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Using the Optimal Receiver Operating Characteristic
Curve to Design a Predictive Genetic Test,
Exemplified with Type 2 Diabetes

Qing Lu1 and Robert C. Elston1,*

Current extensive genetic research into common complex diseases, especially with the completion of genome-wide association studies,

is bringing to light many novel genetic risk loci. These new discoveries, along with previously known genetic risk variants, offer an

important opportunity for researchers to improve health care. We describe a method of quick evaluation of these new findings for

potential clinical practice by designing a new predictive genetic test, estimating its classification accuracy, and determining the sample

size required for the verification of this accuracy. The proposed predictive test is asymptotically more powerful than tests built on any

other existing method and can be extended to scenarios where loci are linked or interact. We illustrate the approach for the case of type

2 diabetes. We incorporate recently discovered risk factors into the proposed test and find a potentially better predictive genetic test.

The area under the receiver operating characteristic (ROC) curve (AUC) of the proposed test is estimated to be higher (AUC ¼ 0.671)

than for the existing test (AUC ¼ 0.580).
Introduction

With the latest improvements and ever-decreasing costs of

high-throughput genotyping technologies, large-scale ge-

netic-association studies, and in particular genome-wide

association studies, are now being conducted. These stud-

ies provide a comprehensive scan of the whole genome

and have the potential to identify many more genetic

risk variants for common complex diseases. The new find-

ings from these studies, together with previously known

genetic and environmental risk factors—whether or not

they increase our understanding of the etiology of com-

mon complex diseases—offer a potential opportunity for

researchers to improve medical care and public health.1

Some previous efforts aimed at combining genetic and

environmental findings to predict disease or, more pre-

cisely, to develop a predictive genetic test, are discussed

elsewhere.2–5 These are important first steps toward the

development of successful predictive genetic tests for com-

mon complex diseases,6 and such tests have been recog-

nized as comprising the cornerstone of future genomic

medicine.7 The hope is that these tests will provide an early

discovery of an individual’s disease risk so that appropriate

prevention strategies can be used to reduce morbidity and

mortality. These tests are anticipated to have a large impact

on health care and change the form of health care away

from treatment toward prevention.8

However, these previous efforts have been limited by the

genetic and clinical information available at the time

the predictive genetic tests were developed. For instance,

the current predictive genetic test for type 2 diabetes is

based on three common variants.3 With the genome-

wide association studies that have now been conducted

for this disease and the novel susceptibility variants identi-
fied,9,10 one may want to know how much an existing test

could be improved by incorporating into it the newly dis-

covered genetic susceptibility variants.

The identification of risk variants is a progressive pro-

cess, and so predictive genetic tests will also be subject to

change whenever novel genetic susceptibility variants are

discovered. This requires a flexible and easily implemented

method for the redevelopment of predictive genetic tests

with time.6 In this paper, we propose a flexible model to

help design a new predictive genetic test. Using informa-

tion garnered from published genetic-association studies,

clinical studies, and even a previously accepted predictive

genetic test, this approach provides an estimated classifica-

tion accuracy of the proposed test and hence an idea of

how much improvement over an existing test a proposed

new test might achieve.

The clinical performance and applicability of a predictive

genetic test rests on four main components: (1) analytic

validity, (2) clinical validity, (3) clinical utility, and (4) asso-

ciated ethical, legal, and social implications.11 Our work

here focuses on addressing the clinical validity issue, de-

fined as the ability of a genetic test to detect or predict

the associated disorder (phenotype). The assessment of

clinical validity is an important step and is the starting

point for test building. If the predictive genetic test dis-

criminates well among possible eventual outcomes, we

continue to evaluate its clinical utility. If, on the other

hand, it has poor accuracy, it is unlikely to have practical

value for patient care.12

In this paper, we first derive a general formula to build

a predictive genetic test from previous independent associ-

ation results, extending it to situations where the genetic

variants are in linkage disequilibrium or interact with

each other. We then indicate how the requisite sample
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size can be calculated in order to design a study that will

have specified power at a given significance level to be

sure that this new test attains a desired level of accuracy

or has a higher level of accuracy than the existing test.

Finally, we illustrate the model with recent association re-

sults that have become available for type 2 diabetes.

Material and Methods

Several approaches have been proposed for the evaluation of a pre-

dictive genetic test based on multiple disease-susceptibility loci.

Among them, the receiver operating characteristic (ROC) curve13

has been recognized as the most suitable measure.14,15 The ROC

curve plots a test’s true-positive rate (sensitivity) against its false-

positive rate (1-specificity) for continuously changing cutoffs

over the whole possible range of test results. It evaluates the tests

that result from these cutoffs with the entire spectrum of pairs of

true-positive rates (TPRs) and false-positive rates (FPRs) and so

gives a global description of a test’s classification accuracy.16 The

ROC curve is also one of the most popular measures used for clin-

ical diagnostic tests and has been widely used in different areas of

medicine.17

Among all the techniques available for combining multiple pre-

dictors for ROC analysis, the logistic-regression-based approach

has been the most commonly used. However, as recent studies

have shown, logistic regression will not be optimal if the logistic

model does not hold.18 In the statistics literature, the optimality

of the likelihood ratio for ROC analysis has long been recog-

nized.19,20 The likelihood ratio—which in this context is defined

as the ratio of two density functions of a predictor x, that among

cases to that among controls—is useful for the generation of the

appropriate (optimal) ROC curve. With Egan’s definition,20 the

optimal ROC curve results when this likelihood ratio is plotted

from its largest value to its smallest value. The optimal ROC curve

displays the best possible performance set based on the likelihood

ratio in terms of (1) the maximization of the TPR for any fixed

value of the FPR, (2) the minimization of the overall misclassifica-

tion probability, and (3) the minimization of the expected cost.

These three ideal properties could be obtained simply by the appli-

cation of the Neyman-Pearson lemma.20,21 Although the likeli-

hood ratio is ideal for ROC analysis, it was only recently empha-

sized for combining multiple predictors.21,22 Baker,22 who noted

the important role of the likelihood ratio for combining multiple

predictors, based his argument regarding its optimality by drawing

on cost-effectiveness theory23 rather than on the Neyman-Pearson

lemma. Despite this difference, the two arguments are essentially

the same, suggesting that for multiple predictors, a test based on

the likelihood ratio is optimal for any fixed value of TPR or FPR.

This conclusion is elegant, but it has limitations if we are interested

in comparing tests with different TPR and FPR pairs or in evaluating

the overall performance of the test. For the latter purpose, the ROC

curve or its summary indexes are the appropriate criteria to use.

