experiment in the

glycerol-water mixture, but use Q0 instead of QT analysis.

Because we are in the short sampling time limit, all functions

f
ðrÞ
T are set to one during the analysis. We determine the

molecular brightness from the experimental value Q90 by

solving Eq. 24 for l. The brightness determined by Q0

analysis is graphed in Fig. 4 together with the brightness

earlier determined by QT analysis. We expect to recover the

same brightness independent of the analysis technique

employed, but observe a significantly higher brightness for

Q0 analysis than for QT: Both Q-values have been corrected

for dead time. However, we neglected so far the effect of

afterpulsing on the Q-parameter. If we apply the correction

due to afterpulsing on Q0 as described in Eq. 72 of Appendix

C, we arrive at a brightness curve (dashed line) in Fig. 4,

which is within error identical to the brightness determined

by QT (l ¼ 18:56 0:1 kcps for Q0 analysis and l ¼
18:366 0:04 kcps for QT analysis).

Note that so far we have not corrected QT for afterpulses.

The fact that both brightness values match implies that the

effect of afterpulsing on QT is very weak. In fact, Eq. 34

states that correcting Qt for afterpulses is equivalent with

multiplying Qt with the factor ð11PaÞ: The cumulative

afterpulsing probability of the APD used for this experiment

was determined to be 0.007. In other words, correcting QT

for afterpulsing effects changes its value by ,1%, which is

less than the experimental error. In other words, the effect of

afterpulsing on QT can be safely ignored.

We assumed in our analysis that no undersampling is

present and therefore f
ð2Þ
T ðTÞ ¼ 1: A rigorous analysis that

takes sampling time effects into account arrives at f
ð2Þ
T ðTÞ ¼

0:98 and f
ð2Þ
T ð0Þ ¼ 0:99: The approximation of setting f

ð2Þ
T to

one introduces a small error (;1%) in the brightness value.

Note that by including undersampling in both Q0 and QT

the agreement of their brightnesses improves (l ¼ 18:76 0:1
kcps for Q0 analysis and l ¼ 18:766 0:04 kcps for QT

analysis).

We also performed Q0 analysis on the Alexa488 measure-

ments in aqueous solution, which we previously character-

ized by Qt analysis in Fig. 3 A. In contrast to Q0 analysis in

the glycerol/water mixture undersampling needs to be ac-

counted for in this analysis. We fit the experimentally deter-

mined Q0 values to Eq. 24 and accounted for afterpulsing

using Eq. 72 (see Fig. 3 D). As we later discuss, Q0 is very

sensitive to the exact dead-time value of the photodetector.

The best fit was obtained for a dead time of 51 ns, yielding a

x2 ¼ 1:2 and a brightness of l ¼ 8:8 kcps, which is in good

agreement with the value of 8.7 kcps obtained by Qt

analysis.

Useful approximation for Q(T) analysis

Another complication of Q0 analysis is the dependence of its

dead-time-induced deviation on brightness. Lowering the

brightness while keeping the intensity constant leads to an

increase in the relative deviation. Fig. 5 shows the relative

deviation rQ of Q0 for a brightness of 200 cps, 2000 cps, and

20,000 cps as a function of intensity. The deviation increases

sharply with decreasing brightness. So far we have shown

experimental data using Alexa488, which is a bright dye.

However, many experimental conditions result in a lower

brightness, such as the measurement of fluorescent proteins

in cells. In this case, Q0 analysis requires correction factors

exceeding 100% even at moderate intensities. The slightest

uncertainty in experimental parameters, such as the dead-

time value, may introduce significant systematic errors.

In Fig. 5 we also plotted the relative deviation rQ of Qt for

a brightness of 200, 2000, and 20,000 cps as a function of

intensity. All three curves overlap and are indistinguishable

in the figure. Thus, the dead-time-induced relative deviation

of Qt analysis is essentially independent of the brightness,

whereas the dead-time-induced relative deviation of Q0 is

clearly brightness dependent.

FIGURE 4 Brightness of Alexa488 in a 60:40 (v/v) glycerol/water

mixture as a function of intensity ÆIæ9: Undersampling effects are negligible

for this sample. The open triangles represent the brightness calculated by QT

analysis from Eq. 22, whereas the squares correspond to the brightness

calculated by Q0 analysis from Eq. 24. The brightness calculated from Q0

exceeds the brightness based on QT: Including afterpulsing effects in Q0

analysis by Eq. 72 lowers the calculated brightness (d) to the values

determined by QT analysis. The lines indicate the value of the average

brightness of the dilution data for each analysis technique. The average

brightness (dashed line) of QT analysis corrected for dead time yields 18.36

6 0.04 kcps, whereas the average brightness (dotted line) based on Q0

analysis corrected for dead time and afterpulsing is 18.5 6 0.1 kcps. The

average brightness (solid line) ofQ0 analysis without afterpulse correction is

22.6 kcps.
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This result suggests that, in practical terms, the intensity

alone determines the relative deviation of Qt: To test this

idea we use Eq. 22 and write rQ as

rQðtÞ ¼ Q9ðtÞ � QðtÞ
QðtÞ ¼ �ðfI 1ftÞ; (38)

