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Molecular Brightness Determined from a Generalized Form
of Mandel’s Q-Parameter

Alvaro Sanchez-Andres, Yan Chen, and Joachim D. Miiller
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455

ABSTRACT Mandel's Q-parameter, which is determined from the first two photon count moments, provides an alternative to
PCH analysis for determining the brightness of fluorophores. Here, the definition of the Q-parameter is generalized to include
correlations between photon counts that are separated by a time 7. We develop and experimentally verify a theory that takes the
effects of dead time, afterpulsing, and the finite sampling time on the generalized parameter Q(r) into account. Q(0), which
corresponds to the original Q-parameter, is severely affected by dead time and afterpulsing. Q(7) for 7 >0, on the other hand, is
quite robust with respect to nonideal detector effects. Thus, analysis of Q(7) provides a robust method for determining the
brightness of fluorophores. We extend the theory to a mixture of species, which is characterized by an apparent brightness. The
brightness of EGFP in CV-1 cells is measured as a function of protein concentration to demonstrate the feasibility of Q(7) analysis in
cells. In addition, we monitor protein association of the ligand-binding domain of retinoid X receptor in the presence and absence of

9-cis-retinoic acid by Q(7) analysis.

INTRODUCTION

Fluorescence fluctuation spectroscopy (FFS) derives in-
formation about biomolecules from statistical analysis of
fluorescence intensity fluctuations. A number of different FES
techniques exist and provide different information about the
sample. Fluorescence correlation spectroscopy (FCS) is the
most widely used technique and derives information about
the dynamic properties of the sample from the correlation in
the signal fluctuations (1,2). Other techniques, such as photon
counting histogram (PCH) and cumulant analysis, target
nondynamic properties of the sample (3,4). PCH analyzes the
probability distribution function of the photon counts and
determines the brightness of fluorescent molecules. The
brightness of a fluorophore is given by the average number of
photons emitted by one molecule over a specified time period.
PCH analysis is useful for the study of particle aggregation
and has been successfully applied to observe the oligomer-
ization of proteins in living cells (5).

We briefly illustrate how brightness serves as a marker of
the oligomeric state of a protein. A fluorescently labeled pro-
tein diffuses through the observation volume and produces
a burst of detected photons. The average photon count rate of
these bursts determines the molecular brightness of the
labeled protein. If this protein associates to form a homodimer,
the new complex will carry two fluorescent labels and produce
on average twice as many photons as the monomeric protein.
The molecular brightness of the dimer is therefore twice that
of the monomer.

Protein oligomerization and aggregation are also mea-
sured by FCS, where changes in the diffusion coefficient
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induced by protein association are monitored by the auto-
correlation function (for a review, see Thompson et al. (6)).
Employing cross-correlation with dual-color detection pro-
vides a sensitive method for detecting protein interactions
(7). Another approach uses the fluctuation amplitude g(0) of
the autocorrelation function to detect changes in the aggre-
gation state of proteins (8,9). The idea behind this method is
that the effective number of diffusing particles decreases
upon oligomerization with respect to the monomer concen-
tration. This results in an increase of the amplitude of the
autocorrelation of the fluorescence intensity, which is used as
a marker for oligomerization. More sophisticated setups and
analysis methods, such as scanning FCS (8,10) and higher-
order FCS (11,12), have been employed as well.

The degree of oligomerization depends on protein con-
centration. To monitor oligomerization by brightness, we
measure the brightness over a wide concentration range. Be-
cause fluorescence intensity is proportional to concentration,
we measure at intensities where dead-time effects of the
detector become significant (13). This nonideal detector effect
results in an artificial decrease in the brightness and leads to
erroneous interpretation of PCH experiments. We developed
an improved PCH theory that corrects for dead-time and
afterpulsing effects and accurately determines brightness over
a wide range of intensities (14).

An alternative to determining the brightness by PCH is
moment analysis (11,15-17). Two approaches exist; the first
directly calculates higher-order moments from the photon
counts (17), whereas the other uses higher-order correlation
functions to determine moments (11). Because moments and
the probability distribution function used by PCH are math-
ematically equivalent, both methods provide the same infor-
mation. Here we limit our discussion to the first two moments
of the photon counts. They are sufficient to calculate the
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brightness of a single species. In the case of multiple species,
the first two moments determine the apparent brightness of
the sample, which represents an average brightness of all
the species present in the solution (5). Moment analysis is
attractive because it provides a very convenient and simple
approach for computing the brightness. However, just as in
the case of PCH, moment analysis suffers from dead time
and afterpulsing of the detector. Equations that treat dead-
time and afterpulsing effects on moment analysis have been
introduced for the limit of short sampling times (14).

Moment analysis is based on Mandel’s Q-parameter (18),
which is defined in terms of the first two photon count mo-
ments. In this article we generalize Mandel’s Q-parameter by
including correlations between photon counts separated by
atime 7. We develop the theory that connects the generalized
Q-parameter Q(7) to the brightness of fluorescent molecules
for arbitrary sampling times and in the presence of detector
dead time and afterpulsing. We also discuss the relationship
between Q(7) and the autocorrelation function. To test the
theory we perform and analyze experiments using simple dye
solutions.

The special case Q(0) corresponds to the original definition
of Mandel’s Q-parameter. We extend the theory of Mandel’s
Q-parameter by including sampling time effects into the data
analysis of Q(0). Most importantly, we show that Q(7 > 0) is
in contrast to Q(0) remarkably robust against nonideal de-
tector effects and only requires minor corrections to account
for dead time and afterpulsing. Thus, the generalized Q-pa-
rameter provides an attractive method for analyzing bright-
ness and is in several aspects superior to traditional analysis of
the Q-parameter. We extend the theory of Q(7) to include
multiple species and introduce an approximation that pro-
vides a quick and convenient correction for dead-time effects.
The low brightness and large protein concentrations typically
encountered in cellular measurements present a challenge for
PCH and conventional moment analysis (5). Q(7) analysis, on
the other hand, provides a robust method for determining the
brightness of fluorophores in cells. We demonstrate the fea-
sibility of Q(7) analysis of cell data by determining the
brightness of EGFP and by monitoring the protein association
of a nuclear receptor.

THEORY
Mandel’s parameter and brightness

PCH analysis provides a framework for determining the
brightness ¢ in the limit of short sampling times. The bright-
ness characterizes the number of photons received per mole-
cule for a sampling time 7. It is proportional to

e =AT, D

in the short sampling time limit, where A is the photon count
rate of a single molecule (3). We previously treated both ¢
and A as equivalent measures that determine the brightness of
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a molecule. However, ¢ depends explicitly on the sampling
time and the simple relationship between ¢ and A of Eq. 1 is
not valid for long sampling times. The parameter A, on the
other hand, characterizes the instantaneous brightness of a
molecule, which is independent of the sampling time. Thus,
we focus on the brightness A in this article.

Moment and cumulant analysis provide an alternative for
determining the brightness (4,17). We assume in the follow-
ing a single diffusing species with a photon count rate of A.
The brightness of a single species in the limit of short sam-
pling times is readily determined from Mandel’s Q-parameter
(3,18)

0- (k) = (kY = (ky _
(k)

where v, is a shape factor that depends on the point spread
function PSF(7) (8). The factors vy, are defined by

_ [PSF'(r)dr
~ [PSE(r)dr’

If the PSF is normalized, PSF(0) = 1, its volume Vpsp =
| PSF(F)dr® corresponds to the observation volume typi-
cally employed in FCS experiments, and the brightness A
and the average number of fluorophores N in the observation
volume is proportional to the average of the photon counts,
(ky = ANT (3).

Although calculation of the brightness from the photon
count moments of Eq. 2 is fast and convenient, previous
work has shown that this method suffers from dead-time and
afterpulsing effects of the photodetectors and yields inac-
curate values of the brightness even at relatively low con-
centrations (14). An algorithm based on a first-order Taylor
expansion that takes nonideal detector effects for short sam-
pling times into account has been described (14).

Y28 = VAT, (@)

3

T

Generalized Mandel’s parameter Q(7)

We now introduce an alternative method for calculating the
brightness A. It utilizes the photon count correlation function,

k(K (t + 7)) — (kY — (K)o.»
gk(T) - <k>2 )

where 6, = 0for 1 # 0and &), = 1 for 7 = 0. The function
8¢ - was introduced to subtract the shot noise term for 7 = 0.
The symbol k(¢) is the number of photon counts registered in
the sampling time interval [¢,7+T7], and { ) indicates aver-
aging. The correlation between detected photons that are
separated by a time of 7 is given by (k(#)k(¢+7)). The photon
count correlation function gi(7) is identical to the fluores-
cence intensity correlation function g;(7) of FCS in the short
sampling time limit. We now introduce a generalization of
Mandel’s Q-parameter by multiplying g (7) with (k),

k(Ok(t + 7)) — (kY — (k)8
(k) '

“4)

O(7) = g(r)¢k)y = )



Generalized Q-Parameter Analysis

We develop in the following expressions that relate Q(7)
to the brightness A. In addition, we consider the effect of
sampling time T, detector dead time 7+, and afterpulsing on
QO(7). We will see in the following that Q(0) and Q(7 > 0)
behave very differently, and it becomes necessary to treat
each case separately. We use Qy to refer to Q(7 = 0) and Q-
to refer to Q(7 > 0). Note that Qy is equal to the traditional
Q-parameter.