Here we choose the area under the ROC curve (AUC), the most pop-

ular summary index of the ROC curve, as a measure of a test’s per-

formance and prove that the optimal ROC curve has the highest

AUC (Appendix A). The AUC measures the probability that test

values from a randomly selected pair of diseased and nondiseased

individuals are correctly ordered and is thus a convenient global

measure for the quantification of classification (diagnostic) accu-

racy.12 This means that a test based on the optimal ROC curve
642 The American Journal of Human Genetics 82, 641–651, March
achieves the highest classification accuracy among all approaches

(including a logistic-regression-based approach).

Building a Predictive Genetic Test on the Basis

of the Optimal ROC Curve
A General Model for Independent, Noninteracting Loci

Suppose we are interested in constructing a predictive genetic test

on the basis of variants at n genetic loci. From previous association

studies or other public sources, we obtain the relative risks esti-

mates ðRi ¼ ðri1,/,rimi
ÞÞ and population genotype frequency esti-

mates ðFi ¼ ðfi1,/,fimi
ÞÞ for the ith ði ¼ 1,/,nÞ associated locus,

which has mi possible genotypes. The distribution of these geno-

types at the ith locus in the disease (D) population can then be

derived from this information, with the formula

Pðgiji jDÞ ¼
riji fijiPmi

ji¼1 riji fiji

, ji ¼ 1,/,mi: (1)

The mi equations displayed in Equation 1 are appropriate for

a variety of genetic variants (in particular, single-nucleotide poly-

morphisms) with known mode of inheritance (Appendix B). The

equations can also be modified for the situation where the risk es-

timates are odds ratios (Appendix B). The information we can use

is not limited to that from association studies; it can also come

from other genetic studies (Appendix B).

If we assume linkage equilibrium among the n loci, we can

calculate the joint probability of the multilocus genotype

Gk ¼ ðg1ji ,g2j2 ,/,gnjn Þ from the single-locus-genotype frequencies,

PðGkÞ ¼
Yn

i¼1

Pðgiji Þ ¼
Yn

i¼1

fiji , ji ¼ 1,/, mi, k ¼ 1,/, K, (2)

where K denotes the total number of multilocus genotypes possi-

ble from the n disease-susceptibility loci and its maximal value is

m1$m2$.$mn. If we further adopt a multiplicative model, which

assumes that the joint effect of the n genetic variants is propor-

tional to the product of the individual variants’ main effects,

then the probabilities of the multilocus genotypes Gk given disease

status can be expressed as

8>><
>>:

PðGk jDÞ ¼
Qn
i¼1

Pðgiji jDÞ

PðGk jDÞ ¼
PðGkÞ � PðGk jDÞr

1� r

, ji ¼ 1,/,mi, k ¼ 1,/, K, (3)

where D denotes absence of disease and r denotes the disease prev-

alence. Given these probabilities, we can calculate the likelihood

ratios (LRs):

LRk ¼
PðGk jDÞ
PðGk jDÞ

, k ¼ 1,/,K: (4)

We rank the multilocus genotypes in descending order of their

LRs, from the highest rank to the lowest rank, and plot the test’s

TPR (sensitivity) against its FPR (1-specificity) for each possible

cutoff between adjoining pairs of multilocus genotypes that might

be used in the prediction of disease. This gives us the empirical

optimal ROC curve, which simply consists of a set of TPR and

FPR pairs:

8>><
>>:

TPRðkÞ ¼
Pk
k¼1

P
�
GðkÞjD

�
FPRðkÞ ¼

Pk
k¼1

P
�
GðkÞjD

� , k ¼ 1,/,K, (5)
2008



where GðkÞ is the k th genotype in the sequence of likelihood ratios.

Because the LRs are in descending order and the LRs correspond to

the slope of the ROC curve, this indicates that the optimal ROC

curve is always concave.

Once the optimal ROC curve has been built, we obtain the

explicit expression for the area under the optimal ROC curve by

applying the trapezoid rule:

AUC ¼ 1

2

XK

k¼1

�
TPRðkÞ þ TPRðk�1Þ

�
,
�
FPRðkÞ � FPRðk�1Þ

�
, (6)

where TPRð0Þ ¼ FPRð0Þ ¼ 0. This measures the estimated discrimi-

native ability of the test and leads to the highest value of the

AUC among all approaches to designing a predictive test. Other

statistics we might be interested in, such as predictive values,

can be directly obtained from the optimal ROC curve (Appendix

C). Proof of the optimality of the predictive values obtained

this way follows from the fact that the optimal ROC curve maxi-

mizes the TPR for any fixed value of the FPR and the equations

in Appendix C.

Genetic Loci in Linkage Disequilibrium or Interacting with Each Other

The above model can be extended to incorporate loci that are in

linkage disequilibrium (LD) with each other. In this case, we are

interested in the multilocus genotypes formed by these linked

loci. Assume we have L linked loci, and for each locus we have

Kl ðl ¼ 1,/, LÞ alleles. Following a notation similar to that in Gor-

elick and Laubichler,24 we denote by Dnðkl,/Þ the coefficients of

LD between n loci ðn ¼ 2,/, LÞ and by D1ðklÞ the population allele

frequency for the kl th ðkl ¼ 1,/, KlÞ allele at locus l. Assuming

that all possible LD coefficient and population allele-frequency

estimates can be obtained from previous studies, we can express

the haplotype frequency ðphÞ for haplotype h ¼ ðk1, k2,., kLÞ
as the summation of all possible products of LD coefficients

and allele frequencies whose orders (i.e., the number of loci) add

to L,

ph ¼
X

PS

s¼1
ns¼L

"YS

s¼1

Dns ð/Þ
#

, (7)

where Dns
is the coefficient of linkage disequilibrium between ns

loci24.