with

fI ¼ 3NðlTÞd ¼ 3Ækæd ¼ 3ÆIæty

ft ¼ dðlTÞ 2
g3

g2

f
ð3Þ
T ð0; tÞ
f ð2ÞT ðtÞ � g2 f

ð2Þ
T ð0Þ

 !
; (39)

where we used ÆIæ ¼ lN and ty ¼ dT: The relative change

ofQðtÞ due to dead time is the sum of the two error functions

fI and ft: The function fI only depends on the intensity,

whereas the second function ft depends on the brightness l
and on the normalized integrated correlation functions. To

better understand the magnitude of ft; we first find an upper
limit for ft: The normalized integrated correlation function

is always equal or less than one, f
ðrÞ
T # 1: In addition, higher

order correlation functions decay faster than lower order

ones. Thus, f
ð3Þ
T ð0; tÞ# f

ð2Þ
T ðtÞ: This allows us to define the

function �fft;

�fft [ lty 2
g3

g2

� �
; (40)

with �fft .ft: In other words, the function �fft overestimates

the true contribution of ft: We see that the value of �fft

increases with the brightness l. Using the g-factors of a 3D
Gaussian PSF and the deadtime of our detector (ty ¼ 50 ns),

a brightness of ;200 kcps is needed to get a relative devi-

ation .1%. Such a high brightness is normally not encoun-

tered in FFS experiments. The brightness of all organic dyes

we measured is ,200 kcps. For instance, for in vitro exper-

iments, the laser power must be kept low enough to avoid

photobleaching, and we typically measure l,100 kcps. For

in vivo experiments on fluorescent proteins the brightness l
is usually ,10 kcps. Moreover, intrinsic experimental errors

are typically.1%, and it is safe to ignore the effect of ft on

the overall dead-time effect. Thus, we approximate the dead-

time-induced relative deviation of QðtÞ as
rQðtÞ � �3NðlTÞd ¼ �3ÆIæty: (41)

A useful consequence of Eq. 41 is that the dead-time

correction and the undersampling correction are independent

from one another. In other words, it is possible to first correct

for undersampling and then correct for dead-time effects.

Thus, with this approximation we write Eq. 22 as

Q9ðtÞ � g2lTf
ð2Þ
T ðtÞð1� 3NlTdÞ: (42)

We use Eq. 42 to analyze the experimental data. As dis-

cussed earlier, the approximation is valid for most FFS

experiments. Only in the presence of extremely bright par-

ticles, such as quantum dots or complexes with a large

number of fluorophores, is it necessary to check the validity

of the approximation.

Multiple species

In the Theory section we extend Qt analysis from one

species to multiple species. We demonstrated that the dead-

time-affected Q9t for multiple species is described by the

same expression valid for a single species, if the brightness

and the number of molecules are replaced by their apparent

parameters. To derive this expression we approximated

+
i
ÆÆW2

0Wnææi by Eq. 33. To investigate this approximation

further, we consider the case of a binary mixture of two

species with brightnesses lA and lB present at concentra-

tions NA and NB: For these conditions the exact expression is

+
i

ÆÆW2

0Wnææi ¼ g3NAl
3

AT
3
f
ð3Þ
T;Að0; tÞ1 g3NBl

3

BT
3
f
ð3Þ
T;Bð0; tÞ:

(43)

The relative error er introduced by the approximation is

thus given by

er ¼
+
i

ÆÆW2

0Wnææi � g3Nappl
3

appT
3
f
ð3Þ
T ð0; tÞ

+
i

ÆÆW2

0Wnææi

¼ f ðf � 1Þðr � 1Þ2r
ððr � 1Þf 1 1Þððr3 � 1Þf 1 1Þ; (44)

where we introduced the fractional concentration f ¼ NA=
ðNA1NBÞ and the brightness ratio r ¼ lA=lB of the two

species.

FIGURE 5 Relative deviation rQ of Qt and Q0 introduced by dead time

for different brightness values as a function of intensity. The value of rQ is

calculated for a dead time of ty ¼ 50 ns and for a sampling time of T ¼ 10

ms in the absence of undersampling effects. The solid, dotted, and dashed

lines represent rQ of Q0 for brightness values of 20,000, 2000, and 200 cps,

respectively. The relative deviation of Qt for the same brightness values is

plotted as symbols connected by lines. The relative deviation of Qt is

virtually independent of the brightness, and all three curves overlap with

each other.
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The relative error introduced by the approximation only

depends on the brightness ratio and the fractional concen-

tration of both species. Because we are interested in applying

Q
t
analysis in cells to probe the oligomerization of proteins,

we investigate the relative error of a monomer-dimer and

a monomer-tetramer mixture. The brightness ratio r of the

monomer/dimer system is two and that of the monomer/

tetramer system is four. In Fig. 6 we plot the relative error

introduced by the approximation for the two systems. The

worst case introduces an error of 35% for the monomer/

tetramer sample, and an error of 11% for the monomer/dimer

mixture. It is easy to show that the maximum of the relative

error grows with increasing brightness ratio and reaches

a limiting value of 100%.