The statistics of the photoelectron counts is closely related
to the statistics of the integrated intensity

+T/2
W(r) :/ I(t+1)dr. (6)
-T2

If the intensity /(#) does not vary significantly over the
sampling time period T, Eq. 6 simplifies to

W) = I(1)T. )

The validity of Eq. 7 specifies the short sampling time
limit. In other words, the short sampling time limit requires
that the timescale of intensity fluctuations is much larger than
the sampling time. For purely diffusing fluorophores, the char-
acteristic timescale of fluctuations is given by the diffusion
time 7p. Thus, the short sampling time limit is valid for
sampling times that are much shorter than the diffusion time
T < 7p. In this limit the photon count correlation function
equals the fluorescence intensity correlation function,

A1+ 7))y = 1)
1y '

However, in the following we will mainly consider long
sampling times where Eq. 8 is no longer valid. We later
discuss the relationship between gr(7) and the generalized
Mandel’s parameter Q().

In the absence of dead time, the probability distribution
function (pdf) of the integrated intensity p(W) is related to
the pdf of the photon counts p(k) by Mandel’s formula (19)

pwz/mmmwwwm ©)

g(1) =g&(7) =

®)

where Poi(k, x) is the Poisson distribution with average x.

Notation

To be consistent with previous work (14), we label dead-
time-affected variables with a prime and afterpulsing affected
variables with a star. For example, we denote the ideal pdf of
observing k photons during the sampling time T by p(k),
whereas the afterpulsing and dead-time-affected pdf is
referred to as p'* (k).

Dead-time effect on the generalized Q-parameter

Dead-time influences the moments of the photon counts and
therefore changes the Q-function
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Equation 10 has the same form as Eq. 5, but every moment

is replaced by the dead-time-affected moment. In addition,

we introduced a shorthand notation, where k(¢) is written as

ki. We also assumed a stationary process, so that correlations

only depend on the time difference 7. Dead time does not

change the fact that photon detection is a doubly stochastic

process, and the probability distribution functions of k and W
are related by

— (k) S.-

Q'(1) = 10)

ﬁ®=/mmpwmma (an

which generalized to a bivariate distribution function is
given by

kOa / / WO7

In the absence of dead time the detection process of each
photon is statistically independent from the detection process
of others, which yields a Poissonian probability function
P(k|W) = Poi(k,W) (19). However, dead-time effects de-
stroy the statistical independence of the detection process.
After the detection of one photon event, no other can be
detected for a period of time equal to the dead time. As a
result, the dead-time-affected conditional probability P’ (k|W)
is no longer Poissonian.

O’Donell (20) developed an analytical expression for
P'(k|W) using a Taylor expansion in the dead-time param-
eter 6 for nonparalyzable detectors. The parameter 6 is de-
fined as the quotient of the dead time 74 and the sampling
time (6 = 7+ /T). The expression to first order in & is

P'(k|W) ~ Poi(k, W){1 + 8[kW — k(k — )]}.  (13)

P’ (ko |Wos ko |[W,) dWodW,.
(12)

The bivariate conditional probability p’(ko|Wo; k.|W.) of
detecting ko photons given an integrated intensity of W, and
of detecting k; photons a time 7 later given an integrated
intensity of W is given by

P’ (ko|Wo: k. [W,) ~ P (ko|[Wp) X P'(k,|W,). (14)

The detection of photons is essentially instantaneous, but
dead time introduces a statistical dependence for times less
than the dead time. Thus, as long as 7 > 74 and for integrated
intensities W and W, that do not temporally overlap (1=T)
Eq. 14 is valid. These conditions are always fulfilled in our
experiments.

A consequence of Mandel’s formula is that the factorial
moments of the photon counts are identical to the moments
of the integrated intensity (21), <k(k—1)...(k—r)) =
(W™ 1. If we use this relationship and combine Egs. 13
and 14 with Eqgs. 11 and 12, we obtain a relation between the
dead-time-affected moments of the photon counts and the
ideal moments of W,

Biophysical Journal 89(5) 3531-3547



3534

(kok:)' =Y kok. p' (ko, kz) = (WoW,) — 26(W W)

(ky =Y kp'(k) = (W) — &W?, (15)

where we used (W2W,) = (WoW?2). Next, we express the
ordinary moments of W as cumulants of W (see Appendix
A), where {{ )) denotes the cumulant. Thus, Eq. 15 written in

terms of integrated intensity cumulants is

(hokr)" = (ko)> = ((WW,)) = 28((WaW. )
+ 2(WHWW:)))

(kY = (W) = B(CW™) + (W))).  (16)
Inserting Eq. 16 into Eq. 10 and ignoring higher order terms

in & we arrive at an expression of the dead-time-affected
Q-parameter for 7 >0,

Wy (W2WY)
0:(r) = (3<<WOWT>> Ol
_<<wowf>><<w2>>>
Y ) {an

The introduction of cumulants in Eq. 17 is useful, because
the integrated intensity cumulants are connected to proper-
ties of the sample,

(W)W () ... W(t)) = v,AT)NED (11,12, -+, 1,), (18)

as derived in Appendix A. We introduced in Eq. 18 the nor-
malized correlation function of the integrated intensity

T+ pT+y, T+
fT(r)(t]’tz’...?tr)ET’r/ / /
4 6 tr

Ot g)dedes - - - dr. (19)

The function ) (t1,t2,-- -, 1) is closely related to the r-th
order cumulant correlation function of the intensity,

() (8) .. A1)y = *yr(/\T)er(r)(tl, by, t).  (20)

Note, that f®)(t;,t,,---,#.) is normalized (f(0,0,---,0)
= 1), because (I")) = v,(AT)'N (4). This implies according

qo = fT(Z) (O)
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the correlation function depends on time differences only,
Ty=1t —t,T3 =1t —th, -+, Ty = t;— t;_1. We now use the
stationary property to rewrite the integrated intensity cumulant of

Eq. 18

W)W () ... WE)) = AT Nf (12,75, ).
@
Inserting Eq. 21 into Eq. 17 allows us to finally arrive at an
expression for the dead-time-affected Q-function for 7 >0

(1) = (AT)f" ()

3f‘1§3)(07 ) 2
(1—8(/\T)<3N+2$—2 ff’(T; —wf20 ] ). @

This equation is used to connect the experimentally
determined Q; with the brightness A. In the absence of dead
time (6 = 0) Eq. 22 describes the ideal Q. parameter

0.(1) = v,AT) (7). (23)

The function ﬁz)(f) describes the sampling time de-
pendence of the Q-parameter. The value of the function
fT(z)(T) tends to one in the limit of short sampling times.
Thus, O, (T) = y,AT is identical to the original Q-parameter
Qo (Eq. 2) in the limit of short sampling times.

To derive an expression for Q at 7 = 0, we start with Eq.
10 and repeat all of the above steps in the derivation of Q;,
but evaluate the expressions for 7 = 0. Because of the shot
noise term in Q(0), and the unique dead-time dependence of
each moment, we arrive at a very different expression to
describe Q('). As we later show, Qé) is significantly more
sensitive to dead-time effects than Q;' We found that we
need to include second-order terms in 6 to describe exper-
imental data accurately by Q(')7 whereas a first-order cor-
rection in 8 is sufficient for Q. We describe in Appendix B
the derivation of an expression for Q£) to second order in &.
The result is given by

Q'(0) = AT(qo + @18 + ¢:8°), 24)

with

01 = 2N + 7,2/ (0) + AT((72£,7(0)" = 3N7.£,(0) — 2, /7 (0,0))

AT
9> = (N + 'Ysz(Z)(O)) + o

(6N” + 25Ny, £7(0) = 5(7, 7 (0)) + 12, £7(0,0))

) (1af 6N + 3N, 17 (0) + (17(0)7) +£7(0,0)(8N = 37,47 (0)) +3%.£(0,0,0)). @)

to Eq. 19 thath(r> (0,0,---,0) = 1 for short sampling times.
The correlation function f (r>(tl7 fh,---,t) depends only on
the shape of the point spread function and the physical process
responsible for generating correlations. We assume through-
out this article that the physical process is stationary, so that

Biophysical Journal 89(5) 3531-3547

In the limit of short sampling times, and by only keeping
the first-order terms in 8, we recover the dead-time correction
of moment analysis as previously described (14). Equations
24 and 25 extend the previous theory to second order and
include the effects of sampling time on Q.