Normally, the coefficients of LD with order higher than two are

rarely reported in genetic studies. Denote by D2ðkl, kl0 Þ the pairwise

LD between the alleles kl ðkl ¼ 1,/, KlÞ and kl0 ðkl0 ¼ 1,/,Kl0 Þ at loci

l and l0 ðl < l0; l ¼ 1,/,L� 1Þ. Assuming that for each pair of loci

l and l0 all possible ðKl � 1Þ3 ðKl0 � 1Þ pairwise LD coefficient

estimates can be obtained from previous studies (in particular,

ðKl � 1Þ3 ðKl0 � 1Þ ¼ 1 for SNPs), we can approximate the haplo-

type frequency by only using the pairwise LD (D2) and the popu-

lation allele frequencies ðD1Þ,

ph z
X

PS
s¼1 ns ¼ L
ns%2

"YS

s¼1

Dns ð/Þ
#
: (8)

Given the haplotype frequency and the assumption of Hardy-

Weinberg equilibrium (HWE), we can derive the distribution for

the phased multilocus genotype gj ¼ ðhh0Þ,

fj ¼ pðgjÞ ¼
�

2phph0 h s h0

p2
h h ¼ h0

, j ¼ 1,/, m:
The
Provided that the haplotype-relative risk information rh is avail-

able, we can derive the relative risks for the phased multilocus

genotype gj ¼ ðhh0Þ, on the basis of an additive model, as

rgj
¼ rh þ rh0 , j ¼ 1,/,m:

Although the above equations assume an additive model, any

other model (e.g., recessive) can also be adopted according to

any prior knowledge of the disease. By treating these L linked

loci as comprising one set of genotypes and applying Equation

1, we can incorporate linked loci into the approach.

In a similar manner, we can extend the model to handle inter-

acting loci. In this scenario, we group all possible multilocus geno-

types from the interacting loci into a few clusters, each with a dif-

ferent associated disease risk. In the simplest situation, we have

just two clusters, a high-risk cluster and a low-risk cluster. At the

other extreme, each multilocus genotype itself represents a cluster.

Then, by obtaining the relative risks and the distribution of these

clusters, and again applying Equation 1, we can incorporate inter-

acting loci into the model.

We illustrate this by using a simple example. Assume there is an

interaction between two SNPs (A and B) and the underlying inter-

action follows a threshold model,25 defined as implying there is

a single high risk for all individuals having at least one of the dis-

ease-susceptibility alleles at each of the two loci and a common

low risk for all other individuals. We denote by rr the relative

risk of the high-risk group ðg1Þ compared to the low-risk group

ðg0Þ and by f the population frequency of the high-risk group.

Then the distribution of the high- and low-risk groups in cases

can be written as (
Pðg1 jDÞ ¼

rr,f

rr,f þ 1� f

Pðg0 jDÞ ¼
1� f

rr,f þ 1� f0

,

where, assuming Hardy-Weinberg equilibrium and that pA and

pB are the frequencies of the disease-susceptibility alleles for the

two loci, f ¼ pAð2� pAÞpBð2� pBÞ. Although we illustrate the

model by using genetic variants, the equations also apply for clin-

ical risk factors and to the situation where there is gene-environ-

ment interaction.

Sampling Variability of the Empirical AUC

and Comparison of Empirical ROC Curves
The above procedure provides an estimated classification accuracy

of the new test in terms of the AUC. The estimated AUC could be

subject to large variability if the sample size is small. We introduce

here two methods for the calculation of the AUC variance, which

enables us to quantify its precision.

Asymptotically, the variance of the estimated AUC depends only

on the ROC curve itself and the numbers of cases and controls:26

varAðAUCÞ ¼ varD

nD

þ varD

nD

, (9)

where nD and nD are the sample sizes of the disease and nondis-

ease samples and varD and varD are given by

8>><
>>:

varD¼
�

1
2

PK
k¼1

�
TPRðkÞ þ TPRðk�1Þ

�2
,
�
FPRðkÞ � FPRðk�1Þ

��
� AUC2

varD¼
�

1
2

PK
k¼1

�
FPRðkÞ þ FPRðk�1Þ

�2
,
�
TPRðkÞ�TPRðk�1Þ

��
�ð1�AUCÞ2

:

(10)
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This provides a simple variance estimate when all the associated

genetic variants used for the test are based on one study. If the

genetic variants come from different studies, we cannot use the

above equations because nD and nD are not defined. In this case,

we can adopt a bootstrap approach to estimate the variance. Sup-

pose the n genetic variants for the test are from U independent

studies. For the ith ði ¼ 1,/, nuÞ associated variant in the uth study

ðu ¼ 1,/, UÞ, we apply Equation 1 to compute its genotype fre-

quency in the case sample and repeat this step for all nu genetic

variants in the uth study. Further, by using Equations 2 and 3 to

combine these nu genetic variants, we can obtain the probabilities

of the multilocus genotypes given disease status. Given the total

number of diseased and nondiseased individuals in the uth study,

we can derive the observed numbers of all possible multilocus ge-

notypes given disease status. On the basis of these observed num-

bers, we draw a bootstrap sample and use the sample to calculate

the genotype frequencies, given disease status, for each of the nu

variants. We repeat this procedure for all the other U-1 studies

and then apply Equations 2–6 to construct the optimal ROC curve

and compute the AUC estimate. By drawing a large number of

bootstrap samples (e.g., 1000), we can obtain the bootstrap vari-

ance for the AUC estimate, denoted varBðAUCÞ. Although we illus-

trate the bootstrap approach for genetic variants, the same ap-

proach also applies for clinical risk factors and to the situation

where the genetic loci are in LD or interacting with each other.

With the variance estimates, we can easily determine the signif-

icance of the difference between two AUC estimates, A1 and A2, for

two different predictive tests. If the associated variants on which

the two tests are based come from different studies, the variance

of the AUC difference is equivalent to the sum of the variances

of the two AUC estimates,

varðA1 � A2Þ ¼ varðA1Þ þ varðA2Þ ,

where varðA1Þ and varðA2Þ are the variances of A1 and A2. On that

basis, we construct an appropriate test statistic that under the null

hypothesis and in large samples follows a standard normal distri-

bution:

A1 � A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðA1 � A2Þ

p : (11)

If some or all of the associated variants on which the two tests

are based come from the same studies, then we need to take the

covariance of A1 and A2 into account. We can adopt the same

bootstrap approach here, but now forming two optimal ROC

curves from each bootstrap sample. The bootstrap variance of

the AUC difference can be expressed as

varBðA1 � A2Þ ¼ varBðA1Þ þ varBðA2Þ � 2covBðA1,A2Þ ,

where varBðA1Þ, varBðA2Þ, and covBðA1,A2Þ are the bootstrap vari-

ances of A1 and A2 and the bootstrap covariance between A1

and A2.