With the approximation introduced in Eq. 33 we recover

Eq. 22, if we substitute the molecular brightness and the

number of molecules with their apparent parameters. As we

discussed earlier for typical experimental conditions Eq. 22

is approximated by Eq. 42 with a relative deviation of,1%.

Note that Eq. 42 ignores the term +ÆÆW2
0Wnææi: Thus, in the

case of multiple species the relative error introduced by

approximating +ÆÆW2
0Wnææi using an apparent brightness is

usually less than a 35% bias of a term with a relative

deviation of ,1%, and therefore unnoticeable given the

experimental uncertainty of the data. Hence, the expression

for Q9t in the presence of multiple species is well ap-

proximated by

Q9t � g2ðlAppTÞf ð2ÞT ðtÞð1� d3NAppðlAppTÞÞ; (45)

which is identical to Eq. 42, if we substitute l and N by their

apparent values.

Comparison of Qt and Q0

Qt analysis of dead-time compromised data is much more

stable than Q0 analysis, because the correction factor

required to recover the ideal parameter is much smaller for

Qt than for Q0: To illustrate the difference between both

methods, we consider the effect of small uncertainties in

dead time on the recovered brightness. We determined a dead

time of ty ¼ 50 ns for our detector with an uncertainty of

61 ns: Let us first generate dead-time-affected values of Qt

and Q0 for a dead time of exactly ty ¼ 50 ns as a function of

intensity. We chose a brightness of l ¼ 1000 cps and for

simplicity ignore undersampling effects. Next, we use Eqs.

22 and 24 to determine the brightness from Q9t and Q90; but
choose dead times of 49, 50, and 51 ns. This range of dead

times is consistent with the experimental uncertainty. Fig. 7

shows the brightness recovered by Q0 analysis as a function

of intensity for the three different dead times. The bright-

nesses match at low intensities, where dead-time affects are

less severe, but clearly start to deviate from one another with

increasing intensity. The brightnesses determined for each

dead time differ from one another by .50% for intensities

over a million cps. Thus, Q0 analysis is very sensitive to the

exact value of the dead time. For comparison, we graph the

brightnesses recovered by Qt analysis as a function of

intensity for the three different dead times as an inset in Fig.

7. The difference between the brightness values is,1% even

at an intensity of 2 million counts per second. This example

FIGURE 6 Relative error of+ÆÆW2
0Wtææi due to the approximation of Eq.

33 for a binary mixture. The introduction of an apparent brightness leads to

a biased value of+ÆÆW2
0Wtææi;which depends on the brightness ratio and the

fractional concentration. The solid and dashed lines represent the relative

error introduced by a monomer-tetramer and a monomer-dimer mixture as a

function of the fractional concentration of the monomer. We used a bright-

ness ratio of two for the dimer/monomer case and a ratio of four for the

tetramer/monomer example.

FIGURE 7 Robustness of Q0 versus Qt analysis against uncertainties in

the dead-time parameter. Q90 is calculated for a brightness l ¼ 1000 cps,

a sampling time T ¼ 10ms; and a dead time of ty ¼ 50 ns as a function of

N: Undersampling and afterpulsing effects are not considered here. We

determine the brightness l from Eq. 24 for three different dead times. The

brightness recovered for dead times of 49 ns (dashed line), 50 ns (solid line),
and 51 ns (dotted line) is shown as a function of the intensity ÆIæ; where
ÆIæ ¼ lN: An uncertainty of 61 ns leads to an uncertainty of .50% in

the brightness at high intensities. In contrast, repeating the calculation with

the same parameters, but applying Qt analysis leads to an uncertainty of the

brightness of,1%. The inset shows the brightness determined byQt analysis

for dead times of 49 (dashed line), 50 (solid line), and 51 ns (dotted line).
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shows that Qt is significantly more robust with respect to

dead time than Q0: In addition, as shown in Fig. 4 afterpuls-

ing may severely affect Q0; whereas its influence on Qt may

be safely ignored in most cases. These advantages ofQt over

Q0 analysis lead us to abandon Q0 analysis in favor of Qt:

In vivo applications of Qt analysis

We now demonstrate that brightness analysis by the Qt

technique is feasible in living cells. We evaluate the

generalized Q-parameter for t ¼ T: CV-1 cells were

transiently transfected with the fluorescent marker EGFP.

Transfected cells are identified by using a conventional

fluorescence microscope setup, which subsequently was

switched to two-photon excitation for fluorescence fluctua-

tion experiments. Data were collected with a sampling time

of T ¼ 200ms for a total of 30 s. The expression level of

EGFP varies from cell to cell and is conveniently monitored

by the fluorescence intensity, which is proportional to the

protein concentration. By picking cells with different

expression levels, it is possible to probe the concentration

dependence of the molecular brightness. The dead-time-

affected Q9T and Ækæ9 were calculated from the raw data of

each measured cell. We used Eqs. 37 and 42 to determine the

brightness l and the number of molecules N of EGFP by

correcting for undersampling and dead-time effects. The

protein concentration was determined by c ¼ N=VPSF as

discussed in Materials and Methods. The diffusion time of

EGFP, which is needed for determining l, was identified as

tD ¼ 0:62ms from the autocorrelation function of the data.

