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The half-supersymmetric Wilson loop in N = 4 SYM is arguably the central non-local operator in the 
AdS/CFT correspondence. On the field theory side, the vacuum expectation values of Wilson loops in 
arbitrary representations of SU(N) are captured to all orders in perturbation theory by a Gaussian 
matrix model. Of prominent interest are the k-symmetric and k-antisymmetric representations, whose 
gravitational description is given in terms of D3- and D5-branes, respectively, with fluxes in their world 
volumes. At leading order in N and λ the agreement in both cases is exact. In this note we explore 
the structure of the next-to-leading order correction in the matrix model and compare it with existing 
string theory calculations. We find agreement in the functional dependence on k but a mismatch in the 
numerical coefficients.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Wilson loops are non-local operators that play a central role 
in field theories, serving as order parameters and as generating 
functions for all local operators. For the N = 4 supersymmetric 
Yang–Mills theory the most natural Wilson loop one can consider 
is

WR = 1

dim[R] TrRP exp

(
i

∮
C

ds
(

Aμ ẋμ + iΦIΘ
I |ẋ|)), (1)

where Aμ and Φ I are the gauge and scalar fields, respectively, tak-
ing values in a representation R of the SU(N) gauge symmetry 
algebra, while xμ(s) parametrizes a curve C in R4 and Θ I is a 
vector in R6. When the contour C is a circle and Θ2 = 1 the loop 
preserves half of the supersymmetries of the theory.

From the purely field theoretic side a conjecture for the com-
putation of the exact expectation value by means of a Gaussian 
matrix model was put forward in [1,2] and later rigorously proven 
by Pestun via localization [3]. Some explicit calculations using this 
matrix model were provided for k-symmetric and k-antisymmetric 
representations in [4–6].
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Understanding this object in the context of the AdS/CFT cor-
respondence has been an important problem for over a decade. 
The duality provides an alternative way of computing the vacuum 
expectation value of (1) at strong coupling. The original prescrip-
tion, proposed in [7,8], identifies the vev of this Wilson loop in 
the fundamental representation of SU(N) with the partition func-
tion of a fundamental string pinching the loop at the boundary. For 
higher order representations the string theory origin of the config-
urations was clarified in terms of D5-branes [9] and D3-branes [10]
with k-units of flux in their world volumes, corresponding to the 
k-antisymmetric and k-symmetric representations, respectively.

The regularized action of the corresponding brane configuration 
computes the expectation value of the dual Wilson loop at leading 
order in N and λ. The calculation was performed for the D3-brane 
in [11] and for the D5-brane in [12,13], finding exact agreement 
with the matrix model result.

Our purpose in this letter is to summarize the state of affairs at 
one-loop level. Focusing on the k-symmetric and k-antisymmetric 
representations, we discuss certain calculable corrections to the 
leading order results for the half-supersymmetric circular Wilson 
loop (1) from the field theoretic perspective and compare them 
with the gravitational predictions. After revealing numerical dis-
crepancies between the two approaches, we highlight particular 
aspects of the calculations which could be the source of the mis-
match. We contrast our results with previous attempts for the 
fundamental representation [14–16] and argue that the rank k of 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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the representations provides a new knob that might allow us to 
establish agreement beyond the leading order.

2. Gauge theory beyond leading order

The starting point is the Gaussian matrix model defined by the 
partition function

Z =
∫

dM exp

(
−2N

λ
Tr

(
M2)), (2)

where M is an N × N matrix and λ is the ’t Hooft coupling. It 
is most convenient to work in the eigenvalue basis: M = diag{m1,

m2,m3, . . . ,mN}. Moreover, for the calculation of the expectation 
values of (1) in the k-th symmetric and antisymmetric represen-
tations it is useful to consider the generating functions for the 
relevant polynomials, namely, F A(t) = ∏N

i=1(1 + temi ) and F S (t) =∏N
i=1(1 − temi )−1 as in [4]. When inserted in the Gaussian matrix 

model we obtain

〈
F A,S(t)

〉 = 1

Z

∫ N∏
j=1

[dm j]�2(m)F A,S exp

(
−2N

λ

N∑
i=1

m2
i

)
, (3)

where �(m) is the Vandermonde determinant coming from the 
change of integration variables. Up to a normalization, the coeffi-
cients of the tk term in these series yield the expectation values of 
the Wilson loops in the corresponding representations.