Sample-Size Calculation
If the classification accuracy estimate (i.e., the AUC) of the new

test appears to be superior to existing tests, or if it reaches a desired

accuracy level, it might be worth further developing for clinical

use. However, the clinical validity of the test, i.e., its classification

and/or prediction accuracy, should be comprehensively evaluated

before considering the test for clinical use.11 For that purpose,

a new replication study is necessary.27 Such a study serves the pur-

pose of verifying the test’s estimated classification accuracy, which
644 The American Journal of Human Genetics 82, 641–651, March
has been so far estimated on the basis of assumptions and informa-

tion from published genetic studies. To conduct the study, we set

up a hypothesis of interest and design the study with the requisite

sample size to test that hypothesis. If we assume A0 is the AUC that

measures the classification accuracy of a previous test, or is the

minimum desired level of classification accuracy, we are interested

in knowing whether the performance of the new test is superior to

A0. Our null hypothesis for this purpose is H0 : A ¼ A0, with the

alternative HA : A > A0, where A is the AUC for the new test. An

appropriate sample size can then be determined that will ensure,

with specified power at an appropriate significance level, that

the new test exceeds the minimal acceptable AUC value A0. For

this, we adopt the general approach based on asymptotic theory.28

Assume a and 1� b are the specified type I error and power we

require for our test; the required sample size for the test can

then be expressed as

nD ¼ ðp varD þ varDÞ
�

F�1
�
1� a

�
þF�1ð1� bÞ

A� A0

�2

, (12)

where nD and nD are the sample sizes required for the disease

and nondisease samples, respectively, p ¼ nD=nD, and F is the

standard normal cumulative distribution function.

Application to Type 2 Diabetes
With the numerous genetic and clinical studies conducted so far,

our understanding of the causes of type 2 diabetes has greatly

improved. Thus, now might be the right time to begin applying

the more recent findings into clinical use, developing for type 2

diabetes a predictive test that combines all possible genetic vari-

ants and environmental factors. In particular, we use here novel

susceptibility loci that have been identified in recent genome-

wide association studies conducted for type 2 diabetes.9,10

Searching for a successful predictive genetic test for type 2 diabe-

tes has already been initiated. Recently, Weedon et al.3 used three

common variants, rs5219 (Glu23Lys) of KCNJ11, rs1801282

(Pro12Ala) of PPARG, and rs7903146 of TCF7L2, to predict the

risk of type 2 diabetes. We start with their study to test how con-

sistent the result from our approach is with their findings and

then investigate how much we might be able to improve their

test by utilizing the newer findings from genome-wide studies.

From the study by Weedon et al.,3 we obtained the allele fre-

quencies among cases and controls for the three variants. We com-

puted the genotype frequencies among cases and controls assum-

ing Hardy-Weinberg equilibrium for both the case and the control

populations. Applying Equation 3, we computed the multilocus

genotype probabilities given disease status, as detailed in Table 1.

From that, we could construct the optimal ROC curve (Figure 1).

The area under the optimal ROC curve is estimated to be 0.580

with Equation 6. The estimated standard error of the AUC is

0.0076 and 0.0075 with Equation 9 and the bootstrap approach,

respectively. If we chose 0.0076 as the estimate of the standard

error, the corresponding 95% confidence interval (CI) for the

AUC is [0.565, 0.595]. The area under the optimal ROC curve

has exactly the same value as the one obtained from the logistic

regression performed in the original paper.3 This is not surprising,

because only three loci are involved in the test and there is no

evidence of interaction among these loci,3 so that the ROC curve

from linear logistic regression should well approximate the

optimal ROC curve. Also, from Figure 4 in the original paper,

the logistic-regression-based ROC curve is a concave curve that

corresponds closely to the optimal ROC curve.
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Table 1. Calculation of an Optimal ROC Curve: Three SNPs

Allele Freq.a (Case;Control) Genotype Freq.b (Case;Population)

Multilocus Genotype

Freq.c (Case;Control)

Likelihood

Ratiod
Rank

Orderers5219 rs1801282 rs7903146 rs5219 rs1801282 rs7903146

rs5219x rs1801282x

rs7903146

0.384;0.354 0.099;0.123 0.384;0.3 0.147;0.126 0.010;0.015 0.147;0.093 0.0002;0.0002 1.236 7

0.473;0.423 0.0007;0.0006 1.086 11

0.379;0.484 0.0005;0.0006 0.954 15

0.178;0.214 0.147;0.093 0.0039;0.0024 1.590 3

0.473;0.423 0.0124;0.0089 1.394 6

0.379;0.484 0.0100;0.0082 1.223 9

0.812;0.771 0.147;0.093 0.0177;0.0086 2.052 1

0.473;0.423 0.0566;0.0316 1.794 2

0.379;0.484 0.0454;0.0289 1.570 4

0.473;0.458 0.010;0.015 0.147;0.093 0.0007;0.0008 0.855 16

0.473;0.423 0.0022;0.0029 0.753 19

0.379;0.484 0.0018;0.0027 0.663 23

0.178;0.214 0.147;0.093 0.0124;0.0114 1.094 10

0.473;0.423 0.0399;0.0415 0.962 13

0.379;0.484 0.0320;0.0378 0.846 17

0.812;0.771 0.147;0.093 0.0566;0.0404 1.402 5

0.473;0.423 0.1817;0.1476 1.231 8

0.379;0.484 0.1457;0.1349 1.080 12

0.379;0.415 0.010;0.015 0.147;0.093 0.0005;0.0009 0.590 24

0.473;0.423 0.0018;0.0034 0.521 26

0.379;0.484 0.0014;0.0031 0.459 27

0.178;0.214 0.147;0.093 0.0100;0.0133 0.753 20

0.473;0.423 0.0320;0.0483 0.663 22

0.379;0.484 0.0257;0.0440 0.584 25

0.812;0.771 0.147;0.093 0.0454;0.0473 0.960 14

0.473;0.423 0.1457;0.1725 0.845 18

0.379;0.484 0.1169;0.1572 0.743 21

Details of using the optimal ROC-curve approach for the three SNPs used by Weedon et al.3

a Allele-frequency estimates obtained from Weedon et al.3

b Genotype frequencies are computed assuming Hardy-Weinberg equilibrium separately for the case and the control populations.
c Multilocus genotype probabilities given disease status calculated with Equation 3.
d Likelihood ratios calculated with Equation 4.
e Rank order of the LRs.
We can improve the existing genetic test for type 2 diabetes in at

least two ways. Clinical studies have shown that diet, physical

activity, cigarette smoking, and alcohol consumption affect the

risk of type 2 diabetes.29 These environmental factors could poten-

tially increase the accuracy of the test and, perhaps more impor-

tantly, there is the possibility that they interact with the genetic

variants to cause the disease.5,9 With regard to genetic variants,

a two-stage genome-wide association study has now been com-

pleted for type 2 diabetes.9 This study confirmed the association

with rs7903146 in the TCF7L2 gene and, in addition, seven

SNPs were discovered representing four novel disease-susceptibil-

ity loci. We combined the information from these new loci, four

important environmental factors, and the three variants used in

the previous genetic test to create a new predictive genetic test.

