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In this paper we define the notion of a gap in an arbitrary digital binary object S in a digital
space of arbitrary dimension. Then we obtain an explicit formula for the number of gaps
in S of maximal dimension, derive combinatorial relations for digital curves, and discuss
possible applications to image analysis of digital surfaces (in particular planes) and curves.
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1. Introduction

Informally speaking, gap2 is a location in a digital object (that is any finite set of pixels/voxels in two or three dimensions)
through which a ‘‘discrete path’’ can penetrate. Theoretical studies of objects of this sort are related to combinatorial
geometry and topology, but are also of interest in several other disciplines, such as digital geometry, combinatorial image
analysis, and theory of computer graphics. A classical result of combinatorial topology is the famousDescartes–Euler formula
v − e + f = 2 that relates the number of vertices (v), edges (e), and facets (f ) of a polytope. Other related well-known
concepts are the Euler–Poincaré characteristic of an object and its Betti numbers. For various applications of these to image
analysis and digital geometry, see Chapters 4 and 6 of [25]. Gaps are considered in rendering pixelized/voxelized scenes,
which is done by casting digital rays from the image to the scene [18,23]. This is particularly interesting when dealing with
digital curves or surfaces. Assume, for example, that an unknown closed continuous surface Γ has been digitized, e.g., by a
tomography scanner, and a digital surface S is obtained. Information about the gaps of S is used when it is traced through
digital rays (e.g., for visualization or illumination purposes), since the penetration of a ray through the surface causes a
false hole in it. Knowledge about the type of gaps of S may predetermine the usage of an appropriate type of digital rays for
tracing the surface in order to avoidwrong conclusions about the topology of the original continuous surfaceΓ . Then, for the
purposes of surface reconstruction, one will be able to faithfully model the geometry of the original three-dimensional set.
This is of importance for three-dimensional imaging inmedicine (e.g., organ and tumormeasurements in CT images, beating
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heart, or lung simulations), bioinformatics (e.g., protein binding simulations), robotics (e.g.,motion planning), or engineering
(e.g., finite element stress simulations). In fact, a small hole in a heart surface created by imperfections of the synthetic
representation, while possibly insignificant (or simply unnoticeable) for visualization, renders the synthetic surface useless
for blood flow simulation. Also note that digital picture gapfreeness appears to be equivalent to the notion of well-
composedness of a set of pixels/voxels proposed by Latecki, Eckhardt, and Rosenfeld [28]. This last paper demonstrates the
advantages of using well-composed (gapfree) sets in image analysis. Therefore, it is important to have sound mathematical
definitions and results about the gaps in a digital object, that can facilitate achieving correctness of key topological properties
of synthetic surfaces.
It is also useful to have an estimation for the number of gaps (if any) in a digital object, possibly as a function of other

object parameters. Such a kind of informationmay help us to better understand the topological structure of a binary picture
and is of potential interest in property-based image analysis. Of special interest are the gaps of maximal dimension (to be
defined later) since they can be penetrated by a digital ray of any connectivity. Moreover, estimations of the number of
such gaps may be useful for evaluating the performance of some polyhedra decomposition algorithms (see comments in
Section 6). Other arguments are provided in Section 4.1.
Studies about gaps and tunnels in digital lines, planes, and polyhedral surfaces are available, e.g., in [1–3,5–8,11,12]. A

recent work [15] provides the formula g = v− 2(p+ c− h)+ b, where g is the number of gaps, v the number of vertices, p
the number of pixels, h the number of holes, c the number of connected components, and b the number of 2×2 grid squares
in a two-dimensional digital picture. For another similar result we refer to [16].
The notion of a gap has been used in higher dimensions, too [4]. However, rigorous definitions and results that apply to

an arbitrary binary object were missing. Approaches to estimating the number of gaps have been, overall, unclear.
Formula for the number of gaps of dimension n− 2 was recently obtained in [17]. Here we extend the results of this last

work and exhibit relations to other studies, such as image analysis of surfaces and theory of digital planes.
In the next sectionwe recall some basic notions and notations of digital geometry and topology. In Section 3we introduce

the concepts of tandems, gaps, and brims that are used to obtain the main results. In Section 4.2 we obtain an explicit
formula for the number of (n − 2)-gaps of a binary object in a digital space of arbitrary dimension. We also demonstrate
why knowledge about (n − 2)-gaps is important in the case of digital surfaces and planes and obtain some results about
gaps in digital planes. In Section 5 we obtain combinatorial relations for digital curves. We conclude with some remarks in
Section 6.

2. Basic notions

In this section we introduce some basic notions to be used in what follows. We conform to the terminology used in [25]
(see also [26]).
All considerations take place in the grid cell model that consists of the grid cells of Zn, together with the related topology.

In that model we represent n-cells as hyper-cubes (sometimes called hyper-voxels, or voxels, for short). Their edges and
vertices are 1-cells and 0-cells, respectively. For every i = 0, 1, . . . , n, the set of all cells of dimension i (or i-cells) is denoted
by C(i)n . Further, we define the space Cn =

⋃n
k=0 C(i)n .