Generalized Q-Parameter Analysis

To calculate Q(7) we need a physical model that describes
our fluctuation experiments. We consider the case of diffusing
molecules and assume a three-dimensional Gaussian (3DG)
PSF. The second to fourth order normalized intensity cor-
relation functions (7, - - -, 7,) are given by Qian (16),

-1 712
T T
et = (1+7) (1+,2) 18 (rm) = 3V3
D I'Tp

37'2 + 47; + 37'4

Tr Tx Ty

(4m3+4

3535

<<th WQ cee Wt,» = Z«Wt] le cee

= Z’yr(AlT>rN1fT(‘fl)(tl’ tz, e ,l}). (29)

W

—1 -1/2
_|_
3) (47’22723 472 T3 3)
™

Tp Ty I'Tp

ToT3 + T3T4 + THT
+423 314 24+

TD p

f3DG(727 T3, Ty) = 2\/_<

—1
: +2>
Tp

372 + 47'3 + 374

TyT3T ToTy + 7374 + 70T
X(4234+423 23; 24

D Ty

where 7p is the average diffusion time through the obser-
vation volume and r is the squared ratio of the radial and
axial beam waist. The correlation functions szG for a two-
dlmenswnal Gaussian (2DG) PSF are formally obtained
from f3DG by taking r — oo.

To calculate the dead tlme affected qunctlon Q we
need to evaluate fT ( ), fT ), (0,7) according
to Eq 22.To calculate Q0 requires the evaluat10n of fT( )( 0),
fT (0 0), and fT (O 0,0). In general this requires numerical
integration, however, it is possible to derive analytical
solutlons for special cases. We first consider the function
fT ( ) and transform the integral of Eq. 19 using the fact that
the integrand is stationary (4,22)

B =g [ @ na @

For diffusing particles with a two-dimensional Gaussian
PSF an analytical solution of fT ( ) is easily derived,

fznc o(T=0;x) =2x" {x — (x+ 1)Log(1 +x)}

e

fZ(]?GAT(T >0;x) = 2

1 T+x+1
+—| Log| ——— 28
x< Og{fx-l—l])’ 28)
where we introduced the samphng factor x = T/7p and
7 = 7/7p. The functions fT( ) and fT , which are needed for
the evaluation of Q and QO, are evaluated numerically.
We later discuss an approximation for Q which only de-

pends on fT< and therefore avoids the need for numerical
integration.

Multiple species

Egs. 22 and 24 describe the effect of dead time on the
QO-function for a single species. It is straightforward to expand
the theory to multiple species, because cumulant functions
are additive for statistically independent variables (23),

-1/2
+ 2> , (26)

The subscript i characterizes parameters of the i-th species.
We now explicitly derive an expression for Q'(7>0) for
multiple species. Using Eqgs. 17 and 29 we get

S UW WLy,

() = ) 3| TN+ 2

3 (W), (W),
(Zeom)

Inserting Eq. 21 into above equation allows us to model
Q; for multiple species. However, it is not possible to
determine individual brightnesses from the parameter Q;.
Only a single brightness, which we refer to as apparent bright-
ness, can be inferred. The apparent brightness A, is not a
physical brightness, but represents the best average bright-
ness of the mixture, and is defined by Mandel’s Q-parameter,
O = voAappT (15). The apparent number of molecules is
determined from the average photon counts (k) = AappTNapp-
We now extend the concept of apparent brightness to Q(7)
analysis.

The diffusion coefficient of the individual species within
a mixture often differs less than a factor of two, and we ap-
proximate the individual normahzed intensity correlation
functions of second order le (7) by an averaged correlation
function £\”) (7). We define Napp and Aypp by

(W W.)) = Z 7.V )‘ T) le ( ) = VzNapp()‘appT)zﬂ(‘Z)(T)

<<W>> = ZNl)\lT = Ndpp)\dppT (31)

(30)

Note that the ideal Q,= (WoW,))/{{W)) equals
yZAappréz) (7), which is consistent with our earlier definition
for short sampling times, Q,(T) = y,AqppI, because for
short sampling times fT(z) (T) = 1. With this definition, we
write Eq. 30 in terms of the apparent brightness and apparent
number of particles:

Biophysical Journal 89(5) 3531-3547
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Q'(r) = VZ(AAPPT)fT(Z) (r) =96 3NApp72()\AppT)2fT(2>(T)

> AWWo);
+2-

> 240\ p(2)
i 0 Wy 0
N an T Y, A7) f1 ™ (T)f17(0)

(32)
We now introduce an approximation to express

Y AWEW,y; in terms of Nypp and Aqpp
S AWWo) ~ Vs AanT) Nag f77(0,7). - (33)

We will later discuss the validity of this approximation.
Equation 32 together with Eq. 33 allow us to write an expres-
sion for Q;, which is identical to the single species case (see
Eq. 22, if one replaces the brightness and the number of
molecules by their apparent parameters.

Afterpulsing

In addition to dead time, afterpulsing is another experimental
artifact of the detector that affects PCH and moment analysis.
An afterpulse constitutes a spurious photoelectron event
that is triggered by the detection of a real event in the
photodetector. The generation of afterpulses and its statistics
has been studied in detail elsewhere (24,25). Its effects on
PCH and moment analysis have also been characterized (14).
The probability to observe an afterpulse at time ¢ after a real
event is characterized by a function «(¢). The probability of
observing an afterpulse decreases rapidly with increasing
time 7. Thus, «a(t) = O for ¢ greater than a characteristic time
to. For avalanche photodiode (APD) detectors, as commonly
used in FFS experiments, the probability essentially drops to
zero for times greater than a few microseconds. Hence, if we
use a sampling time that is larger than the characteristic time
to, we may safely assume that all afterpulses detected during
a sampling period are caused by the real events detected in
the same sampling period. In other words, there is no cross talk
between neighboring sampling periods in terms of afterpulsing.
We calculated in Appendix C the effect of afterpulsing on the
generalized Mandel’s parameter for sampling times larger than
to. The effect of afterpulsing on the Q-function is given by

Q' (r) = (1 +P,)O(r), 34)

where P, is the integrated probability of «(r) over the
sampling period (T > ty)

T %
Pa:/ a(t)dt;a/ a(t)dt. (35)
0 0

MATERIALS AND METHODS
Instrumentation

A mode-locked Ti:sapphire laser (Tsunami, Spectra Physics, Mountain View,
CA) pumped by an intracavity doubled Nd:YVO, laser (Spectra Physics)
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serves as source for two-photon excitation. The laser produces 100-fs pulses
with a repetition frequency of 80 MHz (tunable between 700 and 1000 nm).
The experiments were carried out using a Zeiss Axiovert 200 microscope
(Thornwood, NY) with a 63X plan apochromat oil immersion objective
(N.A. = 1.4). An excitation wavelength of 780 nm was used for the dye
experiments, and a wavelength of 905 nm was used for the cell measurements.
The power at the sample was determined by measuring the laser power
directly after the objective. The excitation power was <3 mW for solution
measurements, and was 0.25 mW for cell measurements. No photobleaching
was detected for any of the samples measured. A dichroic filter (Chroma
Technology, Brattleboro, VT) was used to separate the fluorescence from
the excitation light. Photon counts were detected with an avalanche
photodiode (SPCM-AQ-14, PerkinElmer, Vaudreuil, Quebec). The
output of the APD, which produces TTL pulses, was directed to a data
acquisition card (ISS, Champaign, IL). The card records the complete
sequence of photoelectron counts to computer memory. The data shown
were taken using sampling times between 10 and 200 us. The data were
analyzed using programs written for IDL version 5.4 (Research Systems,
Boulder CA).

Sample preparation

Alexa488 was purchased from Molecular Probes (Eugene, OR) and
dissolved in pure water. Initial concentrations of the stock solutions were
determined from absorption measurements using the excitation coefficients
provided by Molecular Probes. Samples for the FFS experiments were
prepared by diluting the stock solution either in water or in a 60:40 (v/v)
glycerol/water solution.

CV-1 cells were obtained from ATCC (Manassas, VA) and maintained in
10% fetal bovine serum (Hyclone Laboratories, Logan, UT) and EMEM
media. EGFP-C1 and EGFP-RXRLBDg vectors were generated as
described previously (5). Transfections were carried out by using transfectin
(Bio-Rad, Hercules, CA) according to manufacturer’s instructions. Cells
were subcultured into eight-well coverglass chamber slides (Naglenunc
International, Rochester, NY) 48 h before measurements. Before measure-
ments, the growth media was exchanged to Leibovitz’s L-15 medium (no
phenol red) with 10% fetal bovine serum (Invitrogen, Carlsbad, CA); 9-cis
retinoic acid (Sigma-Aldrich, St. Louis, MO) was added to the media at 300
nM concentration. FFS measurements were performed 5 min after the
addition of ligand.

Data analysis

Q is directly determined from the photon count moments of the FFS data.
The generalized Q-function Q'(7) is calculated from the raw data according
to Eq. 10 for 7 =T. The dead time of the detector was determined by
exposing it to light of ~10 kcps and observing the output signal with a digital
oscilloscope (Tektronix TDS 3034, Wilsonville, OR). The dead time is
determined by the shortest time interval between consecutive pulses. We
found a value of 50 * 1 ns, which agrees with the manufacturer’s specifica-
tion. The autocorrelation function of the FFS data was used to determine the
diffusion time of the fluorophores.