The large N approximation. In some cases, it is possible to eval-
uate (3) as an exact expression in N, λ, k by using orthogonal 
polynomials. A lot of effort has gone into understanding such ex-
pressions [18], although the results are somewhat formal and do 
not highlight the functional dependence on the parameters. While 
we will report progress in this direction in a separate publication, 
here we will focus on the large N limit. In this limit, the eigenval-
ues can be approximated by continuous variables which are well 
described by the normalized Wigner semi-circle distribution

ρ(m) = 2

πλ

√
λ − m2, −√

λ � m �
√

λ. (4)

The expectation value of the Wilson loop in the rank-k rep-
resentation can be obtained from (3) by means of the residue 
theorem. Following [4], we let f = k/N and make the transfor-
mation t → e

√
λz , which maps the plane to a cylinder, to obtain

〈W S,A〉 = d−1
S,A

√
λ

2π i

∫
C

dz exp

(
∓N

[
2

π

1∫
−1

dx
√

1 − x2

× log
(
1 ∓ e

√
λ(−x+z)) ± f

√
λz

])
, (5)

where dS , A are the dimensions of the respective representations

dS =
(

N + k − 1

k

)
, dA =

(
N

k

)
. (6)

Here we have scaled 
√

λ out of the distribution (4). The contour C
wraps the cylinder once and is taken to the left of any singularities.

Our goal is to evaluate the contour integral in (5) in the limit of 
large N , λ and k. Since the integrand in the exponent scales like N , 
this can be performed using Laplace’s method or, more generally, 
the steepest descent method. While the leading behavior was ob-
tained in [4], it is straightforward to obtain the next-to-leading 
order term as well by simply expanding around the saddle point.
Fig. 1. The contour of integration C for the k-symmetric representation, and its de-
formation into C ′ and Cbranch.

2.1. Symmetric representation at next-to-leading order

The k-symmetric representation corresponds to the choice of 
upper signs in (5). As argued in [4], all saddle points lie on the 
real axis, where the integrand develops a branch cut between −1
and 1. For given N and k there exists a critical value of λ for which 
the saddle point hits the branch cut and moves to the second Rie-
mann sheet. To avoid this complication we deform the contour C
by pulling it to the right of the branch cut, thus enclosing the sad-
dle point, as shown in Fig. 1. Since the integral over C ′ vanishes in 
the limit Re z → ∞, we are left with the jump across the cut [4]

〈W S〉 = d−1
S

√
λ

π
Im

1∫
−1

dy exp

[
−N

(
2

π

1∫
−1

dx
√

1 − x2

× log
(
e
√

λx − e
√

λy) + 4i

y∫
−1

dx
√

1 − x2 + f
√

λy

)]
. (7)

For N → ∞ the y integral in (7) can be evaluated using steep-
est descent. In the large λ but fixed κ = k

√
λ/(4N) limit, it is 

dominated by the saddle point at y0 = −√
1 + κ2 < −1, which 

renders the leading contribution. Taking into account the pre-factor 
of 

√
λ = 4κ/ f in (7), we find that the asymptotic result for the 

k-symmetric Wilson loop expectation value is

〈W Sk 〉 = exp

(
2N

[
κ
√

1 + κ2 + sinh−1 κ
] + 1

2
ln

κ3

√
1 + κ2

)
. (8)

2.2. Antisymmetric representation at next-to-leading order

The antisymmetric case, which corresponds to choosing the 
lower signs in (5), is simpler to analyze. As shown in [4], the sad-
dle point lies on the real axis, whereas the branch cut displayed 
by the integrand has an imaginary part. This allows us to directly 
calculate the saddle point from (5). Deforming the contour appro-
priately and taking the large λ limit and N → ∞ while keeping 
k/N fixed, we find

〈W Ak 〉 = exp

(
2N

√
λ

3π
sin3 θk − 1

2
ln sin θk

)
, (9)

where θk is given by the solution to k = N(θk − sin θk cos θk)/π . 
Notice that the leading term in the exponent in (9) is proportional 
to N

√
λ when λ is large, in contrast to the symmetric case where 

(8) goes like N . As we will see below, this is consistent with the 
corrections in the gravitational description.

We should mention that the integrand in (5) exhibits a second 
saddle point that lies on top of the branch cut. We have verified 
that by deforming the contour to wrap the branch cut, computing 
the discontinuity across it, and evaluating the resulting integral us-
ing the saddle point approximation, yields the same result at the 
leading and sub-leading levels as above.
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3. Gravity results: D3 and D5 branes with worldvolume flux in 
AdS5 × S5

According to the holographic dictionary, the expectation value 
of the Wilson loop at leading order is given by the regularized on-
shell action of the corresponding dual string theoretic object. For 
the case of the circular Wilson loop in the fundamental represen-
tation this object is a fundamental string with AdS2 worldvolume. 
This operator has been studied for over a decade now and there 
has been a concerted effort in trying to match the field theory 
result with the string theory calculation at higher orders, start-
ing with the insightful works [19] and [14] and more recently in 
[15–17]. It is fair to say that the current state is that the two sides do 
not seem to coincide for the supersymmetric Wilson loop in the funda-
mental representation. A number of reasons have been advanced for 
this mismatch, including the role of zero modes in string disc am-
plitudes [14,16,17].