We say that two n-cells e, e′ are k-adjacent for 0 ≤ k ≤ n− 1 if they share a k-cell. Two n-cells are strictly k-adjacent if
they are k-adjacent but not (k+ 1)-adjacent. The n-cells that are k-adjacent to a given n-cell c constitute its k-neighborhood
and are called k-neighbors of c.
One can consider the grid cell model as an incidence structure, i.e., as a triple (Cn, I, dim), where I is an incidence relation

onCn that is reflexive and symmetric and dim is a function defined onCn and into the set {0, 1, . . . , n}. For example, a 2-cell
c is incident with the 1-cells corresponding to its sides as well as with the 0-cells corresponding to its vertices. These 1- and
0-cells are also incident to c . The grid cell model can also be considered as an abstract cell complex (Cn, <, dim) (see [27]),
where< is a bounding relation, that is antisymmetric, irreflexive, and transitive, and such that for every e, e′ ∈ Cn, e < e′ if
and only if eIe′ and dim(e) < dim(e′). Relation< is a partial order on Cn. The corresponding order topology τ(<) is called
the grid cell topology.3In the rest of the paper, we will assume that the abstract cell complex (Cn, <, dim) is equipped with
the topology τ(<). Then, for any subset A of Cn, its boundary ∂(A) is defined as the set of all points x of Cn such that every
open neighborhood of xmeets A andCn \A, while its interior int(A) is the set of all points x ofCn such that there exists some
open neighborhood of x contained in A. The points of int(A) are the internal points of A. Given a digital object S, note that its
closure S̄ is naturally a subcomplex of Cn. In what follows, we will denote by Sk the set of k-cells of S̄, i.e. Sk = S̄ ∩ C(k)n . In
particular, we have Sn = S̄ ∩ C(n)n = S.
A digital object S ⊂ Cn is a finite set of n-cells. A k-path (0 ≤ k ≤ n − 1) in S is a sequence of voxels from S such that

every two consecutive voxels on the path are k-adjacent. Two voxels of a digital object S are k-connected (in S) iff there is a
k-path in S between them. A subset G of S is k-connected iff there is a k-path connecting any two voxels of G. The maximal
(by inclusion) k-connected subsets of a digital object S are called k-components of S. Components are nonempty, and distinct
k-components are disjoint. For a given subset M of a digital object D, if D \ M is not m-connected then the set M is said to
bem-separating in D.

3 In that topology the open sets are precisely the sets U ⊆ Cn , such that, for every u ∈ U and every v ∈ Cn with u < v, we have v ∈ U .
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Fig. 1. Illustration to some notions in three dimensions. (a) Top: 23-block; Bottom: 2211-block. (b) Top: 0-tandem; Bottom: 1-tandem. (c) Top: configuration
exposing a 0-gap (in two different orientations); Bottom: configuration exposing a 1-gap.

LetM be anm-separating digital object inD such thatD\M has exactly twom-components. Anm-simple cell (orm-simple
point) ofM (with respect to D) is an n-cell c such thatM \ {c} is stillm-separating in D. Anm-separating digital object in D
ism-minimal (orm-irreducible) if it does not contain anym-simple cell (with respect to D).
Let Nα(c) be the unit α-ball (also called the α-neighborhood of c) with center c , consisting of all α-neighbors of c.

Furthermore, let Aα(c) = Nα(c) \ {c} be the α-adjacency set of c. Mylopoulos and Pavlidis [29] proposed the following
recursive definition of dimension of a (finite or infinite) set of n-cells Swith respect to an adjacency relation Aα .4 Anonempty
set D ⊆ C(n)n is called totally α-disconnected iff Aα(x) ∩ D = ∅ for any x ∈ D (i.e., there is no pair of cells c, c ′ ∈ D
such that c 6= c ′ and {c, c ′} is α-connected). D ⊆ C(n)n is called linearly α-connected whenever |Aα(x) ∩ D| ≤ 2 for all
x ∈ D and |Aα(x) ∩ D| > 0 for at least one x ∈ D. Further, let Bα(c) be the union of Nα(c) with all n-cells c ′ for which
there exist c1, c2 ∈ Nα(c) such that a shortest α-path from c1 to c2 not passing through c passes through c ′. (For example,
B1(c) = B0(c) = N0(c) for n = 2, and B2(c) = B1(c) = N1(c), B0(c) = N0(c) for n = 3.) Denote B∗α(c) = Bα(c) \ {c}. Now
let D be a digital object in C(n)n and Aα an adjacency relation on C(n)n . Then the (discrete) dimension dimα(D) of D is defined
as follows:

(1) dimα(D) = −1 iff D = ∅;
(2) dimα(D) = 0 iff D is a nonempty, totally α-disconnected set;
(3) dimα(D) = 1 if D is linearly α-connected;
(4) dimα(D) = maxc∈S dimα(B∗α(c) ∩ D)+ 1 otherwise.

3. Tandems, gaps, and brims

In this section we introduce the notions of tandem, gap, and brim of arbitrary dimension. These notions, that were first
introduced in [17], will be instrumental in obtaining our main results.
A 2× · · · × 2︸ ︷︷ ︸

k

× 1× · · · × 1︸ ︷︷ ︸
n−k

grid parallelepiped in Cn will be called 2k1n−k-block (0 ≤ k ≤ n). In particular, any voxel is

a 1n-block. See Fig. 1a for illustrations.
Now we are able to give the following definition.5

Definition 1. A pair tk = (v1, v2) of two strictly k-adjacent voxels v1 and v2, for 0 ≤ k ≤ n− 1, is called a k-tandem. Then
the complement of tk w.r.t. a 2n−k1k-block, for 0 ≤ k ≤ n− 2, determines a k-gap of S.
A k-gap (0 ≤ k ≤ n− 3) that is not a (k+ 1)-gap is called a proper k-gap.