Our goal is to determine the brightness A from the experimentally
measured dead-time-affected (Q-value. However, the mathematical
models for Q% and Q; depend on both the brightness and the number
of molecules, Q'(A,N). Thus, to determine the brightness we need
another experimental observable. This observable is the dead-time-
affected average number of photon counts (k) . According to Eq. 15 (k)
is given by

(kY = ATN(1 — AT (y,£” (0) + N)). (36)

We solve above equation for N,
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Inserting Eq. 37 into the formulas for Q' (A, N), we find an equation that
only depends on the brightness and is solved numerically. The algorithms
for data analysis were implemented into programs written in IDL language
and used for data and error analysis. Errors in both Qp and Q; were
determined experimentally by dividing each data set into segments of equal
length, and the value of the Q-parameter was calculated for each segment.
We determined the standard deviation and mean of the Q-parameters for data
analysis.

The functions fT(r) depend on the diffusion time T, which is determined
from analysis of the autocorrelation function. We empirically found that the
diffusion time is a robust parameter that is little affected by dead-time
effects. The determination of the diffusion time from experimental data is
reliable as long as we make sure that photobleaching is absent. We calibrated
the observation volume Vpgp by measuring an Alexa488 solution of known
concentration ¢ and determined N and A from Q' and (k)y according to Egs.
22 and 37. The volume is determined by N = ¢VpsE.

RESULTS AND DISCUSSION
Dead-time effects on Q, and Q,

Let us first compare traditional moment analysis, which uses
the Qg parameter, with Q;-correlation analysis. To simplify
the comparison we neglect afterpulsing and undersampling,
and concentrate on the effects of dead time only. In the
absence of dead time we would measure the ideal Q.(7)
value. Dead time leads to a biased value Q'(7). The relative
deviation ro(7)=(Q'(1) — Q(7))/Q(7) captures the bias
introduced by deadtime. Let us evaluate Q(7) for 7 = T and
7 = 0. We refer to the generalized Q-parameter at 7 = T as
Or. Note that in the short sampling time limit £ = £ In
addition, ) ~ 1 for correlation times 7 < 7p. Because the
times 7 = T and 7 = 0 are much less than 7p, all functions
me in Egs. 22 and 25 are set equal to one, which results in
very simple equations. Fig. 1 shows the dead time induced
relative deviation ro(7T) together with rq(0) for traditional
moment analysis as a function of fluorescence intensity (/).
We calculated Ot and Qy in the limit of short sampling times
according to Egs. 22 and 24 for a brightness of A = 10,000
cps, a sampling time T = 10 ws, and a dead time of 50 ns,
which corresponds to a dead-time parameter 6 of 0.005.
These are values we typically encounter in actual experi-
ments. The number of molecules N was varied, which trans-
lates into intensity as {/) = AN. Fig. 1 shows the behavior of
ro up to intensities of 2 X 10° cps, which is close to the upper
limit of most photon counting experiments. At low in-
tensities the relative deviation is small for both, Ot and Q,
because dead-time effects are negligible in this regime. Both
Q-values decrease with increasing intensity due to dead time,
but the rq of Qr is much less than that of Q. For example, an
intensity of 300,000 cps leads to a dead-time-induced rela-
tive deviation of 100% for Qy, whereas Ot experiences only
a relative decrease of 5% at the same intensity.
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FIGURE 1 Relative deviation of Qg (dashed line) and Qt (solid line)

introduced by dead time as a function of fluorescence intensity in the short
sampling time limit for A = 10kesm, T = 10 us, and 7+ = 50ns. The inset
shows the relative deviation of the numerators of Qg (solid line) and Q.
(dashed line), as well as of the common denominator (k) (dotted line) as
a function of the fluorescence intensity.

To better understand the difference in the behavior of Q)
and Q7 for 7 > 0, we take a closer look at the moments used
to calculate them. Both definitions differ in their numerator,
(AK® — (k) for Qo and (Ak(r)Ak(t+T)) for Q'r. The
relative deviation of both numerators due to dead time is
shown as an inset of Fig. 1 as a function of intensity. The
figure clearly demonstrates that the second factorial moment
K1) (7) = (Ak(£)Ak(t + 7)) is significantly less affected by
dead time than the second factorial moment p = (AK?y—
(k). Thus the primary reason for the robustness of Ot versus
Qo analysis lies in the different transformation behavior of
the factorial moments with respect to dead time. We also
show the dead-time-induced relative deviation of the average
number of photon counts (k) for comparison.

To experimentally mimic the situation where only dead
time affects O,, we prepared a dye solution in a glycerol/
water mixture. FCS analysis of the sample determined a
diffusion time of 425 us (data not shown). We measured the
dye solution using a sampling time of 7 = 10 us and
determined Q. This measurement was repeated after each
dilution of the sample and the corresponding QF is shown as
a function of the fluorescence intensity in Fig. 2. The value of
Ot decreases with increasing intensity as expected. Because
the diffusion time is much larger than the sampling time, we
are in the short sampling time limit. Note that the experi-
mental fluorescence intensity is altered by dead time, (I), =
(k) /T, albeit only slightly. We accounted for this bias while
fitting the data to Eq. 22. The solid line is a description of the
data by theory for a dead time of 7+ = 50 ns and a brightness
of A = 18.360.04 kcps. Our theory successfully describes
the experimentally observed Q'r.

Biophysical Journal 89(5) 3531-3547
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FIGURE 2 Dilution experiment of Alexa488 in a 60:40 (v/v) glycerol/
water mixture. After each dilution the sample is measured with a sampling
time of 7 = 10 us. The parameter Q'r was evaluated for each measurement
and is graphed as a function of the experimentally collected fluorescence
intensity (1)(4 A diffusion time of 425 us was determined by autocorrelation
analysis. Because T/7p < 1 we fit the data to Eq. 22 in the limit of short
sampling times. The fit (solid line) with a reduced x* of 1.1 determines
a brightness of 18.36 = 0.04 kcps.

Dead time and sampling time dependence of Q(7)

Most experiments are performed in aqueous solution, where
the diffusion time is much faster than in glycerol mixtures.
As a consequence the effect of sampling time on Q(7)
usually has to be accounted for. To test our theory in this
regime we performed a dilution experiment on an aqueous
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Alexa488 solution with a sampling time of T = 40 us. The
diffusion time of the sample is 40 us as determined from the
autocorrelation function, which results in a sampling factor
x =T/tp = 1. The value of Q(T) as a function of intensity
is shown in Fig. 3 A together with the best fit of the data to
Eq. 22 for a dead time of 50 ns. The fit determined a
brightness of A = 8.66 = 0.04 kcps and describes the data
within experimental error.

To demonstrate the robustness of our technique with
respect to sampling time, we rebinned the received photon
counts in software by adding together neighboring photon
counts to get a new sequence with a twice longer sampling
time. The sampling time of the new sequence is Tr = 80 us,
which results in strong undersampling with a sampling factor
x = 2. We graph in Fig. 3 B Q(TR) as a function of intensity.
The solid line represents the best fit of the data to Eq. 22 with
a dead time of 50 ns. Again, theory and experiment agree
with one another. Because brightness is a property of the dye
we expect it to be independent of the sampling frequency.
The fitted brightness of A = 8.71 = 0.04 kcps for a sampling
time of 80 us is in excellent agreement with the brightness
determined for a sampling time of T = 40 us, and provides
an additional check of the theory.

After we demonstrated that the theory describes the
dead-time-affected Q-parameter, we now apply the theory to
directly determine the brightness for each measurement. Fig.
3 C shows the brightness for each dilution measurement
presented in Fig. 3, A and B, as a function of the fluorescence
intensity. The brightness was determined from Q'r and 53

FIGURE 3 Dilution experiment of

B Alexa488 in water. The dye solution is
measured with a sampling time of 40 us

and is repeatedly diluted in-between mea-
surements. (A) The parameter Q'r is

graphed as a function of the fluorescence

intensity (/) and fit to Eq. 22 using a

diffusion time of 40 us as determined by

E autocorrelation analysis. The brightness
determined by the fit (solid line) is 8.66 =

0.04 keps. (B) The fluctuation data are
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165 108 rebinned to a sampling time of 80 us, and
ay (cps) Q'r is reanalyzed for the new sampling
time. The fit (solid line) of the data to Eq.

22 yields a brightness of 8.71 = 0.04 kcps.

D (C) The brightness of each individual
measurement of Q'r presented in panels A

and B is directly calculated from Eq. 22.

The circles and squares represent the
brightness determined from Q'r with

sampling times of 40 ws and 80 wus,
respectively. (D) QY is plotted as a func-

tion of the intensity (I)y for a sampling

time of 40 us. The data are fit to Eq. 24,

using a dead time of 7y = 51ns after
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correcting for afterpulsing with Eq. 72.
The fit (solid line) with areduced x> = 1.2
leads to a brightness of 8.84 = 0.05 kcps.

165 108
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as described in Materials and Methods and corrects for
undersampling and dead time. The brightness of the dye is
concentration independent as expected. Note that intensity is
proportional to the dye concentration. The brightness
recovered for the two different sampling times is within
error identical and concentration independent, as expected.