The situation is slightly better for the supersymmetric Wilson 
loop in higher representations. The rank of the representation k
can scale with N , introducing a natural parameter that acts as 
a new knob in the problem. Indeed, in the cases of the totally 
symmetric and totally antisymmetric rank k representations we 
find agreement of the next-to-leading correction to the expectation 
value of the Wilson loop the at the functional level (as a function 
of a parameter related to k).

For the higher rank representations, the appropriate gravity 
configuration is given by Dp-branes, whose bosonic action in 
AdS5 × S5 is

SDp = −T p

∫
dp+1ξ

√−det(g +F)ab + T p

∫
C(4) ∧ eF . (10)

Here Td is the brane tension. The classical actions yield the expec-
tation value of the Wilson loop at leading order.

D3-brane. The classical configuration corresponding to the half 
supersymmetric Wilson loop in the rank k symmetric represen-
tation is a D3-brane embedded in AdS5 × S5 (with radii L) that 
sits at a fixed point in the S5 part of the background, while span-
ning an AdS2 × S2 ⊂ AdS5 world volume with radii L cosh(uk) and 
L sinh(uk), respectively [11]. The parameter uk is related to the 
string charge k by sinh(u0) = k

√
N/4N ≡ κ . This solution is sup-

ported by a Euclidean gauge field strength 2πα′ F = iL2 cosh(uk)

along AdS2.
The question of quantum corrections to the classical action was 

boosted by the step taken in [20] which organized the spectrum 
of excitations of all the supergravity objects dual to the circular 
Wilson loop into supermultiplets of OSp(4∗|4). This work sets the 
stage for the calculation of the one loop effective actions in the 
gravity side.

As shown in [20], the quadratic fluctuations around the above 
solution take the form

S B = TD3 coth(uk)

2

∫
d4σ

√
g
[

gαβ∂αφi∂βφi + gαβ gγ δ fαγ fβδ

]
,

S F = TD3 coth(uk)

∫
d4σ

√
gΘ̄A/∇ΘA . (11)

As appropriate to a D3-brane, the field content is that of an N = 4
vector multiplet: six scalars φi , i = 1, . . . 6, a gauge field aα , with 
field strength fαβ , and a Weyl spinor transforming in the 4 of 
SO(6) � SU(4). The fact that all fields are massless is a consequence 
of the supersymmetry preserved by the background. The AdS2 × S2

geometry is not precisely the induced one but the so-called open 
string metric for which both AdS2 and S2 have the same radius 
L sinh(uk). Notice that TD3 L4 ∼ N , implying that the expansion pa-
rameter is 1/N , in accordance with the dual description.
The one-loop effective action was recently computed in [17] us-
ing heat kernel techniques [21] thoroughly explained in [22,23] for 
the case of fields in AdS2 × S2 in the context of logarithmic cor-
rections to black hole entropy. As it turns out, the normalization 
factor of coth(uk) is crucial in the calculation as it contributes to 
the one-loop effective action in a non-trivial (κ-dependent) fash-
ion. The result is∫

exp(−SD3)

= exp

(
2N

[
κ
√

1 + κ2 + sinh−1 κ
] − 1

2
ln

κ3

√
1 + κ2

)
. (12)

The leading/classical term was known to match the field theory 
calculation [4,11]. The second line matches the matrix model cal-
culation given in Eq. (8), except for an overall sign.

D5-brane. In the case of the Wilson loop in the totally antisym-
metric rank k representation, the dual object is a D5-brane whose 
classical solution has an AdS2 × S4 world volume with radii L and 
L sin θk , respectively [5,13]. The string charge is related to θk by 
k = N(θk − sin θk cos θk)/π . Excitations of the brane correspond to 
fields propagating on this space, albeit with an open string met-
ric with a common radius L sin θk . The quadratic action is given by 
[24]

S B = TD5

2 sin θk

∫
d6ξ

√
g

[
χ i

(
∇a∇a − 2

L2

)
χi

+ χ5
(

∇a∇a + 4

L2

)
χ5 − 1

2
f μν fμν − f μα fμα

− 1

2
f αβ fαβ − 4i

L
χ5εαβ fαβ

]
,

S F = TD5

2 sin θk

∫
d6ξ

√
gΘ̄

[
Γ a∇a + 1

L
Γ 6789

]
Θ, (13)

where α, β are indices in AdS2 and μ, ν are indices on S4. The 
index i = 1, 2, 3 denotes the three fluctuations of the embedding 
AdS2 ⊂ AdS5 while the field χ5 represents the fluctuations of the 
embedding S4 ⊂ S5; thus we have a total of four scalar fields. The 
multiplet also contains a gauge field with field strength f and a 
6d symplectic Majorana spinor Θ . In this case, the quantum cor-
rections are controlled by the parameter TD5 L6 ∼ N

√
λ. The same 

is true in the matrix model depiction of the operator.
It is worth pointing out that the final term in the bosonic ac-

tion is non-covariant from the 6d point of view; it emerges from 
the fact that the background field strength is non-vanishing in the 
AdS2 directions. Despite its appearance, the action (13) is super-
symmetric, as was proven explicitly in [24].