Remark 2. Technically, the complement of an (n− 1)-tandem to a 211n−1-block can be considered as defining an (n− 1)-
gap. In classic combinatorial topology these are called ‘‘tunnels’’, or sometimes also ‘‘holes’’ (see [25]). The fact is that digital
geometers have not reached an agreement so far on the terminology concerning ‘‘gaps’’ and ‘‘tunnels’’. To some authors, k-
gaps (0 ≤ k ≤ n−1) are better called k-tunnels. To others, using the word ‘‘tunnel’’ (that had a specific topological meaning

4 Formally, Aα can be considered as a relation over S defined as follows: Aα ⊆ S × S, where for c1, c2 ∈ S, (c1, c2) ∈ Aα if and only if c1 ∈ Aα(c2) (then
c2 ∈ Aα(c1) also).
5 Usually, gaps are defined through separability as follows: Let a digital objectM bem-separating but not (m− 1)-separating in a digital object D. Then
M is said to have k-gaps for any k < m. A digital object without m-gaps is called m-gapfree. See Fig. 5. Our technical definition of a gap seems to better fit
the considerations that follow.
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a b

Fig. 2. (a) Possible 1-brims in two dimensions. (b) Possible 2-brims in three dimensions.

for a long time) for what they call ‘‘gap’’ is unacceptable. More specifically, to these last researchers mixing gaps (that have
dimension 0 ≤ k ≤ n− 2) with tunnels (that are (n− 1)-dimensional) is not a good idea because of the above-mentioned
historical reasons. Agreement on this issue is definitely desirable. Here we do not take side since it seems irrelevant to the
purpose of the present paper. Anyway, we have decided to use the word ‘‘k-gap’’ instead of ‘‘k-tunnel’’ for 0 ≤ k ≤ n − 2
and to use the word ‘‘tunnel’’ instead of ‘‘(n− 1)-gap’’.

There are n − 1 types of gaps: 0, 1, 2, . . . , and (n − 2)-gaps. Given a digital object S, the number of its tandems and
gaps will be denoted by b0, b1, . . . , bn−1 and g0, g1, . . . , gn−2, respectively. Fig. 1b and c illustrates tandems and gaps in
dimension three.
In what follows we will also use the following technical notion.

Definition 3. Let c ∈ ∂(Sk−1) for some k (1 ≤ k ≤ n) and let bk(c) be the set of elements of ∂(Sk) incident to it. Then the
pair brk(c) = (c, bk(c)) is called a k-brim of S. We will say that brk(c) is hinged on c.

Basically, k-brims of a digital object delineate its ‘‘k-dimensional’’ boundary. A set of voxels in a digital object will be
called configuration. Fig. 2 displays possible configurations of pixels/voxels that expose 1-brims in C2 and 2-brims in C3
(note that there is one-to-one correspondence between both). We remark that there are 19 distinct configurations of voxels
that expose 1-brims in C3.

4. (n − 2)-gaps in binary objects

4.1. Why (n− 2)-gaps are important?

In this section we provide some evidence for the importance of (n − 2)-gaps in binary objects. We also propose a
generalization of the notion of gap, which will be further discussed in Section 4.3 in the context of digital planes.

4.1.1. Digital surfaces
Because of their relevance to practical problems, digital surfaces have beenwidely studied over the years (see [14] and the

bibliography therein). A recent paper [14] provides the first definition of a digital surface involving the notion of dimension
in digital spaces, with the explicit goal tomake the notions of a digital surface/curve compatiblewith corresponding classical
definitions in continuous topology. On this basis, classification of digital surfaces was obtained with respect to the type of
gaps they possess. In order to make the paper self-contained and to be able to make meaningful comments and conclusions
in view of the title of Section 4.1, we briefly recall the definition from [14]6 (further details and results are available therein).
The first step is defining a one-dimensional digital manifold, i.e., a simple digital curve. The latter admits various

equivalent definitions [13], one of which is the following. A simple digital α-curve is a set γ = {c1, c2, . . . , cl} of voxels
that satisfy the following two axioms: (A1) ci is α-adjacent to cj iff i = j± 1(modulo l), and (B1) γ is one-dimensional with
respect to α-adjacency. Then a digital manifold is recursively defined as follows:

(i) M is a one-dimensional (n− 1)-manifold in C(n)n if it is an (n− 1)-curve in C(n)n . For 2 ≤ k ≤ n− 1,M is a k-dimensional
(n − 1)-manifold in C(n)n if: (1) M is (n − 1)-connected (or, equivalently, M consists of a single (n − 1)-component);
(2) for any x ∈ M , the set A0(x) ∩M is a (k− 1)-dimensional (n− 1)-manifold in C(n)n .

6 The definition applies to digital analogs of hole-free hypersurfaces, i.e., ones without tunnels ((n− 1)-gaps). In fact, in the framework of the approach
of [14], a hypersurface with tunnels can be an (n− 2)-dimensional set of n-cells (see Fig. 3 (left)), which would not be in conformity with the continuous
case.
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Fig. 3. Left: this digital object has tunnels and is one-dimensional with respect to 2-adjacency. Middle (Right): A 1-surface (2-surface) on which three
sample voxels are emphasized (in dark gray), together with the 1-curves (2-curves) adjacent to them (in light gray).