Q(T) analysis versus Q(0) analysis

We reanalyze the Alexa488 dilution experiment in the
glycerol-water mixture, but use Qg instead of Qr analysis.
Because we are in the short sampling time limit, all functions
fT(r) are set to one during the analysis. We determine the
molecular brightness from the experimental value Q% by
solving Eq. 24 for A. The brightness determined by Qp
analysis is graphed in Fig. 4 together with the brightness
earlier determined by Qr analysis. We expect to recover the
same brightness independent of the analysis technique
employed, but observe a significantly higher brightness for
Qo analysis than for Or. Both Q-values have been corrected
for dead time. However, we neglected so far the effect of
afterpulsing on the Q-parameter. If we apply the correction
due to afterpulsing on Qy as described in Eq. 72 of Appendix
C, we arrive at a brightness curve (dashed line) in Fig. 4,
which is within error identical to the brightness determined
by Or (A =18.5*0.1 keps for Qp analysis and A =
18.36 = 0.04 kcps for Ot analysis).
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FIGURE 4 Brightness of Alexa488 in a 60:40 (v/v) glycerol/water
mixture as a function of intensity <l)'. Undersampling effects are negligible
for this sample. The open triangles represent the brightness calculated by Ot
analysis from Eq. 22, whereas the squares correspond to the brightness
calculated by Qp analysis from Eq. 24. The brightness calculated from Qg
exceeds the brightness based on Qr. Including afterpulsing effects in Qg
analysis by Eq. 72 lowers the calculated brightness (@) to the values
determined by Qr analysis. The lines indicate the value of the average
brightness of the dilution data for each analysis technique. The average
brightness (dashed line) of Qr analysis corrected for dead time yields 18.36
+ 0.04 kcps, whereas the average brightness (dotted line) based on Qg
analysis corrected for dead time and afterpulsing is 18.5 = 0.1 kcps. The
average brightness (solid line) of Qy analysis without afterpulse correction is
22.6 keps.
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Note that so far we have not corrected Qr for afterpulses.
The fact that both brightness values match implies that the
effect of afterpulsing on Qr is very weak. In fact, Eq. 34
states that correcting O, for afterpulses is equivalent with
multiplying Q, with the factor (1+P,). The cumulative
afterpulsing probability of the APD used for this experiment
was determined to be 0.007. In other words, correcting Qr
for afterpulsing effects changes its value by <1%, which is
less than the experimental error. In other words, the effect of
afterpulsing on Qr can be safely ignored.

We assumed in our analysis that no undersampling is
present and therefore fT(2>(T) = 1. A rigorous analysis that
takes sampling time effects into account arrives at sz) (T% =
0.98 and me (0) = 0.99. The approximation of setting}‘%2 to
one introduces a small error (~1%) in the brightness value.
Note that by including undersampling in both Qy and QO
the agreement of their brightnesses improves (A = 18.7 = 0.1
keps for Qp analysis and A = 18.76 = 0.04 kcps for Ot
analysis).

We also performed Qy analysis on the Alexa488 measure-
ments in aqueous solution, which we previously character-
ized by Q, analysis in Fig. 3 A. In contrast to Qy analysis in
the glycerol/water mixture undersampling needs to be ac-
counted for in this analysis. We fit the experimentally deter-
mined Qg values to Eq. 24 and accounted for afterpulsing
using Eq. 72 (see Fig. 3 D). As we later discuss, Qg is very
sensitive to the exact dead-time value of the photodetector.
The best fit was obtained for a dead time of 51 ns, yielding a
x> = 1.2 and a brightness of A = 8.8 kcps, which is in good
agreement with the value of 8.7 kcps obtained by Q-
analysis.

Useful approximation for Q(T) analysis

Another complication of Q analysis is the dependence of its
dead-time-induced deviation on brightness. Lowering the
brightness while keeping the intensity constant leads to an
increase in the relative deviation. Fig. 5 shows the relative
deviation rq of Qy for a brightness of 200 cps, 2000 cps, and
20,000 cps as a function of intensity. The deviation increases
sharply with decreasing brightness. So far we have shown
experimental data using Alexa488, which is a bright dye.
However, many experimental conditions result in a lower
brightness, such as the measurement of fluorescent proteins
in cells. In this case, Qp analysis requires correction factors
exceeding 100% even at moderate intensities. The slightest
uncertainty in experimental parameters, such as the dead-
time value, may introduce significant systematic errors.

In Fig. 5 we also plotted the relative deviation rq of Q, for
a brightness of 200, 2000, and 20,000 cps as a function of
intensity. All three curves overlap and are indistinguishable
in the figure. Thus, the dead-time-induced relative deviation
of Q. analysis is essentially independent of the brightness,
whereas the dead-time-induced relative deviation of Qy is
clearly brightness dependent.

Biophysical Journal 89(5) 3531-3547
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FIGURE 5 Relative deviation rq of Q, and Qy introduced by dead time
for different brightness values as a function of intensity. The value of rq is
calculated for a dead time of 7+ = 50 ns and for a sampling time of 7 = 10
us in the absence of undersampling effects. The solid, dotted, and dashed
lines represent rq of Qg for brightness values of 20,000, 2000, and 200 cps,
respectively. The relative deviation of Q, for the same brightness values is
plotted as symbols connected by lines. The relative deviation of Q, is
virtually independent of the brightness, and all three curves overlap with
each other.

This result suggests that, in practical terms, the intensity
alone determines the relative deviation of Q.. To test this
idea we use Eq. 22 and write rq as

_Q'(1) - 0(7)

Tom) = Q(T) = _(¢I + ¢’-r)a (38)

with
&, =3N(AT)8 = 3k)d = 3{I)7¢

B v:5(0,7)
6, =50) (2 o

where we used (/) = AN and 74 = 8T. The relative change
of Q(7) due to dead time is the sum of the two error functions
¢, and ¢,. The function ¢; only depends on the intensity,
whereas the second function ¢, depends on the brightness A
and on the normalized integrated correlation functions. To
better understand the magnitude of ¢, we first find an upper
limit for ¢ .. The normalized integrated correlation function
is always equal or less than one, fT(r) = 1. In addition, higher
order correlation functions decay faster than lower order
ones. Thus,fT(3>(0, T)= T(2>(7). This allows us to define the
function ¢,

—nfy (0>>7 (39)

$, =2y (2 7) (40)
Y2

with ¢, > ¢,. In other words, the function ¢, overestimates

the true contribution of ¢,.. We see that the value of ¢,

increases with the brightness A. Using the y-factors of a 3D

Gaussian PSF and the deadtime of our detector (74 = 50 ns),

a brightness of ~200 kcps is needed to get a relative devi-
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ation >1%. Such a high brightness is normally not encoun-
tered in FFS experiments. The brightness of all organic dyes
we measured is <200 kcps. For instance, for in vitro exper-
iments, the laser power must be kept low enough to avoid
photobleaching, and we typically measure A <<100 kcps. For
in vivo experiments on fluorescent proteins the brightness A
is usually <10 kcps. Moreover, intrinsic experimental errors
are typically >1%, and it is safe to ignore the effect of ¢, on
the overall dead-time effect. Thus, we approximate the dead-
time-induced relative deviation of Q(7) as

Fom ~ —3N(AT)8 = —3(I)r;. 1)

A useful consequence of Eq. 41 is that the dead-time
correction and the undersampling correction are independent
from one another. In other words, it is possible to first correct
for undersampling and then correct for dead-time effects.
Thus, with this approximation we write Eq. 22 as

Q' (1) = VAT (7)(1 — 3NATS). 42)

We use Eq. 42 to analyze the experimental data. As dis-
cussed earlier, the approximation is valid for most FFS
experiments. Only in the presence of extremely bright par-
ticles, such as quantum dots or complexes with a large
number of fluorophores, is it necessary to check the validity
of the approximation.

Multiple species

In the Theory section we extend Q, analysis from one
species to multiple species. We demonstrated that the dead-
time-affected Q; for multiple species is described by the
same expression valid for a single species, if the brightness
and the number of molecules are replaced by their apparent
parameters. To derive this expression we approximated
Y. ((WZW,)); by Eq. 33. To investigate this approximation
further, we consider the case of a binary mixture of two
species with brightnesses Ay and Ap present at concentra-
tions N and Np. For these conditions the exact expression is

SAWGWo) = yaNaA T3 (0.7) + vsNaA TS50, 7).
(43)

The relative error e, introduced by the approximation is
thus given by

S UWoWal = ¥sNawh oy 12 (0, 7)
o S (WaWa,
I A G VGl Vi,
((r = Df + (7 = Df + 1)

where we introduced the fractional concentration f = Ny /
(Nao+Np) and the brightness ratio r = A5 /Ap of the two
species.

(44)
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The relative error introduced by the approximation only
depends on the brightness ratio and the fractional concen-
tration of both species. Because we are interested in applying
Q. analysis in cells to probe the oligomerization of proteins,
we investigate the relative error of a monomer-dimer and
a monomer-tetramer mixture. The brightness ratio » of the
monomer/dimer system is two and that of the monomer/
tetramer system is four. In Fig. 6 we plot the relative error
introduced by the approximation for the two systems. The
worst case introduces an error of 35% for the monomer/
tetramer sample, and an error of 11% for the monomer/dimer
mixture. It is easy to show that the maximum of the relative
error grows with increasing brightness ratio and reaches
a limiting value of 100%.