The brightness recovered from QT analysis of each measured

cell is shown as a function of the protein concentration in

Fig. 8 A. Our experiments cover EGFP concentrations from

200 nM to 5 mM. The molecular brightness of EGFP is

constant throughout the measured concentration range as

expected, because the photophysical properties of the

fluorophore is independent of concentration. The average

brightness of EGFP (solid line in Fig. 8 A) is 890 cps with

a mean 6 SD of 50 cps.

Next, we study the behavior of the ligand-binding domain

RXRLBD of the nuclear receptor RXR. We performed

measurements on CV-1 cells transfected with RXRLBD-

EGFP, which is the ligand-binding domain tagged with the

fluorescent protein EGFP. The first set of measurements was

performed in the absence of the ligand 9-cis-retinoic acid.

Data were taken and analyzed analogous to the EGFP mea-

surements presented above. A diffusion time of 1.3 ms was

measured for RXRLBD-EGFP in the absence of ligand. The

dead time and undersampling corrected brightness of the

receptor is graphed as a function of the EGFP concentration

in Fig. 8 B. The apparent brightness of the protein is not

constant, but increases as a function of protein concentration.

The increase in the apparent molecular brightness indicates

a change in the oligomeric composition of the protein solu-

tion. At low protein concentrations the molecular brightness

of RXRLBD-EGFP is the same as the brightness of EGFP

measured earlier (see Fig. 8 A). The match in brightness

indicates that RXRLBD-EGFP proteins are not associating

with one another. The increase of the apparent brightness

with increasing protein concentration on the other hand

requires the formation of homooligomeric protein com-

plexes. If we assume a simple monomer/dimer equilibrium

for RXRLBD-EGFP, the increase in the brightness is caused

by an increase in the homodimer population of RXRLBD-

EGFP. We expect for the limiting case of purely dimeric

RXRLBD protein complexes an increase of the molecular

brightness by a factor of two compared to the brightness of

EGFP alone. We conclude that the protein has not reached

FIGURE 8 (A) Molecular brightness (n) of EGFP in CV-1 cells as

a function of protein concentration. The brightness is determined by QT

analysis from Eq. 42, where we accounted for dead-time and undersampling

effects. Each data point represents the brightness measured in a different

cell expressing EGFP. The concentration axis shows the total protein

concentration expressed in terms of EGFP monomers. The brightness of

EGFP is concentration independent with an average of;890 cps (solid line)
and a standard deviation of 50 cps. (B) Apparent brightness of RXRLBD-

EGFP determined by QT analysis in the absence (s) and presence (d) of the

ligand 9-cis retinoic acid. The concentration axis shows the total protein

concentration expressed in terms of RXRLBD-EGFP monomers. The

apparent brightness increases as a function of protein concentration in the

absence of ligand. Addition of ligand leads to an increase in the apparent

brightness and therefore promotes the formation of homodimers. The solid

line indicates the brightness of monomeric EGFP, whereas the dashed line

indicates the brightness of a homodimer.
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a purely dimeric composition in the experimentally acces-

sible concentration range.

We added the ligand 9-cis retinoic acid, which activates

the nuclear receptor RXR, to the cell culture to monitor

changes in the oligomerization state of the receptor upon

activation. Data were taken and analyzed as in the case

without ligand. We obtained in the presence of ligand a

diffusion time of 8 ms for RXRLBD-EGFP. The corrected

apparent brightness is graphed as a function of EGFP

concentration in Fig. 8 B as solid symbols. The apparent

brightness of RXRLBD-EGFP at the lowest concentration

corresponds to a monomeric protein. The apparent molecular

brightness increases with protein concentration and reaches

a limiting value that is twice the brightness of EGFP. This

suggests that RXRLBD forms homodimers and that at high

concentrations all RXRLBD proteins are homodimers. Note

that the apparent brightness in the presence of ligand exceeds

the brightness measured without ligand. In other words, the

addition of ligand promotes the formation of RXRLBD

homodimers.

The results of the in vivo study of RXRLBD in CV-1 cells

are in excellent agreementwith previous experiments inCOS-

1 cells (5). The main difference lies in the analysis technique

employed in both studies. While the earlier study is based on

PCH analysis, the current study uses Qt analysis. These

experiments serve to demonstrate that Qt analysis is a viable

technique for the study of protein interactions in living cells.

DISCUSSION

Mandel’s Q-parameter uses the first two moments of the

photon counts to specify the brightness of a sample. Here, we

extend the definition of Mandel’s Q-parameter by introduc-

ing Eq. 5. As a consequence, the Q-parameter is now a

function of the lag time t between photon counts. For t ¼ 0

we recover the original definition of the Q-parameter, which

we refer to as Q0 to distinguish it from the case t . 0: The
simple relationship of Eq. 2 between Q0 and the brightness is

only valid in the limit of short sampling times and in the

absence of nonideal detector effects. These conditions are

usually not fulfilled in actual experiments. We previously

described a model that describes the influence of dead time

and afterpulsing on the brightness and Q0; but ignored

sampling time effects. Here we extended the theory by taking

undersampling, dead time, and afterpulsing into account. To

describe the experimental data required the modeling of

dead-time effects to second order in d. We demonstrated that

the theory successfully describes experimental data and

recovers the brightness of the sample.