Fig. 4. Portion of a naive arithmetic plane (left) and a standard arithmetic plane (right).

(ii) M is a one-dimensional α-manifold (0 ≤ α ≤ n− 2) in C(n)n ifM is an α-curve in C(n)n .M is a k-dimensional α-manifold
(0 ≤ k ≤ n− 1, 0 ≤ α ≤ n− 2) in C(n)n if: (1)M is α-connected (or, equivalently,M consists of a single α-component);
(2) for any x ∈ M the set A0(x) ∩ M is a (k − 1)-dimensional α-manifold in C(n)n but is not a (k − 1)-dimensional
(α + 1)-manifold in C(n)n . (Such an α-manifold is also called proper.)

In the particular case when M is an (n − 1)-dimensional α-manifold in C(n)n for α = n − 2 or n − 1, we say that M is a
(closed) digital α-hypersurface. See Fig. 3 (middle and right) for illustrations of 1- and 2-surfaces. It has been shown in [14]
that digital hypersurfaces admit a classification in which (n− 2)-gaps play a special role:
There are two and only two basic types of α-hypersurfaces: one for α = n− 1 and one for α = n− 2:
For α = n − 2, a hypersurface S has (n − 2)-gaps which appear on the (n − 2)-manifolds that build it and, possibly,

between adjacent pairs7 of such (n− 2)-manifolds.
For α = n− 1, the hypersurface S is gapfree.
Moreover, an (n−2)-surface is (n−1)-gapfree and (n−1)-minimal, while an (n−1)-surface is 0-gapfree and 0-minimal.
Thus, knowing the type of a given digital surface, one can have correct expectations about the result of tracing the surface

by digital rays of a certain type. If the surface type is unknown, then information about the surface gaps is needed. If in
particular it is known that gn−2 = 0, the surface can be traced by (n − 2)-connected digital rays with no danger for loss of
information [18,23].

4.1.2. Gaps and cracks
For the sake of clarity, we restrict ourselves to the practically important case of digital surfaces in three dimensions. Let

S be an (n− 2)-surface satisfying the definition of Section 4.1.1 and g an (n− 2)-gap of S (i.e., a 1-gap). Geometrically, g can
be regarded as a segment on the boundary of S through which the gap occurs. We will call that segment the support of gap
g and denote it by s(g). See Fig. 1c (bottom).
Now let g ′ and g ′′ be two gaps of S and s(g ′) and s(g ′′) their respective supports. If the segments s(g ′) and s(g ′′) are

incident, then their union represents a ‘‘larger gap’’ that passes through s(g ′)∪ s(g ′′). Obviously, starting from any particular
gap, an agglomeration process can be performed until a maximal (non-extendable) gap is obtained. We will call such a gap
a crack. The union of all cracks forms the gap skeleton for a digital surface. (See Figs. 3 (right), and 4 (left)).
Clearly, the above notions extend to arbitrary digital objects. It is not hard to realize that if S is a closed digital 1-surface

in C3 (in the sense of the definition above), the gap skeleton can be represented by a planar graph. The gap skeleton and its
graphmay provide useful information about the structure of the surface, in particular about its 2-connected components. For
example, the digital surface in Fig. 3 (right) has only one crack (whose edges form a parallelepiped). That crack constitutes
the gap skeleton of the surface. It partitions the surface into six 2-connected components. Cracks in digital planes will be

7 Actually, two such manifolds, called ‘‘adjacent’’, may have both adjacent and common n-cells.
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discussed in Section 4.3. Note that the structure of a set of 0-gaps in a digital surface is as that of a set of isolated points
where the 0-gaps are located (remember Fig. 1c, top), i.e., in this case the notions of crack and gap skeleton do not admit a
reasonable counterpart.

4.1.3. Polyhedron decomposition
Knowledge of the number of gaps of maximal dimension can also be applied to the well-known polyhedron

decomposition problem [21,22], that is to partition a given non-convex polyhedron into as small as possible number of
convex polytopes. Specifically, let P be the rectilinear polyhedron defined as a union of a set of voxels of C3. The fact is
that all bounds on the number of convex polytopes obtained by decomposition algorithms, as well as the computational
complexity of these algorithms, are in terms of the number r of ‘‘notches’’ of P , that are locations causing non-convexity.8 It
is not hard to see that the number of gaps in the discrete surface constituted by the boundary voxels of P is an upper bound
for r . A more careful study of this point is seen as a further task.

4.2. Formula for the number of (n− 2)-gaps

For a given digital object S ⊂ Cn, let si = |Si|, 0 ≤ k ≤ n. In this section we prove the following theorem.

Theorem 4. For a given digital object S ⊂ Cn,

gn−2 = −2n(n− 1)sn + 2(n− 1)sn−1 − sn−2 + b, (1)

where b is the number of 221n−2-blocks of S.

Proof. For any c ∈ Sk−1, 1 ≤ k ≤ n− 1, we define

Ik(c) = {c ′ ∈ Sk : c is incident with c ′}.