With the approximation introduced in Eq. 33 we recover
Eq. 22, if we substitute the molecular brightness and the
number of molecules with their apparent parameters. As we
discussed earlier for typical experimental conditions Eq. 22
is approximated by Eq. 42 with a relative deviation of <1%.
Note that Eq. 42 ignores the term Y ((WZW,));. Thus, in the
case of multiple species the relative error introduced by
approximating » ((W3W,)); using an apparent brightness is
usually less than a 35% bias of a term with a relative
deviation of <1%, and therefore unnoticeable given the
experimental uncertainty of the data. Hence, the expression
for Q; in the presence of multiple species is well ap-
proximated by

0, ~ Vz(AApPT)fT(Z)(T)(l - 63NApp(AAppT))v (45)

which is identical to Eq. 42, if we substitute A and N by their
apparent values.
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FIGURE 6 Relative error of Y ((W3W.)); due to the approximation of Eq.
33 for a binary mixture. The introduction of an apparent brightness leads to
abiased value of Y ((WZW,)), which depends on the brightness ratio and the
fractional concentration. The solid and dashed lines represent the relative
error introduced by a monomer-tetramer and a monomer-dimer mixture as a
function of the fractional concentration of the monomer. We used a bright-
ness ratio of two for the dimer/monomer case and a ratio of four for the
tetramer/monomer example.
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Comparison of Q, and Q,

Q: analysis of dead-time compromised data is much more
stable than (Q, analysis, because the correction factor
required to recover the ideal parameter is much smaller for
Q. than for Qy. To illustrate the difference between both
methods, we consider the effect of small uncertainties in
dead time on the recovered brightness. We determined a dead
time of 74+ = 50ns for our detector with an uncertainty of
*1ns. Let us first generate dead-time-affected values of O,
and Q for a dead time of exactly 7+ = 50 ns as a function of
intensity. We chose a brightness of A = 1000 cps and for
simplicity ignore undersampling effects. Next, we use Eqs.
22 and 24 to determine the brightness from Q; and Qy, but
choose dead times of 49, 50, and 51 ns. This range of dead
times is consistent with the experimental uncertainty. Fig. 7
shows the brightness recovered by Qy analysis as a function
of intensity for the three different dead times. The bright-
nesses match at low intensities, where dead-time affects are
less severe, but clearly start to deviate from one another with
increasing intensity. The brightnesses determined for each
dead time differ from one another by >50% for intensities
over a million cps. Thus, Q analysis is very sensitive to the
exact value of the dead time. For comparison, we graph the
brightnesses recovered by Q. analysis as a function of
intensity for the three different dead times as an inset in Fig.
7. The difference between the brightness values is <1% even
at an intensity of 2 million counts per second. This example
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FIGURE 7 Robustness of Qp versus O, analysis against uncertainties in
the dead-time parameter. Qy is calculated for a brightness A = 1000 cps,
a sampling time 7 = 10 us, and a dead time of 74 = 50ns as a function of
N. Undersampling and afterpulsing effects are not considered here. We
determine the brightness A from Eq. 24 for three different dead times. The
brightness recovered for dead times of 49 ns (dashed line), 50 ns (solid line),
and 51 ns (dotted line) is shown as a function of the intensity (/), where
(I) = AN. An uncertainty of *1 ns leads to an uncertainty of >50% in
the brightness at high intensities. In contrast, repeating the calculation with
the same parameters, but applying Q. analysis leads to an uncertainty of the
brightness of <1%. The inset shows the brightness determined by Q. analysis
for dead times of 49 (dashed line), 50 (solid line), and 51 ns (dotted line).
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shows that Q, is significantly more robust with respect to
dead time than Q. In addition, as shown in Fig. 4 afterpuls-
ing may severely affect Qy, whereas its influence on O, may
be safely ignored in most cases. These advantages of O, over
Qo analysis lead us to abandon Qy analysis in favor of Q.

In vivo applications of Q. analysis

We now demonstrate that brightness analysis by the O,
technique is feasible in living cells. We evaluate the
generalized Q-parameter for 7=7. CV-1 cells were
transiently transfected with the fluorescent marker EGFP.
Transfected cells are identified by using a conventional
fluorescence microscope setup, which subsequently was
switched to two-photon excitation for fluorescence fluctua-
tion experiments. Data were collected with a sampling time
of T =200 us for a total of 30 s. The expression level of
EGFP varies from cell to cell and is conveniently monitored
by the fluorescence intensity, which is proportional to the
protein concentration. By picking cells with different
expression levels, it is possible to probe the concentration
dependence of the molecular brightness. The dead-time-
affected Ot and (k), were calculated from the raw data of
each measured cell. We used Eqs. 37 and 42 to determine the
brightness A and the number of molecules N of EGFP by
correcting for undersampling and dead-time effects. The
protein concentration was determined by ¢ = N/Vpsp as
discussed in Materials and Methods. The diffusion time of
EGFP, which is needed for determining A, was identified as
7p = 0.62ms from the autocorrelation function of the data.
The brightness recovered from Qr analysis of each measured
cell is shown as a function of the protein concentration in
Fig. 8 A. Our experiments cover EGFP concentrations from
200 nM to 5 uM. The molecular brightness of EGFP is
constant throughout the measured concentration range as
expected, because the photophysical properties of the
fluorophore is independent of concentration. The average
brightness of EGFP (solid line in Fig. 8 A) is 890 cps with
amean = SD of 50 cps.

Next, we study the behavior of the ligand-binding domain
RXRLBD of the nuclear receptor RXR. We performed
measurements on CV-1 cells transfected with RXRLBD-
EGFP, which is the ligand-binding domain tagged with the
fluorescent protein EGFP. The first set of measurements was
performed in the absence of the ligand 9-cis-retinoic acid.
Data were taken and analyzed analogous to the EGFP mea-
surements presented above. A diffusion time of 1.3 ms was
measured for RXRLBD-EGFP in the absence of ligand. The
dead time and undersampling corrected brightness of the
receptor is graphed as a function of the EGFP concentration
in Fig. 8 B. The apparent brightness of the protein is not
constant, but increases as a function of protein concentration.
The increase in the apparent molecular brightness indicates
a change in the oligomeric composition of the protein solu-
tion. At low protein concentrations the molecular brightness

Biophysical Journal 89(5) 3531-3547

Sanchez-Andres et al.

1400 4

1200 - A

1000 + u

A (cps)

800 - Ny m

600 T T

102 10° 10*
Concentration (nM)

1800 A o

1600 o

] ° o
1400 - ¢ o o
| @ B

1200 4

A (cps)

o«
1®
1000 1 @
(of

800 ~

600 T T T T T T T T T T
2 3 4 5

Concentration (uM)

o
-

FIGURE 8 (A) Molecular brightness (W) of EGFP in CV-1 cells as
a function of protein concentration. The brightness is determined by Ot
analysis from Eq. 42, where we accounted for dead-time and undersampling
effects. Each data point represents the brightness measured in a different
cell expressing EGFP. The concentration axis shows the total protein
concentration expressed in terms of EGFP monomers. The brightness of
EGFP is concentration independent with an average of ~890 cps (solid line)
and a standard deviation of 50 cps. (B) Apparent brightness of RXRLBD-
EGFP determined by Qr analysis in the absence (O) and presence (@) of the
ligand 9-cis retinoic acid. The concentration axis shows the total protein
concentration expressed in terms of RXRLBD-EGFP monomers. The
apparent brightness increases as a function of protein concentration in the
absence of ligand. Addition of ligand leads to an increase in the apparent
brightness and therefore promotes the formation of homodimers. The solid
line indicates the brightness of monomeric EGFP, whereas the dashed line
indicates the brightness of a homodimer.

of RXRLBD-EGFP is the same as the brightness of EGFP
measured earlier (see Fig. 8 A). The match in brightness
indicates that RXRLBD-EGFP proteins are not associating
with one another. The increase of the apparent brightness
with increasing protein concentration on the other hand
requires the formation of homooligomeric protein com-
plexes. If we assume a simple monomer/dimer equilibrium
for RXRLBD-EGFP, the increase in the brightness is caused
by an increase in the homodimer population of RXRLBD-
EGFP. We expect for the limiting case of purely dimeric
RXRLBD protein complexes an increase of the molecular
brightness by a factor of two compared to the brightness of
EGFP alone. We conclude that the protein has not reached
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a purely dimeric composition in the experimentally acces-
sible concentration range.

We added the ligand 9-cis retinoic acid, which activates
the nuclear receptor RXR, to the cell culture to monitor
changes in the oligomerization state of the receptor upon
activation. Data were taken and analyzed as in the case
without ligand. We obtained in the presence of ligand a
diffusion time of 8 ms for RXRLBD-EGFP. The corrected
apparent brightness is graphed as a function of EGFP
concentration in Fig. 8 B as solid symbols. The apparent
brightness of RXRLBD-EGFP at the lowest concentration
corresponds to a monomeric protein. The apparent molecular
brightness increases with protein concentration and reaches
a limiting value that is twice the brightness of EGFP. This
suggests that RXRLBD forms homodimers and that at high
concentrations all RXRLBD proteins are homodimers. Note
that the apparent brightness in the presence of ligand exceeds
the brightness measured without ligand. In other words, the
addition of ligand promotes the formation of RXRLBD
homodimers.