We also developed the theory of the generalized

Q-parameter for t. 0 that takes undersampling, dead time,

and afterpulsing into account. The generalized Q-parameter

for t. 0 is denoted Qt: We noticed that Qt offers many

advantages over Q0 analysis. First, dead time causes much

smaller changes in the value of Qt than in the value of Q0:

Consequently, first-order effects in d are sufficient to

describe dead-time-affected Q9t: Second, for brightnesses

typically encountered in FFS experiments, the relative

deviation of Qt introduced by dead time only depends on

the fluorescence intensity, which allowed us to simplify the

model significantly (see Eq. 42). Equation 42 only requires

the calculation of the normalized correlation function f
ðrÞ
T of

second order, whereas Q0 analysis requires the calculation of

f
ðrÞ
T up to the forth order. In contrast to Qt; the dead-time-

induced relative deviation of Q0 depends on brightness and

increases with decreasing brightness. These facts illustrate

that Qt analysis is significantly more robust than Q0 analysis

in the presence of dead time as illustrated in Fig. 7.

Third, in contrast to Q0 analysis the effect of afterpulsing

on Qt is very small and can be safely ignored. Our derivation

of afterpulsing effects on Qt assumes sampling times that are

larger than the timescale of afterpulse generation. For our

detector all afterpulses follow within a few microseconds.

Because our sampling times are 10 ms and longer, the

assumption is fulfilled.

In principle Qt can be evaluated for any t . 0: Because
our sampling time T is finite, only discrete times t ¼ nT with

n 2 N are accessible. We usually determine QtðTÞ; which
corresponds to the shortest t allowed (n ¼ 1). There is no

advantage in using longer times. In fact, the value of QtðtÞ
decays rapidly with increasing t. In other words, the signal

used to determine the brightness is strongest for QtðTÞ:
The generalization of Mandel’s parameter uses the

correlation between photon counts separated in time by t
and is therefore related to the second-order autocorrelation

function gIðtÞ of the fluorescence intensity. Because FCS

theory is based on the intensity I and not the integrated

intensity W, the FCS correlation function has to be deter-

mined in the short sampling time limit. Commercial ac-

quisition systems typically sample with a time resolution of

tens of nanoseconds and provide the user with correlation

functions that are virtually free from undersampling effects.

We, on the other hand, determine QtðTÞ using much longer

sampling times T, which typically range from tens of micro-

seconds to milliseconds. Because of the undersampling

effect on QtðTÞ the relation to the autocorrelation function is
given by

QðtÞ ¼ ÆIæ
T

Z T

�T

ðT � jtjÞgIðt1 tÞdt: (46)

Thus, to obtain the generalized Q-parameter by FCS one

needs to evaluate Eq. 46 with the experimental realization of

gIðtÞ: Of course, the experimentally obtained gIðtÞ is also

affected by dead time and afterpulsing. Methods to correct

for these nonideal effects are available (25–27). However, if

one has access to a record of the detected counts, it is much

more convenient to directly calculate QtðTÞ from the photon

counts, as we have done here.

Let us briefly discuss the short sampling time limit ofQðtÞ:
Because no undersampling of the generalized Q-parameter
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occurs, its relationship to the autocorrelation function

simplifies to QðtÞ ¼ ÆIæT gIðtÞ: In this limit, gIðtÞ and QðtÞ
are proportional to one another. In other words, there is no

advantage of using QðtÞ over the autocorrelation function.

Thus, the brightness of a fluorophore can be determined by

fitting the autocorrelation function to a model to determine

the fluctuation amplitude gð0Þ: Care has to be exercised in

determining gð0Þ; because dead time and afterpulsing affect

the correlation function. Because the fluctuation amplitude

of a single species is directly proportional to the number

of molecules in the observation volume, gð0Þ ¼ g2=N;
the brightness is determined by l ¼ ÆIægð0Þ=g2: This is the
standard method of determining the brightness from the

autocorrelation function (28).

However, we do not use the short sampling time limit, but

evaluate QtðTÞ for long sampling times for two reasons.

First, as we discussed earlier we essentially get rid of

afterpulsing effects by choosing sampling times .10 ms. In
fact, undersampling provides a general and convenient

way to effectively ‘‘integrate out’’ any fast process. If the

characteristic timescale of fluctuations for a given physical

process is tC; when choosing a sampling time T � tC leads

to a small amplitude of the photon count correlation

ÆDkðtÞDkðt1TÞæ; because the signal is essentially uncorre-

lated for a lag time of T: As a consequence the value of

QtðTÞ is nearly unaffected by a physical process if T � tC:
‘‘Integrating out’’ fast process simplifies the analysis of

QtðTÞ: Second, increasing the sampling time leads to

significant improvements in the signal/noise ratio (SNR) of

QtðTÞ: The number of photons detected from a single mol-

ecule per sampling time T is denoted as e. This parameter is

important because the SNR of correlation functions im-

proves with increasing e (27,29). Choosing longer sampling

times increases the value of e. In the short sampling time

limit e is proportional to T (Eq. 1). The relationship between

e and T for arbitrary sampling times is reported elsewhere

(4,30). This improvement of the SNR is especially crucial for

cellular applications, where low excitation power and the

intrinsic properties of fluorescent proteins lead to much

smaller brightness values than typically encountered for in

vitro measurements. We found that analyzing intracellular

brightness by evaluating gð0Þ from a fit of the autocorrelation

function is indeed considerably less robust than QtðTÞ
analysis. QtðTÞ analysis on the other hand is sufficiently

robust to allow the direct determination of the brightness

according to Eqs. 5 and 42. No fit is performed, because

QtðTÞ is based on a single calculated value, and the sampling

time can be chosen at will so as to optimize the signal/noise.