We also define

int(Sk−1) = {c ∈ Sk−1 : c ∈ int(S)}
∂(Sk−1) = {c ∈ Sk−1 : c ∈ ∂(S)}
∂(Sk) = {c ∈ Sk : c ∈ ∂(S)}.

It is easy to see that a (k− 1)-cell belongs to int(Sk−1) iff it is incident with 2n−(k−1) n-cells of S. Otherwise, it belongs to the
boundary of S.
For c ∈ Sn−1 we can consider In(c) = {c ′ ∈ Sn : c is incident with c ′}. The possible values for |In(c)| are 1 and 2. More

precisely, we have

int(Sn−1) = {c ∈ Sn−1 : In−1(c) = 2},
∂(Sn−1) = {c ∈ Sn−1 : In−1(c) = 1},

and so

Sn−1 = int(Sn−1) ∪ ∂(Sn−1).

Let us denote sintn−1 = |int(Sn−1)| and s
∂
n−1 = |∂(Sn−1)|. Then sn−1 = s

int
n−1 + s

∂
n−1. Since every n-cell of S is incident with

2n (n− 1)-cells from Sn−1, we obtain

2n|S| = s∂n−1 + 2s
int
n−1.

From here we get

sintn−1 = nsn −
s∂n−1
2
.

Next we consider incidence relations between elements of ∂(Sn−1) and Sn−2. For any c ∈ Sn−2 we consider the brim
hinged on c:

brn−1(c) = {c ′ ∈ ∂(Sn−1) : c is incident with c ′}.

The possible values for |brn−1(c)| are 0, 2, and 4. This partitions Sn−2 as follows:

Sn−2 = S0n−2 ∪ S
2
n−2 ∪ S

4
n−2, (2)

8 Notch (or reflex edge) is an edge of a polyhedron where the inner dihedral angle subtended by two incident facets is greater than 180 degrees.
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where S in−2 = {c ∈ Sn−2 : |brn−1(c)| = i}, for i = 0, 2, 4. If we denote s̄in−2 = |S
i
n−2|, i = 0, 2, 4, we get

sn−2 = s̄0n−2 + s̄
2
n−2 + s̄

4
n−2. From here, we obtain s̄

2
n−2 = sn−2 − s̄

0
n−2 − s̄

4
n−2.

Every cell x ∈ S∂n−1 is incident with 2(n− 1) cells y ∈ Sn−2. Then it follows that

2(n− 1)s∂n−1 = 4s̄
4
n−2 + 2s̄

2
n−2 = 4s̄

4
n−2 + 2(sn−2 − s̄

0
n−2 − s̄

4
n−2)

= 2s̄4n−2 + 2sn−2 − 2s̄
0
n−2,

from where we obtain

s∂n−1 =
s̄4n−2 + sn−2 − s̄

0
n−2

n− 1
.

Then

sn−1 = sintn−1 + s
∂
n−1 = nsn −

s∂n−1
2
+ s∂n−1 = nsn +

s∂n−1
2
,

i.e.,

sn−1 = nsn +
s̄4n−2 + sn−2 − s̄

0
n−2

2(n− 1)
. (3)

Thus

2(n− 1)sn−1 = 2n(n− 1)sn + s̄4n−2 + sn−2 − s̄
0
n−2,

and

s̄4n−2 = −2n(n− 1)sn + 2(n− 1)sn−1 − sn−2 + s̄
0
n−2.

We also have the following fact:
For any n ≥ 2, the sets of (n− 2)-gaps and (n− 2)-tandems are determined by the same configurations.
Then it is enough to observe that s̄4n−2 = gn−2 is the number of (n−2)-gaps (that are also (n−2)-tandems) and s̄

0
n−2 = b

the number of 221n−2-blocks of S, and we obtain the result stated. �

The above theorem implies different combinatorial relations, e.g., in lower dimensions. In particular, we can easily obtain
the formula from [15] recalled in the Introduction (its original proof by induction was pretty long). To this end, first observe
that for n = 2 the only gaps in S are the 0-gaps. For this case equality (3) has the form s1 = 2s2 + 1

2 (g0 + s0 − b), where
b is the number of (2 × 2)-blocks in S. Now, by the Euler–Poincaré characteristic we have s0 − s1 + s2 = β0 − β1 + β2,
where β0, β1, β2 are the Betti numbers [25]. From here we get s2 − (2s2 + 1

2 (s0 − b+ g0))+ s0 = β2 − β1 + β0. Since S is
homotopic to a one-dimensional CW-complex, we have β2 = 0. Moreover, β0 is the number of connected components of S,
while β1 is the number of its holes. From here we immediately obtain the formula of [15].

4.3. Gaps and cracks in digital planes

Important examples of digital hypersurfaces are the digital hyperplanes (digital planes, in three dimensions). These are
well studied from various points of view. In particular, digital hyperplanes admit an analytical description (see [4,12,30]):
A set P(b, a1, a2, . . . , an, ω) = {x ∈ Zn | 0 ≤ b+

∑n
i=1 aixi < ω} is a digital hyperplane9 with coefficients a1, a2, . . . , an,

b and thickness ω. A digital hyperplane with thickness ω = |a|max = max{|a1|, |a2|, . . . , |an|} is called naive, and one with
thickness ω =

∑n
i=1 |ai| is called standard. For n = 2 and 3 one obtains a definition of a digital line and digital plane,

respectively. See Fig. 4 for illustration of naive and standard planes and Fig. 5 (left), for illustrations of disconnected, naive,
and standard lines. The standard lines and planes are the most widely used digital lines and planes.
Conditions under which a digital line/plane may have gaps are well known. The main result due to Andres et al. is the

following theorem.