To avoid overestimating the test’s discriminative ability, we chose

four SNPs from the seven new SNPs to represent the four novel

loci, removing the remaining three SNPs, which are in linkage dis-

equilibrium with the selected loci. The information for these four

novel loci, as well as for rs7903146, comes from the confirmatory

stage (stage 2)9 of the study because estimates from that stage are

more reliable (i.e., from a well-designed, large-scale association

study). Partial details of the calculation are given in Table 2, and
The
we find that the estimated AUC for the new test is 0.657 (Figure 1).

In principle, we could also incorporate the three removed SNPs

into the tests if the haplotype risk estimates were available, and

then the estimated AUC would be even higher.

Since this paper was first written, another genome-wide associ-

ation study has also been completed, and an additional five novel

disease risk loci have been discovered10 for type 2 diabetes. We

therefore obtained the estimates for these five disease risk loci

from the second stage of this genome-wide association study

and incorporated them also into the new predictive genetic test;

partial details of the calculation are given in Table 3. The estimated

AUC for the new test is now increased to 0.671 (Figure 1) with an

estimated standard error of 0.0071, and the corresponding 95% CI

is [0.657, 0.685]. In the near future, more and more disease risk

variants will no doubt be discovered,10 and the relation between

these variants (e.g., gene-gene interaction) will become clearer.

Thus, for type 2 diabetes, or any other disease, our approach could

be adopted to progressively incorporate newly discovered variants,

and eventually their interaction effects, gradually improving the

classification accuracy of a predictive test.

Compared to the existing genetic test (AUC ¼ 0.580), the

proposed test has substantially higher estimated classification
American Journal of Human Genetics 82, 641–651, March 2008 645



accuracy (AUC ¼ 0.671). To test the difference in these two AUC

values, we calculated

A1 � A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varBðA1 � A2Þ

p ¼ 0:671� 0:580

0:008
¼ 11:375;

where A1 and A2 are the AUC estimates for the proposed test and

existing test, respectively, and varBðA1 � A2Þ is the bootstrap vari-

ance of A1 � A2, taking the covariance into account. The corre-

sponding p value for the test is 2:8310�30. Although this result

is exceedingly significant (owing to being based on an asymptotic

result and the large samples involved), the AUC estimates and this

test made certain assumptions (e.g., a multiplicative model).

Therefore, we should design a study to test whether this accuracy

can in fact be achieved. The requisite sample size can be calculated

to ensure that the new test has a higher level of accuracy than the

existing test. By using Equation 10, we can calculate the variances:

varD ¼ 0:072 and varD ¼ 0:074. Assuming a type I error rate (a)

of 0.05, power ð1� bÞ of 0.95, and equal numbers of cases and

controls ðp ¼ 1Þ, we compute the necessary sample size using the

general formula (Equation 12),

nD ¼ nD ¼ ð0:072þ 0:074Þ
�

1:645þ 1:645

0:671� 0:580

�2

z191 ,

i.e., 191 cases and 191 controls. Note that this particular sample

size also applies for testing our hypothesis with any choices of

type I error rate and power that satisfy F�1ð1� aÞ þF�1ð1� bÞ ¼
1:645þ 1:645 ¼ 3:29 (e.g., 1� b ¼ 0:8 and a ¼ 0:007).

Discussion

The importance and benefit of predictive genetic tests have

been recognized by both researchers and the public.7,8,30–33

In a recent article, genetic tests have been described as the

cornerstone of genomic medicine.7 Although the benefit

of predictive genetic testing is obvious and this opportunity

is important for the field of medical genetics, work on this

topic is still limited. This is partly due to our limited knowl-

edge of genetic causes of common diseases. With the recent

intensive research on common diseases, especially with the

completion of genome-wide association studies, many

novel, apparently causal genes have already been discov-

ered, and variants of these genes, whether themselves

causal or not, could be usefully implemented into genetic

tests. For that purpose, we have described here a general

model to both design and evaluate a predictive genetic

test. By taking the information from previous, related asso-

ciation studies, our approach has the ability to estimate the

proposed test’s approximate discriminative ability. By using

this result, if it is encouraging, we can formulate a hypothe-

sis of interest to rigorously evaluate the proposed test, and

for this purpose, we have provided the formula for sam-

ple-size calculation. Our approach is easy to use. In a simple

scenario (e.g., for the rebuilt existing predictive genetic test

for type 2 diabetes), it can be implemented with Excel. We

have also provided sample R source code (OPMDesign.R)

on the website noted in the Web Resources.

The model we have introduced for the design of a predic-

tive genetic test is an illustration of the use of the original

optimality theory based on the likelihood ratio.19,20 This

theory indicates that a decision rule based on the likeli-

hood ratio is best. We have further shown that a test built

on the likelihood ratio can achieve the highest discrimina-

tive ability among all approaches. We incorporated these

ideal properties in designing a predictive genetic test for

type 2 diabetes. Our approach is similar to the approaches

introduced by Baker22 and McIntosh et al.21 The differ-

ences among the three approaches relate to the calculation

of the LR, or its one-to-one function, the risk score. Baker22

approached the LR by directly using the joint distributions

of predictors among cases and controls in the data,

whereas McIntosh et al.21 estimated the risk by logistic re-

gression. From a large-sample simulation21 and a real data

application,22 Baker’s approach showed a better perfor-

mance than did the logistic-regression approach,21 but

with an over-fitting issue when the sample size is limited.