The sampling time dependence of the SNR of the second

photon count moment was recently discussed (31).

The Q-parameter has an advantage over brightness,

because it is directly determined from experimental values.

Thus, Mandel’sQ-parameter is in contrast to the brightness l
model independent. By choosing a model for the PSF the Q-
parameter is related to the brightness by the factor g2

according to Eq. 2. The Q-parameter is determined from the

first two moments of the photon counts. We introduced

undersampling to increase its SNR. In addition, we sub-

stituted the second-order moment of the photon counts by its

correlation to significantly decrease the influence of nonideal

detector effects on the value of theQ-parameter. Thus,QtðTÞ
analysis combines elements of moment and FCS analysis.

We use a 3DG PSF to describe the data. To model Qt

requires according to Eq. 42 the second-order function

f
ð2Þ
T ðtÞ: The evaluation of f

ð2Þ
T ðtÞ for a 3DG PSF requires

numerical integration of Eq. 27 after inserting the correlation

function f
ð2Þ
3DGðtÞ (see Eq. 26). The squared beam waist ratio

of our instrument is around 25. The correlation functions for

a 3DG and a 2DG model ( f
ð2Þ
3DGðtÞ and f

ð2Þ
2DGðtÞ) are very

similar at early times, but differ slightly in their tail. Thus

the integrated function f
ð2Þ
T;2DGðtÞ for 2DG provides a good

approximation for f
ð2Þ
T;3DGðtÞ as long as undersampling is not

too severe and t ¼ T: We confirmed numerically that for

undersampling factors of less than four the 2DG model

provides a good approximation. The advantage of using

f
ð2Þ
2DG;TðtÞ is that numerical integration is not needed, because

Eq. 28 provides an analytical expression. As mentioned

earlier the diffusion time tD; which is required for the eval-

uation of f
ð2Þ
2DG;TðtÞ; is determined by fitting the autocorre-

lation function of the data. It is best to also employ a 2DG

correlation function for determining the diffusion time, to be

consistent.

In the presence of multiple species Qt analysis uses the

same equation valid for a single species and simply returns

the apparent brightness of the mixture. There is a small bias

term, which as we discussed is much smaller than the

experimental error, and is safely ignored. We previously

used PCH analysis to determine the brightness (3,32).

Models that account for dead time and afterpulsing have

been recently introduced as well (14). PCH has an advant-

age over Qt analysis, because it allows the resolution of the

brightnesses of a mixture, whereas Qt analysis only returns

the apparent brightness of the mixture without resolving

its components. However, the direct resolution of species

requires an excellent signal/noise ratio of the data. The

statistics for FFS experiments in cells is relatively poor,

because of the low brightness of fluorescent proteins and the

high fluorophore concentrations encountered. Consequently,

PCH fails to resolve mixtures directly and instead only

returns the apparent brightness of the mixture (5). Thus,

with respect to experiments in cells Qt analysis appears as

powerful as PCH analysis. An advantage of Qt analysis is

that it is relatively straightforward to implement, whereas

PCH analysis in the presence of dead time and afterpulsing

requires more sophisticated algorithms. In addition, no after-

pulsing correction is required for Qt; whereas afterpulsing

needs to be accounted for in PCH. Thus, Qt is a convenient

and robust technique that replaces PCH for in vivo titration

studies where the signal/noise ratio is too low for PCH to

resolve species directly.
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Finally,we appliedQt analysis tomeasure the brightness of

EGFP in cells as a function of protein concentration and

observed the change in brightness of RXRLBD in CV-1 cells,

which indicates the presence of homodimerization of the

receptor. These experiments, which are similar to earlier

studies using the PCH technique, demonstrate that Qt

analysis is suitable for the study of protein-protein inter-

actions in cells.

SUMMARY

Mandel’s Q-parameter uses photon count moments to

determine the brightness of a fluorophore. We define a

generalized form of the Q-parameter Qt that introduces

photon count correlations and explicitly depends on the

correlation time t. For t ¼ 0 we recover the original

definition of Mandel’s Q-parameter Q0: We develop and

experimentally verify models for Q0 and Qt that take dead

time, afterpulsing, and sampling time effects into account.

There are a number of advantages of Qt over the traditional

parameter Q0: The effect of dead time on Qt is significantly

less than on Q0; which leads to a rather robust and simple

dead-time analysis ofQt: The effect of afterpulsing onQt can

be safely ignored, whereas it has to be taken explicitly into

account for Q0 analysis. If a mixture of species is present, Qt

determines the apparent brightness of the mixture and

provides an alternative to PCH if the signal/noise ratio of

the experiment is too low to resolve species by PCH. Such

conditions are frequently encountered in cellular FFS experi-

ments. Here, Qt analysis provides an attractive alternative to

PCH analysis, because it is easy to implement, requires no

afterpulsing correction, and is quite robust with respect to

dead-time effects.