Theorem 5 ([4, Proposition 9]). Let P = P(b, a1, a2, . . . , an, ω) = {x ∈ Zn | 0 ≤ b+
∑n
i=1 aixi < ω} be a discrete hyperplane,

where b ≥ 0, ai ≥ 0 for all i, and ai ≤ ai+1 for 1 ≤ i ≤ n − 1. Then, if ω < an, the hyperplane has tunnels; for 0 < k < n, if∑n
i=k+1 ai ≤ ω <

∑n
i=k ai, the hyperplane has (k− 1)-gaps and is k-separating; if ω ≥

∑n
i=1 ai, the hyperplane is gapfree.

9 Also called an ‘‘arithmetic’’ hyperplane.
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Fig. 5. Left: from top to bottom: portions of arithmetic lines defined by 0 ≤ 3x1 − 5x2 < 3 (disconnected line), 0 ≤ 3x1 − 5x2 < 5 (naive line), and
0 ≤ 3x1 − 5x2 < 8 (standard line). The first one has tunnels (and also 0-gaps; a tunnel is pointed out by an arrow), the second one has 0-gaps (one of
them pointed out by an arrow) but no tunnels, and the third one is gapfree. Middle: portion of an arithmetic plane defined by 0 ≤ 2x1 + 5x2 + 9x3 < 7.
It has tunnels (and also 1- and 0-gaps). A tunnel and a 1-gap are pointed out by arrows. Right: configuration of voxels (in two different orientations) that
features a 0-gap (pointed out by an arrow).

For the particular case n = 3, a digital plane with ω < a3 may have tunnels; a naive plane with ω = a3 has no tunnels; a
planewith a3 ≤ ω < a2+a3mayhave 1-gaps; a planewithω = a2+a3 has no1-gaps; a planewith a2+a3 ≤ ω < a1+a2+a3
may have 0-gaps; a standard plane with ω = a1 + a2 + a3 is gapfree, and so is any plane with ω > a1 + a2 + a3.
Note that the two basic types of planes – naive and standard – cannot have proper 0-gaps. A naive plane may have only

1-gaps while a standard one is always gapfree. This fact demonstrates the importance of (n − 2)-gaps in the geometry of
digital planes once more.
In view of the discussion of the preceding section, Theorem 5 implies that any naive digital hyperplane is an (n − 2)-

hypersurface and a standard digital plane is an (n − 1)-hypersurface. This follows from the fact that a digital plane with
ω ≥

∑n
i=1 |ai| is gapfree and 0-minimal while one with ω = |a|max is (n− 1)-gapfree and (n− 1)-minimal.

Theorem 5 provides an analytic characterization of digital planes with respect to their gaps, while Theorem 6 below
provides a combinatorial characterization. Recall that an (p, q)-cube of a digital plane P at a point (i, j) ∈ Z2 is the set
{(x, y, z) ∈ P : i ≤ x ≤ i+ p− 1 and j ≤ y ≤ j+ q− 1}. Then we can formulate the following statement. (For the sake of
simplicity it is done for n = 3.)

Theorem 6. Let P = P(b, a1, a2, a3, ω) be a digital planewhose coefficients satisfy b > 0, 0 < a1 ≤ a2 ≤ a3. Then the following
three assertions are equivalent:

(i) P has 1-gaps;
(ii) ω < a2 + a3;
(iii) for a sufficiently large (p, q)-cube C of P, gn−2(C) > 0.

Alternatively, the following are equivalent:

(i) P has no 1-gaps;
(ii) ω ≥ a2 + a3;
(iii) for any (p, q)-cube C of P, gn−2(C) = 0.

One can also apply the formula of Theorem 4 to a (p, q)-cube C of a digital plane. It is well known that all digital planes
P(b, a1, a2, a3, |a3|), for b = ±1,±2, . . . are equivalent up to a translation [9]. So, w.l.o.g., we may assume that b = 0. We
also suppose that 0 < a1 ≤ a2 ≤ a3, and that the corresponding Euclidean plane P̄ : a1x1 + a2x2 + a3x3 = 0 makes
with the coordinate plane Ox1x2 an angle θ with 0 ≤ θ ≤ arctan

√
2 (see Fig. 6). It is known that these assumptions do not

restrict the generality (see, e.g., [4,6,19]). The last one guarantees that each pixel of the integer grid in Ox1x2 is a projection
of exactly one voxel from P(0, a1, a2, a3, |a3|). Since such a digital plane is uniquely determined by its three coefficients, we
can simplify its notation to P(a1, a2, a3).
Also recall that if a3 < a1 + a2, then P(a1, a2, a3) has jumps, that are configurations as the one in Fig. 6 (right). If

a3 ≥ a1 + a2, jumps do not occur [8].
Finally, recall that a digital plane can be represented by its level lines, defined by the following assertion (see [10,12,19,

20]).

Fact 7. Let a naive plane P(a1, a2, a3) : 0 ≤ a1x1 + a2x2 + a3x3 < a3 be given.