A model is liable to over-fitting whenever too many param-

eters are estimated for the sample size that is available.34

Baker approached the LR directly from the joint distribu-

tions of the predictors, with the result that the model com-

plexity increases exponentially with the number of predic-

tors, leading to an overly optimistic estimate of the ROC

performance. For example, if the test is based on n risk

SNPs, this approach requires 3n � 1 genotype combination

frequencies to be estimated from each of the case and

Figure 1. ROC Curves for Type 2 Diabetes
The three lines in the plot from bottom to top correspond to the
ROC curves of three type 2 diabetes predictive tests: the rebuilt
existing predictive genetic test based on three SNPs, the new pre-
dictive test combing the previously associated SNPs, four environ-
mental factors, and four novel risk SNPs from the confirmatory
stage of the genome-wide association study,9 and the improved
new predictive test with five additional novel risk SNPs discovered
in the second genome-wide association study of type 2 diabetes.10

The estimated AUC values of these three tests are 0.580, 0.657, and
0.671, respectively.
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control samples. Our approach approximates the likeli-

hood ratios by utilizing the essential information of each

genetic variant from previous genetic studies and assumes

a multiplicative model. This not only allows us full use of

the information for single genetic variants, which is com-

monly obtained in genetic studies, but also helps mitigate

against over-fitting. For the same example, our approach

needs only 2n genotype frequencies to be estimated from

each of the case and control samples to compute the fre-

quencies of all genotype combinations, and therefore the

model complexity is greatly reduced. Our approach can

use genetic variants with known mode of inheritance

and is easily extended to scenarios where the genetic vari-

ants are in linkage disequilibrium or interact with each

other. Incorporating this additional information can

make the approach more robust to the over-fitting prob-

lem and increase the power of the approach. However,

the performance of the approach relies on the assumptions

Table 3. Calculation of an Optimal ROC Curve: Adding Five SNPs—One Shown—to the Calculations in Table 2

Environmental and Genetic

Risk Factors Combination

Frequencies from Previous

Testa (Case;Control)

Genotype Freq.b

(Case;Control)

Genotype Freq.

(Case;Population)

Environmental and

Genetic Risk Factors

Combination Frequencies

(Case;Control)
Likelihood

Ratio

Rank

PercentagecDietary Score x . x rs5219x . rs4402960 . rs4402960 . Dietary Score x . x rs4402960 x .

8.238e-09;1.450e-09 0.103;0.115 . 0.103;0.114 . 1.118e-11;1.160e-12 9.640 0.02%

. . . . . . . .
1.275e-08;2.767e-09 0.103;0.115 . 0.103;0.114 . 1.731e-11;2.300e-12 7.523 0.05%

. . . . . . . .
7.189e-09;1.806e-09 0.103;0.115 . 0.103;0.114 . 9.756e-12;1.534e-12 6.359 0.10%

. . . . . . . .
9.568e-09;2.869e-09 0.103;0.115 . 0.103;0.114 . 1.298e-11;2.492e-12 5.210 0.21%

. . . . . . . .
4.037e-09;1.767e-09 0.103;0.115 . 0.103;0.114 . 5.478e-12;1.589e-12 3.447 0.89%

. . . . . . . .

Details of using the optimal ROC-curve approach to further improve the new predictive genetic test in Table 2 by incorporating five additional novel risk

SNPs discovered in the second genome-wide association study of type 2 diabetes10 (five combinations only, out of a total of 23108 combinations).
a Multilocus genotype probabilities given disease status obtained from the new predictive genetic test in Table 2.
b Genotype frequency estimates obtained from the confirmatory stage (stage 2) of the second genome-wide association study.10

c 100�(rank of LR)/(total number of combinations).

Table 2. Calculation of an Optimal ROC Curve: Adding Four SNPs—One Shown—and Four Environmental Factors—One Shown—
to the Calculations in Table 1

Information

for

Environmental

Risk Factorsa

(Percentage;

Relative Risk)

Allele

Freq.b

(Case;

Control)

Genotype

Freq.c

(Case;

Control)

Frequencies of

Environmentald

and Genetic

Risk Factors

(Case;

Population)

Environmental

and Genetic

Risk Factors

Combination

Frequencies

(Case;Control)

Likelihood

Ratio

Rank

PercentageeDietary Score . rs5219 . rs7903146 . Dietary Score . rs5219 . rs7903146 .
Dietary Score

x . x rs5219x .

0.150;1.000 . 0.384;0.354 . 0.163; 0.084 . 0.197;0.150 . 0.147;0.126 . 0.163;0.089 . 8.238e-09;1.450e-09 5.680 0.20%

. : . . . : . . . . . . . .
0.270;0.860 . 0.384;0.354 . 0.163; 0.084 . 0.305;0.270 . 0.147;0.126 . 0.163;0.089 . 1.275e-08;2.767e-09 4.608 0.50%

. : . . . : . . . . . . . .
0.170;0.770 . 0.384;0.354 . 0.163; 0.084 . 0.172;0.170 . 0.147;0.126 . 0.163;0.089 . 7.189e-09;1.806e-09 3.982 0.90%

. : . . . : . . . . . . . .
0.260;0.670 . 0.384;0.354 . 0.163; 0.084 . 0.229;0.260 . 0.147;0.126 . 0.163;0.089 . 9.568e-09;2.869e-09 3.335 1.75%

. : . . . : . . . . . . . .
0.150;0.490 . 0.384;0.354 . 0.163; 0.084 . 0.097;0.150 . 0.147;0.126 . 0.163;0.089 . 4.037e-09;1.767e-09 2.285 5..86%

. : . . . : . . . . . . . .

Details of using the optimal ROC-curve approach to combine the SNPs in Table 1, four environmental factors, and four novel risk SNPs from the first genome-

wide association study9 by assuming r ¼ 0:07 (five combinations only, out of a total of 93105 combinations).
a Distribution and relative risk of the environmental risk factors obtained from Hu et al.29

b Allele frequency estimates obtained from Weedon et al.3

c Genotype frequency estimates for cases and controls obtained from the confirmatory stage (stage 2) of the first genome-wide association study.9

d Distribution of the environmental factors in cases calculated by applying Equation 1.
e 100�(rank of LR)/(total number of combinations).

The American Journal of Human Genetics 82, 641–651, March 2008 647



being satisfied and the accuracy of the information from

previous genetic studies. Assumption violation and inaccu-

rate information can bias the parameters of interest (e.g.,

the AUC). For instance, if we violate the assumption of

a multiplicative model and linkage equilibrium by incor-

porating all seven SNPs discovered from the first genome-

wide association study into the test, the estimated AUC

will increase from 0.671 to 0.678. Although this does not

seem to affect the result too much, violation of the

assumptions when there is a large number of loci or loci

having strong effects (i.e., high relative risks) will cause

serious bias. In illustration of this, assume two loci near

each risk locus are also used for forming the test. If we as-

sume for simplicity that the two loci are in complete link-

age disequilibrium with the risk loci, then the estimated

AUC is increased to 0.750. To avoid introducing such

a bias, we can either apply the extended approach to incor-

porate these loci given the required information (i.e., the

LD estimates), if available, or we can simply remove these

extra loci—this leads to a conservative estimate, and the

design will still be valid.