APPENDIX A

Relations between cumulants and raw moments are conveniently calculated

using the software MathStatica (Mathstatica, Sydney, Australia),

ÆÆWææ ¼ ÆWæ

ÆÆW0Wtææ ¼ ÆW0Wtæ� ÆWæ2

ÆÆW2

0Wtææ ¼ ÆW2

0Wtæ� ÆWæð2ÆW0Wtæ1 ÆWæ2Þ � ÆWæ3: (47)

For a single molecule diffusing through a volume V, the expressions for the

integrated intensity moments is given by:

For a stationary process the autocorrelation function only depends on

time differences. As a result, we write f ðrÞðt1; t2; . . . ; trÞ ¼ f ðrÞðt2; . . . ; trÞ;

and f
ðrÞ
T ðt1; t2; . . . ; trÞ ¼ f

ðrÞ
T ðt2; . . . ; trÞ; with ti ¼ ti � ti�1: The integrated

intensity cumulant for a single molecule is given by Muller (4)

ÆÆWt1Wt2 . . .Wtr ææ
ð1Þ ¼ ÆWt1Wt2 . . .Wtr æ

ð1Þ 1 +
m$2

fm
V

m; (49)

where the exact form of the functions fm is not of interest here. The cumulant

for a sample with Ntotal molecules in volume V is

ÆÆWt1Wt2 . . .Wtr ææ ¼ NtotalÆÆWt1Wt2 . . .Wtr ææ
ð1Þ

1Ntotal +
m$2

fm
Vm ¼ grðlTÞrcVPSF

f
ðrÞ
T ðt1; t2; . . . ; trÞ1 c +

m$2

fm

V
m�1; (50)

where we introduced the concentration of the sample, c ¼ Ntotal=V: In

fluorescence fluctuation experiments we measure fluorescence emerging

from an open excitation volume, which is much smaller than the total sample

volume V. We express the assumption of a very large surrounding volume,

by taking the limit 1=V/0: Note, that the concentration of the sample,

which is an intensive quantity, is unchanged. The integrated intensity

cumulant is now given by

ÆÆWt1Wt2 . . .Wtr ææ ¼ grðlTÞrcVPSF f
ðrÞ
T ðt1; t2; . . . ; trÞ: (51)

It is customary in fluorescence fluctuation spectroscopy to express the

concentration c in terms of the average number of molecules N in the PSF

volume,N ¼ cVPSF: This allows us to write the integrated intensity cumulant

in its final form (see Eq. 21).

APPENDIX B

We derive an expression for Q90 to second order of d using the same steps

used to derive an expression for Q9t : Taylor expansion of P9ðkjWÞ to second
order in d yields

P9ðkjWÞ ’ Poiðk;WÞ � 11 d½kW � kðk � 1Þ�1 d
2

2

�

3½k2W2�kWð2k2�2k1 1Þ1kðk � 1Þ3�
�
; (52)

and the corresponding first two dead-time-affected moments in k are related
to ideal moments of W by

Ækæ9 ¼ ÆWæ� dÆW2æ1
1

2
d
2ðÆW2æ1 2ÆW3æÞ

Æk2æ9 ¼ ÆWæ1 ÆW2æ� dð3ÆW2æ1 2ÆW3æÞ
1

1

2
d
2ð3ÆW2æ1 14ÆW3æ1 6ÆW4æÞ: (53)

We convert the ordinary moments of W into integrated intensity

cumulants, using the transformation:

ÆWt1Wt2 . . .Wtr æ
ð1Þ ¼

Z t11T

t1

dt1

Z t21T

t2

dt2 . . . :

Z tr1T

tr

dtrÆIðt�1ÞIðt�2Þ . . . Iðt�r Þæi ¼ grðlTÞr
VPSF

V

Z t11T

t1

dt1

Z t21T

t2

dt2 . . . :

3

Z tr1T

tr

dtrf
ðrÞðt1; t2; . . . ; trÞ ¼ grðlTÞr

VPSF

V
f
ðrÞ
T ðt1; t2; . . . ; trÞ: (48)
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ÆÆWææ ¼ ÆWæ

ÆÆW2ææ ¼ ÆDW2æ� ÆWæ

ÆÆW3ææ ¼ ÆDW3æ� 3ÆDW2æ1 2ÆWæ

ÆÆW4ææ ¼ ÆDW4æ� 6ÆDW3æ� 3ÆDW2æ2 1 11ÆDW2æ� 6ÆWæ:
(54)

Now, combining Eq. 54 with Eq. 51, we write the moments as:

ÆWæ ¼ lTN

ÆW2æ ¼ ðlTÞ2ðg2Nf
ð2Þ
T ð0Þ1N

2Þ
ÆW3æ ¼ ðlTÞ3ðg3Nf

ð3Þ
T ð0; 0Þ1 3g2N

2
f
ð2Þ
T ð0Þ1N

3Þ
ÆW4æ ¼ ðlTÞ4ðg4Nf

ð4Þ
T ð0; 0; 0Þ1 4g3N

2f ð3ÞT ð0; 0Þ
1 3½g2Nf

ð2Þ
T ð0Þ�2 1 6N

3
g2 f

ð2Þ
T ð0Þ1N

4Þ: (55)

Finally, inserting Eqs. 53 and 54 into Eq. 10, we arrive at Eq. 25.