The results of the in vivo study of RXRLBD in CV-1 cells
are in excellent agreement with previous experiments in COS-
1 cells (5). The main difference lies in the analysis technique
employed in both studies. While the earlier study is based on
PCH analysis, the current study uses Q. analysis. These
experiments serve to demonstrate that O, analysis is a viable
technique for the study of protein interactions in living cells.

DISCUSSION

Mandel’s Q-parameter uses the first two moments of the
photon counts to specify the brightness of a sample. Here, we
extend the definition of Mandel’s Q-parameter by introduc-
ing Eq. 5. As a consequence, the Q-parameter is now a
function of the lag time 7 between photon counts. For 7 = 0
we recover the original definition of the Q-parameter, which
we refer to as Qy to distinguish it from the case 7 > 0. The
simple relationship of Eq. 2 between Qg and the brightness is
only valid in the limit of short sampling times and in the
absence of nonideal detector effects. These conditions are
usually not fulfilled in actual experiments. We previously
described a model that describes the influence of dead time
and afterpulsing on the brightness and Qg, but ignored
sampling time effects. Here we extended the theory by taking
undersampling, dead time, and afterpulsing into account. To
describe the experimental data required the modeling of
dead-time effects to second order in 6. We demonstrated that
the theory successfully describes experimental data and
recovers the brightness of the sample.

We also developed the theory of the generalized
Q-parameter for 7> 0 that takes undersampling, dead time,
and afterpulsing into account. The generalized Q-parameter
for 7> 0 is denoted Q,. We noticed that Q. offers many
advantages over Qg analysis. First, dead time causes much
smaller changes in the value of Q. than in the value of Q.
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Consequently, first-order effects in & are sufficient to
describe dead-time-affected Q;. Second, for brightnesses
typically encountered in FFS experiments, the relative
deviation of Q, introduced by dead time only depends on
the fluorescence intensity, which allowed us to simplify the
model significantly (see Eq. 42). Equation 42 only requires
the calculation of the normalized correlation function fT(r) of
second order, whereas Q analysis requires the calculation of
fT(r> up to the forth order. In contrast to Q., the dead-time-
induced relative deviation of Oy depends on brightness and
increases with decreasing brightness. These facts illustrate
that Q, analysis is significantly more robust than Q analysis
in the presence of dead time as illustrated in Fig. 7.

Third, in contrast to Q analysis the effect of afterpulsing
on Q; is very small and can be safely ignored. Our derivation
of afterpulsing effects on Q, assumes sampling times that are
larger than the timescale of afterpulse generation. For our
detector all afterpulses follow within a few microseconds.
Because our sampling times are 10 us and longer, the
assumption is fulfilled.

In principle Q; can be evaluated for any 7 > 0. Because
our sampling time 7 is finite, only discrete times 7 = nT with
n € N are accessible. We usually determine Q,(T), which
corresponds to the shortest 7 allowed (n = 1). There is no
advantage in using longer times. In fact, the value of Q. (7)
decays rapidly with increasing 7. In other words, the signal
used to determine the brightness is strongest for Q. (7).

The generalization of Mandel’s parameter uses the
correlation between photon counts separated in time by 7
and is therefore related to the second-order autocorrelation
function gi(7) of the fluorescence intensity. Because FCS
theory is based on the intensity / and not the integrated
intensity W, the FCS correlation function has to be deter-
mined in the short sampling time limit. Commercial ac-
quisition systems typically sample with a time resolution of
tens of nanoseconds and provide the user with correlation
functions that are virtually free from undersampling effects.
We, on the other hand, determine Q(T) using much longer
sampling times 7, which typically range from tens of micro-
seconds to milliseconds. Because of the undersampling
effect on O, (T) the relation to the autocorrelation function is
given by

o) = [ w-iatr+na s

Thus, to obtain the generalized Q-parameter by FCS one
needs to evaluate Eq. 46 with the experimental realization of
g1(7). Of course, the experimentally obtained g;(7) is also
affected by dead time and afterpulsing. Methods to correct
for these nonideal effects are available (25-27). However, if
one has access to a record of the detected counts, it is much
more convenient to directly calculate Q,(T) from the photon
counts, as we have done here.

Let us briefly discuss the short sampling time limit of O().
Because no undersampling of the generalized Q-parameter
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occurs, its relationship to the autocorrelation function
simplifies to Q(7) = ()T g1(7). In this limit, g;(7) and O(7)
are proportional to one another. In other words, there is no
advantage of using Q(7) over the autocorrelation function.
Thus, the brightness of a fluorophore can be determined by
fitting the autocorrelation function to a model to determine
the fluctuation amplitude g(0). Care has to be exercised in
determining g(0), because dead time and afterpulsing affect
the correlation function. Because the fluctuation amplitude
of a single species is directly proportional to the number
of molecules in the observation volume, g(0) = v,/N,
the brightness is determined by A = {I)g(0)/vy,. This is the
standard method of determining the brightness from the
autocorrelation function (28).

However, we do not use the short sampling time limit, but
evaluate Q,(T) for long sampling times for two reasons.
First, as we discussed earlier we essentially get rid of
afterpulsing effects by choosing sampling times >10 us. In
fact, undersampling provides a general and convenient
way to effectively ‘‘integrate out’’ any fast process. If the
characteristic timescale of fluctuations for a given physical
process is 7¢, when choosing a sampling time 7 >> 7¢ leads
to a small amplitude of the photon count correlation
(Ak(t)Ak(t+T)), because the signal is essentially uncorre-
lated for a lag time of T. As a consequence the value of
0, (T) is nearly unaffected by a physical process if T > 7c.
“Integrating out’’ fast process simplifies the analysis of
0O.(T). Second, increasing the sampling time leads to
significant improvements in the signal/noise ratio (SNR) of
Q. (T). The number of photons detected from a single mol-
ecule per sampling time 7 is denoted as ¢. This parameter is
important because the SNR of correlation functions im-
proves with increasing ¢ (27,29). Choosing longer sampling
times increases the value of ¢. In the short sampling time
limit ¢ is proportional to T (Eq. 1). The relationship between
¢ and T for arbitrary sampling times is reported elsewhere
(4,30). This improvement of the SNR is especially crucial for
cellular applications, where low excitation power and the
intrinsic properties of fluorescent proteins lead to much
smaller brightness values than typically encountered for in
vitro measurements. We found that analyzing intracellular
brightness by evaluating g(0) from a fit of the autocorrelation
function is indeed considerably less robust than Q.(7T)
analysis. Q,(T) analysis on the other hand is sufficiently
robust to allow the direct determination of the brightness
according to Egs. 5 and 42. No fit is performed, because
0. (T) is based on a single calculated value, and the sampling
time can be chosen at will so as to optimize the signal/noise.
The sampling time dependence of the SNR of the second
photon count moment was recently discussed (31).

The Q-parameter has an advantage over brightness,
because it is directly determined from experimental values.
Thus, Mandel’s Q-parameter is in contrast to the brightness A
model independent. By choosing a model for the PSF the Q-
parameter is related to the brightness by the factor vy,
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according to Eq. 2. The Q-parameter is determined from the
first two moments of the photon counts. We introduced
undersampling to increase its SNR. In addition, we sub-
stituted the second-order moment of the photon counts by its
correlation to significantly decrease the influence of nonideal
detector effects on the value of the Q-parameter. Thus, Q. (T)
analysis combines elements of moment and FCS analysis.

We use a 3DG PSF to describe the data. To model Q.
rec%uires according to Eq. 42 the second-order function
T(z (7). The evaluation of féz)(r) for a 3DG PSF requires
numerical integration of Eq. 27 after inserting the correlation
function f3%>6(7') (see Eq. 26). The squared beam waist ratio
of our instrument is around 25. The correlation functions for
a 3DG and a 2DG model (f3%)6(7) and ]"2%)(}(7)) are very
similar at early times, but differ slightly in their tail. Thus
the integrated function fT<?2)DG(T) for 2DG provides a good
approximation for f;%,(7) as long as undersampling is not
too severe and T = T. We confirmed numerically that for
undersampling factors of less than four the 2DG model
provides a good approximation. The advantage of using
fz(é)G‘T(T) is that numerical integration is not needed, because
Eq. 28 provides an analytical expression. As mentioned
earlier the diffusion time 7p, which is required for the eval-
uation of f2(]23)GT(7), is determined by fitting the autocorre-
lation function of the data. It is best to also employ a 2DG
correlation function for determining the diffusion time, to be
consistent.