We illustrated the proposed approach for the case of type

2 diabetes. The approach was first examined with as an

example an existing predictive genetic test,3 and the result

from the optimal ROC curve method was found to be highly

consistent with the one originally reported. This results

from the equivalence between the logistic-regression-based

ROC curve and the optimal ROC curve in such a simple sce-

nario (i.e., few loci, no interactions). To further improve the

predictive test, we incorporated further risk factors. With

both important environmental factors and novel loci dis-

covered from two recent genome-wide association studies

taken into account, the new predictive genetic test

(AUC¼0.671)could have a significantly higherclassification

accuracy (P ¼ 2:8310�30) than the existing test (AUC ¼
0.580). Because the variants involved in the new test are ei-

ther well studied or confirmed, and the corresponding esti-

mates used came from well-designed, large-scale studies,

the estimated AUC value for this new test could be consid-

ered to be a reasonable approximation of the actual classifi-

cation accuracy of the test. Because gene-gene and gene-

environmental interactions were not studied in the

previous association studies, we are unable to incorporate

these effects into the new proposed test. If there are strong

interaction effects among the predictors, our estimated

AUC value would tend to be conservative. The design to

study the test will still be valid because any strong interac-

tion effect would lead to a higher value of the AUC and

thus be in favor of the alternative hypothesis.

Unlike the current predictive genetic test, we also incor-

porated environmental risk factors into the new test—not

only because by themselves they can increase information

on risk to the disease, but also because they could interact

with the genetic variants to cause the disease. Without

considering them, we cannot study any gene-environmen-

tal effect in any proposed new test. The other advantage of

studying them is that in some scenarios we can use them as
648 The American Journal of Human Genetics 82, 641–651, March
a method to help disease prevention. For example, we

could use the equation in Appendix C to calculate the pos-

itive predictive values (PPV) for individuals who carry the

multilocus genotype with most risk. The chance of type

2 diabetes would then be predicted to decrease from

83.9% to 29.2% if they adopted a healthy life style (exer-

cise/week > 7 hr and dietary score ¼ 5) rather than having

a nonhealthy life style (exercise/week < 0.5 hr and dietary

score ¼ 1). Because the predictive genetic test can be con-

ducted at an early age, such as at birth, it would be rela-

tively easy to advise high-risk people to adopt a healthier

life style when they are young rather than make them

change behavior after the disease has been diagnosed.

Some researchers have suggested that it would be less

costly and more efficient to conduct genetic tests for

only high-risk individuals (e.g., individuals with a family

history of disease), instead of for the general popula-

tion.35,36 We therefore also attempted to investigate

a predictive test for high-risk diabetes subjects on the basis

of results of the initial stage of the first genome-wide asso-

ciation study.9 We found that the resulting test could reach

a high level of classification accuracy (AUC ¼ 0.855). How-

ever, this result would be liberal because the controls came

from the general population rather than from a subpopula-

tion of high-risk individuals. To conduct a genetic test on

a particular subgroup of the population requires that we in-

vestigate its performance on that subgroup. If a test ap-

pears to be superior to the one already in use for the general

population, it might be considered as a candidate for

a high-risk population, but it must first be carefully tested

on such a population.

Our proposed approach should be a useful tool for de-

signing a predictive genetic test. It would help the investi-

gator explore possible hypotheses and make decisions re-

garding developing a new genetic test. It should function

as an exploratory phase of medical test development at lit-

tle cost. The performance of the approach depends on our

knowledge of disease-associated variants and the accuracy

of the estimates found in the published association studies.

The estimated test’s classification accuracy will reflect the

actual test’s performance if the variants involved in the

test have been well studied and their estimates come

from well-planned studies. Otherwise, the estimate could

be subject to bias. Any result would only be valid for the

same population as that used for the association study

that produced the estimates, and not necessarily apply to

different populations, for which the risk estimates and

population frequency estimates could be different.

Appendix A

Proof that the Optimal ROC Curve Has

the Highest AUC

When we are dealing with multiple genetic variants, each

method combines multiple predictors differently and as-

signs its own unique score for each multilocus genotype.
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Because the ROC curve relies only on the ranks of these

scores, not the absolute scores, the ROC curve from each

approach can be represented by the unique ranks of the

multilocus genotypes. Assuming o1 represents the ranks

of multilocus genotypes from the optimal ROC approach

and o2 represents those from any other approach, we prove

that the AUC from the optimal ROC approach ðAUCO1Þ is

always as great as, or greater than, that from any other

approach ðAUCO2Þ.
It is easy to show that the rank o2 can always be obtained

from o1 by a series of order switches between pairs of

multilocus genotypes. We prove that each order switch

from the original ranks of the optimal ROC curve can

only decrease, or leave unchanged, the AUC value. Assume

Pn ¼ ðpn
ð1Þ, pn

ð2Þ,/, pn
ðKÞÞ and Qn ¼ ðqn

ð1Þ, qn
ð2Þ,/, qn

ðKÞÞ are the

distributions of the multilocus genotypes in cases and

controls, respectively, from the nth order switch. At the

(nþ1)th step, we switch the order of the ith and

jth multilocus genotypes, and the corresponding distribu-

tions are then denoted Pnþ1 ¼ ðpn
ð1Þ,/, pn

ðjÞ,/, pn
ðiÞ,/, pn

ðKÞÞ
and Qnþ1 ¼ ðqn

ð1Þ,/, qn
ðjÞ,/, qn

ðiÞ,/, qn
ðKÞÞ. Simply by using

the trapezoid rule, we can calculate the difference in the

AUCs:

AUCn � AUCnþ1

¼ 1

2
ð2pn þ pn

ðiÞÞqn
ðiÞ þ

1

2
ð2pn þ 2pn

ðiÞ þ pn
ðiþ1ÞÞqn

ðiþ1Þ

þ/þ 1

2

 
2pn þ 2

Xj�2

k¼i

pn
ðkÞ þ pn

ðj�1Þ

!
qn
ðj�1Þ

þ1

2

 
2pn þ 2

Xj�1

k¼i

pn
ðkÞ þ pn

ðjÞ

!
qn
ðjÞ

�1

2
ð2pn þ pn

ðjÞÞqn
ðjÞ �

1

2
ð2pn þ 2pn

ðjÞ þ pn
ðiþ1ÞÞqn

ðiþ1Þ

�/� 1

2

 
2pn þ 2pn

ðjÞ þ 2
Xj�2

k¼iþ1

pn
ðkÞ þ pn

ðj�1Þ

!
qn
ðj�1Þ

�1

2

 
2pn þ 2pn

ðjÞ þ 2
Xj�1

k¼iþ1

pn
ðkÞ þ pn

ðiÞ

!
qn
ðiÞ

¼ 1

2
ðpn
ðiÞq

n
ðiÞ � pn

ðjÞq
n
ðjÞÞ þ ðpn

ðiÞ � pn
ðjÞÞqn

ðiþ1Þ þ/

þðpn
ðiÞ � pn
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1

2
ðpn
ðjÞq

n
ðjÞ � pn

ðiÞq
n
ðiÞÞ

þ
	Pj�1

k¼i
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ðkÞ
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ðjÞ �
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ðjÞ þ

Pj�1

k¼iþ1

pn
ðkÞ
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ðiÞ

¼ ðpn
ðiÞq

n
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ðjÞq
n
ðiÞÞ þ ðpn

ðiÞq
n
ðiþ1Þ � pn

ðiþ1Þq
n
ðiÞÞ

þ ðpn
ðiþ1Þq

n
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ðjÞq
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ðiÞÞ

þ ðpn
ðj�1Þq

n
ðjÞ � pn

ðjÞq
n
ðj�1ÞÞ ,

where

pn ¼
Xi�1

k¼1

pn
ðkÞ:

Because
pn
ðiÞ

qn
ðiÞ

R
pn
ðiþ1Þ

qn
ðiþ1Þ

R/R
pn
ðjÞ

qn
ðjÞ

,

AUCnRAUCnþ1

 
AUCn¼AUCnþ1 if and only if

pn
ðiÞ

qn
ðiÞ
¼

pn
ðiþ1Þ

qn
ðiþ1Þ

¼/ ¼
pn
ðjÞ

qn
ðjÞ

!
:

To satisfy the condition LRn
ðiÞRLRn

ðiþ1ÞR/RLRn
ðjÞðLRn

ðkÞ ¼
pn
ðkÞ=q

n
ðkÞ, k ¼ i,/, jÞ, the order of the ith to jth multilocus

genotypes must keep their original order as in o1. This

requirement also applies to other pair switches and may

limit the possible order changing but is always feasible.

Therefore, we obtain

AUCO1 R/RAUCnRAUCnþ1R/RAUCO2 ,

and thus prove that the AUC of the optimal ROC curve is at

worst equal to that of any other approach. Because O2 is

arbitrary, the AUC of the optimal ROC curve is the highest

among all ROC curves.

Appendix B

Risk Estimates Measured as Odds Ratios

If the estimates of risk parameters for the genetic variants

are odds-ratio estimates, Equation 1 is no longer valid

unless we make the rare disease assumption. Under the

common disease scenario, we could still obtain Pðgiji jDÞ,
ji ¼ 1,/, mi, assuming there are mi possible (multilocus)

genotypes for the ith genetic variant. For each genotype,

we denote its odds ratio estimate ORiji ¼ PðDjgijiÞ=
PðDjgijiÞ=½PðDjgi1Þ=PðDjgi1Þ� and the corresponding fre-

quency fiji, ji ¼ 1,/, mi. The probability of disease given ge-

notype, PðDjgijiÞ, ji ¼ 1,/,mi, can then be obtained from

the following mi equations,

8>><
>>:

PðD j gijiÞ ¼
ORiji PðD j gi1Þ

1þ ORiji PðD j gi1Þ � PðD j gi1ÞPmi

ji¼1

PðD j gijiÞfiji ¼ r

, ji ¼ 1,/,mi :

ð13Þ

By applying Bayes’ rule, we have Pðgiji jDÞ,

Pðgiji jDÞ ¼
PðD j gijiÞ,fiji

r
, ji ¼ 1,/,mi : (14)

Genetic Variants Are SNPs

We assume the ith genetic variant is a SNP that has two

alleles, A and a. From a previous study, we obtain the geno-

type frequencies F ¼ ðf2,f1,f0Þ for genotypes G ¼ ðAA,Aa,aaÞ
and the relative risk rr2 ðrr1Þ, the risk for AA (Aa) divided by

that for aa. If the genotype frequencies are not available

from the previous study, we can estimate them from the

allele frequencies on the assumption of HWE. On the basis
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of Equation 1, we have the genotype distribution in the

disease population,8>><
>>:

PðAA jDÞ ¼ rr2f2

rr2f2 þ rr1f1 þ f0

PðAa jDÞ ¼ rr1f1

rr2f2 þ rr1f1 þ f0

Pðaa jDÞ ¼ f0

rr2f2 þ rr1f1 þ f0

: (15)

Further modifying the above equations, we can have a sim-

ilar expression for a different mode of inheritance. For in-

stance, if the variant A is dominant, we have the

following conditional probabilities:(
PðAA,Aa jDÞ ¼ rrðf2 þ f1Þ

rrðf2 þ f1Þ þ f0

Pðaa jDÞ ¼ f0

rrðf2 þ f1Þ þ f0

, (16)

where rr denote the relative risk of the genotypes with the

A allele versus the genotype without the A allele.

Using Information from Previous Genetic-Test Studies

If the genetic variants we are interested in have been

studied in an existing genetic test, we could also utilize

such information. From the ROC curve of the previous

genetic test, we can obtain the entire set of TPR and FPR

pairs. Assuming there are K TPR and FPR pairs, the dis-

tribution of genotype combinations among cases can be

derived as

PðGk jDÞ ¼ TPRðkþ1Þ � TPRðkÞ, k ¼ 1,/,K � 1 ,

where the TPRðkÞ are the ordered TPRs from the left side to

the right of the ROC curve.

If we are only interested in some of the genetic variants,

we sum the above conditional probabilities over all genetic

variants of no interest and thus obtain the distribution for

the genetic variants of interest.

Appendix C

Calculating Predictive Values

For given disease prevalence r, the predictive values can be

simply calculated by Bayes’ rule:8<
:

PPVðkÞ ¼
TPRðkÞ,r

TPRðkÞ,rþ FPRðkÞ,ð1� rÞ

NPVðkÞ ¼
�
1� FPRðkÞ

�
,ð1� rÞ�

1� FPRðkÞ
�
,ð1� rÞ þ

�
1� TPRðkÞ

�
,r

, k ¼ 1,/,K:
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