APPENDIX C

We make the following approximations: i), all of the afterpulses detected

during one sampling time interval are caused by real photoelectron events of

the same sampling period. This is true when the sampling time T is larger

than the characteristic decay time of the afterpulse autocorrelation function;

ii), every single real event can only trigger one afterpulse at most. The total

number of events k�t detected during a sampling time interval is

k
�
t ¼ jt 1 kt; (56)

where kt denotes the number of real events and jt denotes the afterpulses.

The correlation Æk�0k�t æ is given by

Æk�0k
�
t æ ¼ Æk0ktæ1 Æj0jtæ1 2Æk0jtæ; (57)

where we used Æk0jtæ ¼ Æj0ktæ: The probability to detect j afterpulses

during the sampling time T can be related to the integrated intensity prob-

ability distribution. First we note that

PðjjWÞ ¼ +
k¼j

PðjjkÞPoiðk;WÞ: (58)

Under assumptions i and ii, the conditional probability to detect j

afterpulses in the presence of k real events is Campbell (24)

PðjjkÞ ¼ k!

j!ðk � jÞ!P
j

að1� PaÞk�j
; (59)

where Pa is the probability that a photon event produces an afterpulse.

Hence, we write

PðjÞ ¼
Z

dWPðWÞPðjjWÞ

¼
Z

dW +
k¼j

PðjjkÞPoiðk;WÞ
" #

PðWÞ: (60)

We use this result to calculate the mean of the afterpulse distribution:

Æjæ ¼ +
N

j¼0

jPðjÞ ¼
Z

dWPðWÞ +
N

j¼0

+
N

k¼j

jPðjjkÞPoiðk;WÞ:

(61)

Combining Eqs. 59 and 61, we find

Æjæ ¼ PaÆWæ: (62)

We extend the same procedure to bivariate moments, starting from the

conditional probability to detect j0 afterpulses in one sampling time period

and jt in another sampling time period a time t apart, given that the inte-

grated intensity during the two sampling time periods are W0 and Wt

Pðj0jW0; jtjWtÞ ¼ Pðj0jW0ÞPðjtjWtÞ
¼ +

N

k0

+
N

kt

Pðj0jk0ÞPðjtjktÞPoiðk0;W0ÞPoiðkt;WtÞ; (63)

where k0 and kt are the number of photoelectrons detected in each sampling

time period. The joint probability Pðj0; jtÞ is given by

Pðj0; jtÞ ¼
ZZ

dW0dWtPðj0jW0; jtjWtÞ: (64)

Combining Eqs. 63 and 64 with Eq. 59, we find

Æj0jtæ ¼ +
N

j0

+
N

jt

j0jtPðj0; jtÞ ¼ P
2

aÆW0Wtæ: (65)

A similar strategy is used to express Æj0ktæ as moments of the integrated

intensity. We consider the probability of detecting j0 afterpulses in one

sampling period and kt photons in a sampling period a time t apart,

Pðj0; ktÞ ¼ +
N

k0¼j0

Pðk0; ktÞPðj0jk0Þ

¼
ZZ

dW0dWtpðW0;WtÞ +
N

k0¼j0

Poiðk0;W0Þ
"

3Poiðkt;WtÞpðj0jk0Þ
#
: (66)

By substituting Eq. 59 into Eq. 66 we find

Æj0ktæ ¼ +
N

j0

+
N

jt

j0ktPðj0; ktÞ ¼ PaÆW0Wtæ; (67)

and as already discussed in Eq. 15, in absence of dead time

Æk0ktæ ¼ ÆW0Wtæ: (68)

Because Pa � 1; we only keep terms of first order in Pa: Equation 57

becomes

Æk�0k
�
t æ ’ ð11 2PaÞÆW0Wtæ: (69)

The afterpulse affected average Æk�æ is determined from Eqs. 56 and 62

Æk�æ ¼ ð11PaÞÆWæ: (70)

Hence, keeping only first-order terms in Pa; the afterpulse affected

Q-function is finally written as

Q
�ðtÞ ¼ Æk�0k

�
t æ� Æk�0æ

2

Æk�0æ
� ÆW0Wtæ� ÆWæ2

ÆWæ
ð11PaÞ

¼ QðtÞð11PaÞ: (71)

We also derive, following the same procedure as used above, the relative

deviation introduced by afterpulsing on Q0 for arbitrary sampling times,
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DQ
�
0

Q0

¼ Q
�
0 � Q0

Q0

¼ Pa 11
2

Q0

� �
¼ Pa 11

2

g2lTf
ð2Þ
T ð0Þ

 !
:

(72)

In the limit of short sampling times, f
ð2Þ
T ð0Þ � 1; and we recover the result

found by Hillesheim and Mueller (14).
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