(a) For a fixed value x3 = x03 ∈ Z, that determines a level of P(a1, a2, a3), the projection P(a1, a2, a3)x3=x03 : 0 ≤ a1x1 + a2x2 +

a3x03 < a3 of P(a1, a2, a3) on Ox1x2 is a digital line Lx03 = L(a1, a2,−a3x
0
3), called level line for x3 = x

0
3. If a3 = a1 + a2,

then L is standard, and if a3 > a1 + a2, then L is thicker than standard. If a3 < a1 + a2, then L is thicker than naive and
thinner than standard.
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Fig. 6. Left: a plane forming an angle arctan
√
2 with the plane Ox1x2 . Right: possible configuration of voxels in a discrete plane satisfying Condition (2).

The voxels u and v form a jump.

Fig. 7. (a) Level line code for P(6, 7, 16) restricted to a (10, 14)-cube. All level lines have identical shape since gcd(6, 7) = 1. There are 9 cracks in the
cube. (b) Level line code for P(6, 9, 16) restricted to a (10, 14)-cube. Distinct level lines may be different in shape since gcd(6, 9) = 3 6= 1 (see [10]). There
are 10 cracks in the cube.

Fig. 8. Level line code for P(5, 7, 11) restricted to a (10, 14)-cube. Connected subset (in gray) of the level code corresponds to a disconnected set of voxels
of P(5, 7, 11), since a1 + a2 = 5+ 7 = 12 > a3 = 11. There are 12 pseudo-cracks in the cube.

(b) As x3 runs over the integers, the lines L0, L±1, L±2, . . . form a partitionΠ of the discrete plane Ox1x2. This partition defines an
equivalence relation, as any equivalence class of that relation corresponds to a discrete line obtained for a certain particular
value of x3.

All level lines form the level line code of P(a1, a2, a3). See for illustration Figs. 7 and 8, as well as [10] for more details
about level lines code.
Fact 7 leads us to the following observations. If a3 ≥ a1 + a2, then P(a1, a2, a3) has infinitely many (‘‘horizontal’’) cracks

that partition it into 2-connected components. These are the levels of P(a1, a2, a3) that correspond to the digital lines in its
level lines code. If a3 < a1+ a2, then P(a1, a2, a3) has a single crack (that is the gap skeleton of P(a1, a2, a3)). It is composed
of horizontal ‘‘pseudo-cracks’’10 (determining the levels of P(a1, a2, a3) that correspond to the digital lines in its level lines
code). Two pseudo-cracks corresponding to consecutive levels k and k+ 1 are periodically connected by vertical gaps in the
locations of the jumps of P(a1, a2, a3) (see Fig. 8).
A (p, q)-cube C of P(a1, a2, a3) has a finite number c of cracks (if a3 ≥ a1 + a2)/pseudo-cracks (if a3 < a1 + a2) that

partition it into l levels. Here l = c + 1, where c is the number of cracks/pseudo-cracks in C .

10 We say ‘‘pseudo’’ since these are not maximal (non-extendable).
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Fig. 9. Left: simple closed 0-curves in C2; Right: a curve in C3 . It can be viewed both as a non-proper 0-curve and as a proper 1-curve.

After this preparation, assume that C is a (p, q)-cube of a naive digital plane P(a1, a2, a3). Then formula (1) can bewritten
as

g1 = −12s3 + 4s2 − s1 + b.

We are able to obtain formulas that relate the number of gaps with the number of blocks and cracks/pseudo-cracks in C .
It is easy to see that the following relations hold:

s3 = pq,
s2 = 4pq+ p+ q+ g1,
s1 = 5pq+ 3p+ 3q+ 1+ g1 + c.

Then, after substitution we obtain

g1 = −pq+ p+ q+ 3g1 − c + b− 1

and

g1 =
1
2
(pq− p− q+ c − b+ 1).

More specifically, by Fact 7 we obtain the following theorem.

Theorem 8. Let C be a (p, q)-cube of a digital plane P(a1, a2, a3). Then the following hold:

– if a3 ≥ a1 + a2, then b 6= 0, and so g1 = 1
2 (pq− p− q+ c − b+ 1);

– if a3 < a1 + a2, then b = 0, and so g1 = 1
2 (pq− p− q+ c + 1),

where b is the number of 221-blocks and c the number of cracks/pseudo-cracks in C.

5. Relations for digital curves

In the definition of digital surfaces of Section 4.1 we used a definition of a simple closed curve (Fig. 9). Recall that by the
classical Urysohn–Menger definition, a curve γ ⊂ R2 is known to be a one-dimensional continuum. One can define a digital
continuum to be any nonempty, finite, and α-connected set of cells in a digital space (where α is the adopted adjacency
relation). Then Urysohn–Menger’s definition can be adapted to the case of digital curves as follows:

Definition 9. A (general) digital curve γ ⊂ C2 (with respect to a certain adjacency relation) is a one-dimensional digital
continuum.

See Fig. 10 for the illustration of general digital curves in C2. The above definition straightforwardly generalizes for digital
curves in a space of arbitrary dimension. General curves allowmodeling of complex structures (see, e.g., [24] and Section 5(B)
of [14]). For further developments and various results see [13,25] and the bibliography therein. For example, we have the
following:

Fact 10 ([14]). Let D ⊆ C(n)n be a nonempty, α-connected set.