The computation of the one-loop effective action of the D5 dual 
to the k-antisymmetric representation following from the quadratic 
action (13) was performed in [24] using heat kernel techniques. 
Since the action contains a non-covariant term, the most efficient 
way goes through compactification of the quadratic Lagrangian 
on S4. The one-loop effective action was found to be∫

exp(−SD5) = exp

(
2N

√
λ

3π
sin3 θk − 1

6
ln sin θk

)
. (14)

In this result there is a factor of two difference with respect to 
the answer reported in [24]; this stems from the fact that here 
we correct, following a lucid explanation in [17], by a contribution 
due to the normalization of the quadratic modes in the open string 
frame versus the closed string frame. The leading term matches 
exactly the gauge theory calculation [4,5]. The next to leading term 
has the same functional dependence on θk as the matrix model 
answer but differs by a factor of 3.
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4. Conclusions

In this article we have discussed the half supersymmetric Wil-
son loop in the context of the AdS/CFT correspondence, with 
a special emphasis on higher rank representations of SU(N). In 
particular, we have computed, using the Gaussian matrix model, 
a 1/N correction to the expectation value of this operator in the 
k-symmetric and k-antisymmetric representations. Upon compari-
son with analogous calculations on the gravity side, which consider 
one-loop corrections around the corresponding classical D3- and 
D5-brane solutions, we have found that there is functional agree-
ment on the rank of the representation, k, but discrepancies in the 
numerical coefficients: in the case of the k-symmetric representa-
tion they disagree by an overall sign, while for the k-antisymmetric 
there is disagreement by a factor of 3.

Having compared the calculations on the two sides of the du-
ality, a few comments about the mismatch are in order. As em-
phasized by Buchbinder–Tseyltin [17], when κ << 1 the 1-loop 
correction to the D3-brane effective action (and the gauge the-
ory correction) should approach the first 1/N correction to the 
expectation value of the Wilson loop in the �k representation. 
This property holds in (12). Indeed, starting from the exact ma-
trix model result

〈W�k 〉 = 1

N
ek2λ/8N L(1)

N−1

(−k2λ/4N
)
, (15)

either by exploiting the differential equation satisfied by the La-
guerre polynomials [11,17,25] or by simply using their asymptotic 
expansion, the leading and sub-leading terms are found to be

〈W�k 〉 = exp

(
2N

[
κ
√

1 + κ2
] + sinh−1 κ − 1

2
lnκ3

√
1 + κ2

)
,

(16)

when N → ∞ and κ = k
√

λ/(4N) is fixed. This argument speaks to 
the robustness of the negative sign in expression (12) as opposed 
to the plus sign (8).

A similar argument holds for the k-antisymmetric representa-
tion, even though a different limit is taken in this case, namely, 
large N with k/N fixed and large λ. When k/N is small the correc-
tion should approach that of the fundamental representation. Our 
result (9) does not comply with this requirement. Neither does the 
D5-brane calculation (14), however, so the situation is less clear in 
this case.

The above analysis seems to render our calculations (8) and (9)
in the matrix model framework invalid. If one insists, however, 
on computing 〈W Ak,Sk 〉 using the generating functions F A,S (t) =
det(1 ± teM)± , the type of asymptotic corrections addressed in this 
article are essentially unavoidable. This is simply a consequence 
of using the steepest descent method, and is further evidenced by 
the fact that we do find agreement with the string theory predic-
tions at a functional level. The complete story, of course, must take 
into account other 1/N corrections of different origin. One obvious 
such correction would come from a more accurate approxima-
tion for the eigenvalue distribution of the Gaussian matrix model, 
beyond the Wigner semi-circle law. Also, in the limit of a contin-
uous density of eigenvalues, the pole structure of the Cauchy in-
tegral changes drastically, making the analysis of corrections even 
more complicated. Finally, we point out that in the case of the 
k-antisymmetric representation the expansion parameter seems to 
be 1/N

√
λ and not 1/N , as suggested by the gravitational descrip-

tion; perhaps additional 1/
√

λ corrections in the matrix model 
must therefore be computed. We postpone these lines of inquiry 
for the future.

5. Note added

In the original version of this manuscript we claimed to have 
found exact agreement between the matrix model calculation for 
the k-symmetric representation and the D3-brane results reported 
in [17]. This is incorrect as there is an overall sign difference. The 
functional dependence on κ , however, is in perfect agreement.
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