In the presence of multiple species Q. analysis uses the
same equation valid for a single species and simply returns
the apparent brightness of the mixture. There is a small bias
term, which as we discussed is much smaller than the
experimental error, and is safely ignored. We previously
used PCH analysis to determine the brightness (3,32).
Models that account for dead time and afterpulsing have
been recently introduced as well (14). PCH has an advant-
age over Q, analysis, because it allows the resolution of the
brightnesses of a mixture, whereas Q, analysis only returns
the apparent brightness of the mixture without resolving
its components. However, the direct resolution of species
requires an excellent signal/noise ratio of the data. The
statistics for FFS experiments in cells is relatively poor,
because of the low brightness of fluorescent proteins and the
high fluorophore concentrations encountered. Consequently,
PCH fails to resolve mixtures directly and instead only
returns the apparent brightness of the mixture (5). Thus,
with respect to experiments in cells Q. analysis appears as
powerful as PCH analysis. An advantage of O, analysis is
that it is relatively straightforward to implement, whereas
PCH analysis in the presence of dead time and afterpulsing
requires more sophisticated algorithms. In addition, no after-
pulsing correction is required for Q,, whereas afterpulsing
needs to be accounted for in PCH. Thus, Q, is a convenient
and robust technique that replaces PCH for in vivo titration
studies where the signal/noise ratio is too low for PCH to
resolve species directly.
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Finally, we applied QO analysis to measure the brightness of
EGFP in cells as a function of protein concentration and
observed the change in brightness of RXRLBD in CV-1 cells,
which indicates the presence of homodimerization of the
receptor. These experiments, which are similar to earlier
studies using the PCH technique, demonstrate that Q.
analysis is suitable for the study of protein-protein inter-
actions in cells.

SUMMARY

Mandel’s Q-parameter uses photon count moments to
determine the brightness of a fluorophore. We define a
generalized form of the Q-parameter Q. that introduces
photon count correlations and explicitly depends on the
correlation time 7. For 7 =0 we recover the original
definition of Mandel’s Q-parameter Qy. We develop and
experimentally verify models for Qp and Q; that take dead
time, afterpulsing, and sampling time effects into account.
There are a number of advantages of Q, over the traditional
parameter Qy. The effect of dead time on Q; is significantly
less than on Qg, which leads to a rather robust and simple
dead-time analysis of Q. The effect of afterpulsing on Q, can
be safely ignored, whereas it has to be taken explicitly into
account for Q analysis. If a mixture of species is present, O,
determines the apparent brightness of the mixture and
provides an alternative to PCH if the signal/noise ratio of
the experiment is too low to resolve species by PCH. Such
conditions are frequently encountered in cellular FFS experi-
ments. Here, O, analysis provides an attractive alternative to
PCH analysis, because it is easy to implement, requires no
afterpulsing correction, and is quite robust with respect to
dead-time effects.

APPENDIX A

Relations between cumulants and raw moments are conveniently calculated
using the software MathStatica (Mathstatica, Sydney, Australia),

WYy = (W)
(W W)y = (WoW,y — (WY
UWWyy = (WaW.y — (WY 2AWW,) + (WY) — (W), (47)

For a single molecule diffusing through a volume V, the expressions for the
integrated intensity moments is given by:

{+T t+T t+T
(W W, .. W) / dr, / dn, .. / de{I(E)I(L) - .

t+T
x/ dtf? (6, ... 1) =
tr

For a stationary process the autocorrelation function only depends on
time differences. As a result, we write f0)(¢),12,...,4) =f® (5, ..., 7),
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and fT('j (t1yt2y oo sty :fT(r)(Tz ,Tr), with 7, = £ — #;_1. The integrated
intensity cumulant for a single molecule is given by Muller (4)

fu

m
m22v

(W W, WY =W W, .. W)Y (49)

where the exact form of the functions f;, is not of interest here. The cumulant
for a sample with Ny, molecules in volume V' is

<<W11Wt2 e Wt,» = Nlolal<<Wt1WI e er»(l)
+ Nioga Z Ve = 'Yr()\T)rCVPSF
m=2
Aty t)+c Y f"‘l, (50)
m>2

where we introduced the concentration of the sample, ¢ = Nigwi/V. In
fluorescence fluctuation experiments we measure fluorescence emerging
from an open excitation volume, which is much smaller than the total sample
volume V. We express the assumption of a very large surrounding volume,
by taking the limit 1/V —0. Note, that the concentration of the sample,
which is an intensive quantity, is unchanged. The integrated intensity
cumulant is now given by

{W W, o W = v AT) Vese £ (11,1, ..., 1). (51)
It is customary in fluorescence fluctuation spectroscopy to express the
concentration ¢ in terms of the average number of molecules N in the PSF
volume, N = ¢Vpgg. This allows us to write the integrated intensity cumulant
in its final form (see Eq. 21).

APPENDIX B

We derive an expression for Qj to second order of 8§ using the same steps
used to derive an expression for Q. Taylor expansion of P’ (k|W) to second
order in 8 yields

P’ (k|W) ~ Poi(k,W) - (1 + 8[kW — k(k —1)] +—2
X[EW? — kW (2k° =2k + 1)+ k(k — 1)3]>, (52)

and the corresponding first two dead-time-affected moments in k are related
to ideal moments of W by

R = (W) — 308 + 2 5° (W) + 200))
W) = Wy + (W% = 3(3W") + AW

+ %82(3<W2) + 14W°) + 6(WH). (53)

VPSF u+T 0+T
(), = y,(AT) 2 da/ ...

VPSF

v, (AT)" —fT (ti,tay .. 1), (48)

We convert the ordinary moments of W into integrated intensity
cumulants, using the transformation:
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(W) = (W)

(W) = (AW?) — (W)

(W) = (AW?) — 3(AW?) + 2(W)

{WHY = (AW*) — 6(AW) — 3(AW2>2 + 11{AW?) — 6(W).
(54)

Now, combining Eq. 54 with Eq. 51, we write the moments as:
(W) =ATN
(W?) = (AT)*(v,Nf(0) + N?)
(W = (AT)* (v:Nf(0,0) + 3y,N7 (0) + NY)
(W') = (AT) (anT“‘( 0,0) +4v3NfT (0,0)
+ 3[y,Nf, (0)] + 6N° Volp (0) +N* ). (55)

0
0,
Finally, inserting Eqs. 53 and 54 into Eq. 10, we arrive at Eq. 25.

APPENDIX C

We make the following approximations: i), all of the afterpulses detected
during one sampling time interval are caused by real photoelectron events of
the same sampling period. This is true when the sampling time 7 is larger
than the characteristic decay time of the afterpulse autocorrelation function;
i), every single real event can only trigger one afterpulse at most. The total
number of events & detected during a sampling time interval is

ki =& +k, (56)

where k; denotes the number of real events and & denotes the afterpulses.
The correlation (kjk7) is given by

(koky) = Ckok:) +(&0€.) + 2koé ), (57

where we used (ko&,) = (€ok.). The probability to detect £ afterpulses
during the sampling time T can be related to the integrated intensity prob-
ability distribution. First we note that

P(¢IW) = ZgP(&Ik) Poi(k; W). (58)

Under assumptions i and ii, the conditional probability to detect &
afterpulses in the presence of k real events is Campbell (24)

]
P(&lk) = Ek—g)

where P, is the probability that a photon event produces an afterpulse.
Hence, we write

P(&) = / AWP(W)P(EW)

AP =P (59)

_ / aw | S P(£k)Poi(k; W) | POW). (60

k=¢

We use this result to calculate the mean of the afterpulse distribution:

©=3ere) = Jawew) £ 3 eP(ERPoili: ).
(61)

Combining Egs. 59 and 61, we find
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(&) = PW). (62)

We extend the same procedure to bivariate moments, starting from the
conditional probability to detect &, afterpulses in one sampling time period
and &, in another sampling time period a time 7 apart, given that the inte-
grated intensity during the two sampling time periods are Wy and W,

P(&|Wo; £ [W,) = P(&|Wo)P (& [W;)
= ZZP (&)ko)P (&, |k, )Poi(ko; W) Poi(k.; W), (63)

where ko and k. are the number of photoelectrons detected in each sampling
time period. The joint probability P(&,,&,) is given by

an // dWOdW P(§0|W0a§ |W) (64)

Combining Egs. 63 and 64 with Eq. 59, we find

(6of,) = 22505 P(&,¢,) =

é &

PW,W.,). (65)

A similar strategy is used to express (¢pk;) as moments of the integrated
intensity. We consider the probability of detecting &, afterpulses in one
sampling period and &, photons in a sampling period a time T apart,

P(§O7k-r) = Z P k07

ko=£o

// dWOdWTp(W(),WT) Z POl(ko,Wo)
ko=¢o

P(&lko)

XPoi(k., W, )p(&lko) | - (66)

By substituting Eq. 59 into Eq. 66 we find

<§Ok7> = i i fokrP(gm kT)

fo &

= P (W, W), (67)

and as already discussed in Eq. 15, in absence of dead time
<k0k7> = <W0W’T> (68)

Because P, < 1, we only keep terms of first order in P,. Equation 57
becomes

(kyky) == (1+ 2P, )(WoW-). (69)
The afterpulse affected average (k*) is determined from Egs. 56 and 62
k) = (1+P)(W). (70)

Hence, keeping only first-order terms in P,, the afterpulse affected
Q-function is finally written as

R Y (WaWy — (WY
Ol =" T W
— 0(r)(1+P)). an

(1+P,)

We also derive, following the same procedure as used above, the relative
deviation introduced by afterpulsing on Qy for arbitrary sampling times,
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0o 0o o YA TS (0)

2, — Qo

(72)

In the limit of short sampling times, ﬁz) (0) & 1, and we recover the result
found by Hillesheim and Mueller (14).
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