(a) If 0 ≤ α ≤ n − 2, then D is one-dimensional with respect to adjacency Aα iff it does not contain as a proper subset an
elementary grid triangle consisting of three cells such that any two of them are α-adjacent.

(b) If α = (n − 1), then D is one-dimensional with respect to adjacency Aα iff it does not contain as a proper subset an
elementary grid square that consists of four cells c1, c2, c3, c4 with coordinates c1 = (x1, . . . , xi, . . . , xj, . . . , xn), c2 =
(x1, . . . , xi + 1, . . . , xj, . . . , xn), c3 = (x1, . . . , xi, . . . , xj + 1, . . . , xn), c4 = (x1, . . . , xi + 1, . . . , xj + 1, . . . , xn), for
some indices i, j, 1 ≤ i, j ≤ n.
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Fig. 10. Left: curve in R2 .Middle: 0-curve in C2 . Right: 1-curve in C2 .

We have the following theorem.

Theorem 11. Let γ ⊂ Cn be any (general) digital α-curve (0 ≤ α ≤ n− 1) according to Definition 9. Then:

gn−2 = −2n(n− 1)sn + 2(n− 1)sn−1 − sn−2.

Proof. Clearly, if an α-curve γ contains an elementary grid square, then for any α (0 ≤ α ≤ n − 2) it also contains
an elementary grid triangle that is a part of the grid square. Since γ is one-dimensional, then, by Fact 10, for any α
(0 ≤ α ≤ n − 1) it does not contain an elementary grid square, that is a 221n−2-block. Then in (1) the parameter b will
equal 0, i.e., we have the stated formula. �

For the special case of a simple closed curve we have the following combinatorial relation.

Theorem 12. Let γ ⊂ Cn be a simple closed digital 0-curve. Let b0, . . . , bn−1 be the number of its k-tandems, for 0 ≤ k ≤ n−1.
Then we have the relation

sk = 2n−k
(n
k

)
sn −

n−k−1∑
i=0

2i
(
k+ i
k

)
bi+k. (4)

Proof. Let c be a k-cell for k 6= n. We say that c is a totally boundary cell (tb) if c is incident with exactly one n-cell. If c is
non-totally boundary (ntb), then c belongs to the closure of the shared face of a tandem tj in dimension j ≥ k; we then say
that c is involved with tj.
Since γ is a 0-curve, every k-cell is incidentwith atmost two n-cells and, thus, every non-totally boundary cell is involved

with exactly one tandem. Now the number of k-cells involved with a j-dimensional tandem tj is easily seen to be 2j−k
(
j
k

)
.

Therefore the number of non-totally boundary cells sntbk is:

sntbk = bk + 2
(
k+ 1
k

)
bk+1 + · · · + 2n−1−k

(
n− 1
k

)
bn−1, (5)

whereas the number of totally boundary k-cells is given by stbk = sk− s
ntb
k . Since every n-cell is incident with 2

n−k
( n
k

)
k-cells,

we have:

2n−k
(n
k

)
sn = 1 · stbk + 2 · s

ntb
k = sk + s

ntb
k . (6)

The assertion now follows straightforwardly from Eqs. (5) and (6). �

Remark 13. Note that (n−2)-gaps are the only gaps a digital curve γ mayhave. Also note that if γ is a digital (n−2)-curve,11
then the number of (n− 2)-gaps of γ matches the number of ‘‘linear segments’’ into which γ can be decomposed.

Remark 14. Since γ is a closed curve, its Euler–Poincaré characteristic χ(γ ) is zero. We then have:

0 = χ(γ ) =
n∑
k=0

(−1)ksk.

Using the expression for the si found in Eq. (4), we recover, after elementary manipulations, the not-surprising relation:

sn = b0 + b1 + · · · + bn−1.

11 That is, any two consecutive voxels of γ are (n− 2)-adjacent.
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6. Concluding remarks

In this paper we provided a rigorous definition of gaps in a digital picture and derived a formula for the number of
(n− 2)-gaps, as well as certain combinatorial relations for digital curves. Our approach could be applied to obtain relations
for k-curves with k 6= 0, as well as for an arbitrary digital object. Note however that the case of (n − 2)-gaps admitted a
comparatively compact solution because of its specific properties. For example, in the proof of Theorem4we took advantage
of the fact that the cardinality of the set of (n−1)-brims for a cell cmay have only values 0, 2, and 4, while the case of (n−2)-
brims has a much more complex description even for n = 3. Because of such technical reasons a possible formula for the
number of gaps of lower dimensions will have complexity that would make it to be of little use. Therefore, a possible future
task is seen in seeking other approaches that would allow obtaining more compact characterizations of lower-dimensional
gaps in binary objects.
The theoretical results described in the present paper are accompanied by an experimental computer program. Given a

digital picture S represented by the coordinates of its voxels, our program takes as an input the list of the voxel coordinates
and outputs the number of the 0-, 1-, and 2-facets of S, as well as of its 0- and 1-gaps. Alternatively, the number of 1-gaps
can be calculated by formula (1) as soon as the involved parameters are found at the first pass. The program allows us to
visualize the digital picture S and interactively rotate it along the Ox-, Oy-, and Oz-axes so that the object can be seen from
different viewpoints. The algorithm is linear and the computation is immediate even for very large datasets.
A more challenging task is seen in designing an efficient algorithm for identifying cracks and the gap skeleton of a digital

surface.
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