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Abstract Various neurotoxic peptides modulate voltage-gated
sodium (NaV) channels and thereby affect cellular excitability.
d-Conotoxins from predatory cone snails slow down inactivation
of NaV channels, but their interaction site and mechanism of
channel modulation are unknown. Here, we show that d-cono-
toxin SVIE from Conus striatus interacts with a conserved
hydrophobic triad (YFV) in the domain-4 voltage sensor of
NaV channels. This site overlaps with that of the scorpion a-tox-
in Lqh-2, but not with the a-like toxin Lqh-3 site. d-SVIE func-
tionally competes with Lqh-2, but exhibits strong cooperativity
with Lqh-3, presumably by synergistically trapping the voltage
sensor in its ‘‘on’’ position.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

NaV channel proteins are responsible for the rapid electrical

signaling of neurons and muscle cells. They consist of four

homologous domains and respond to changes in the trans-

membrane electric field by a translocation of their voltage sen-

sor elements formed by the segments S3/S4 in each domain.

The investigation of NaV channels and the discrimination of

different isoforms was largely facilitated by various neurotox-

ins that affect channel function in specific ways. In addition,

neurotoxins have attracted attention with respect to their use

as drugs, e.g., for pain treatment. Studies of the physical inter-

action between NaV channels and neurotoxins have revealed

various binding sites for neurotoxins on the channel proteins

(termed receptor site-1 through site-9 [1,2]), where only sites

1–5 are molecularly defined. Several classes of neurotoxins of

completely different structure affect NaV channel inactivation.

However, it is not known whether they exert their effects

according to a common mechanism and if there is a functional

coupling between them. Long-chain scorpion a-toxins, for

example, consisting of 60–70 amino acids, target receptor

site-3 mainly located in the S3/S4 linker of domain-4 and inhi-
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bit rapid channel inactivation. Cone-snail d-conotoxins [3],

peptides consisting of about 30 amino acid residues, exert a

similar effect on NaV channels. However, previous competition

experiments measuring the binding of radioactively labeled

toxins to membrane preparations containing NaV channels

have suggested that their molecular receptor site (‘‘site-6’’) is

distinct from that of scorpion a-toxins [4–6].
Many d-conotoxins, such as d-GmVIA and d-TxVIA [7–10]],

are specific for mollusks; d-EVIA is poorly active on mammals,

but exhibits some subtype specificity [11]. In this report, we

show that the d-conotoxin SVIE from Conus striatus affects

mammalian NaV channels. In addition, we identify the interac-

tion motif of d-SVIE with the voltage sensor of domain-4 in

NaV channels and show that this motif is not shared with

the a-like toxin Lqh-3 while it is shared with the a-toxin
Lqh-2. The interaction pattern with the voltage sensor deter-

mines whether neurotoxins functionally compete (d-SVIE
and Lqh-2) or even exhibit a strong functional synergism

(d-SVIE and Lqh-3).
2. Materials and methods

2.1. Channel constructs and mutagenesis
The NaV channel type used was rat skeletal muscle sodium channel

I, rNaV1.4 (M26643) [12]. For single site-directed exchanges of amino
acids 1431–1440 against cysteines, an NheI restriction site was intro-
duced between basepairs 4268 and 4273 of the rNaV1.4-encoding
ORF [12], using the QuikChange mutagenesis kit (Stratagene, LaJolla,
CA, USA). PCR primers containing this NheI site and the respective
mutation were used in PCRs together with a primer binding on the
opposite strand at the end of the ORF, including a second NheI site
following the stop codon. The obtained PCR fragments were ligated
into the pGemT vector (Promega, Madison, USA) and then sequenced
prior to transferring the NheI-digested fragments into the rNaV1.4-
NheI-pcDNA3 expression plasmid. Correct insertion was verified by
sequencing.
2.2. Cell culture and transfection
HEK 293 cells (CAMR, Porton Down, Salisbury, UK) were main-

tained in 45% Dulbecco�s Modified Eagle’s Medium (DMEM) and
45% F12, supplemented with 10% fetal calf serum in a 5% CO2 incu-
bator at 37 �C. They were transiently transfected with a 5:1 ratio of
the NaV channel expression plasmids and a vector encoding the CD8
antigen using the Superfect transfection kit (Quiagen, Hilden, Ger-
many). Dynabeads (Deutsche Dynal GmbH, Hamburg, Germany)
were used for visual identification of individual transfected cells.
blished by Elsevier B.V. All rights reserved.
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2.3. Electrophysiological measurements and analysis
Whole-cell voltage clamp experiments and toxin application were

performed as described previously [13]. Data were acquired with an
EPC-10 patch clamp amplifier operated by PatchMaster software
(HEKA Elektronik, Lambrecht, Germany). Data analysis was per-
formed using FitMaster (HEKA) and IgorPro (WaveMetrics, Lake
Oswego, OR, USA). The patch pipettes contained (mM): 35 NaCl,
105 CsF, 10 EGTA, 10 HEPES (pH 7.4 with CsOH). The bath solution
contained (mM): 150 NaCl, 2 KCl, 1.5 CaCl2, 1 MgCl2, 10 HEPES
(pH 7.4 with NaOH). The degree of fast inactivation was assayed at
0 mV by measuring the peak current as well as the mean current level
between 4.5 and 5 ms after the start of the depolarization. The ratio
I5ms/Ipeak gives an estimate of the probability for the channels not to
be inactivated after 5 ms [13]. The dose dependence for toxin-induced
removal of fast inactivation was measured by plotting I5ms/Ipeak as a
function of toxin concentrations. The concentration dependence was
described with the Hill equation, I5ms/Ipeak = a0 + a1/(1 + (EC50/[tox-
in])h), where h is the Hill coefficient, [toxin] the toxin concentration,
a0 the offset. The amplitude, a1 plus a0, provides the maximal value
of I5ms/Ipeak indicating the expected maximal effect of the toxin on fast
inactivation. EC50 provides a measure for the concentration of half-
maximal inhibition of fast inactivation. All data are expressed as arith-
metic means ± S.E.M. (n = number of independent experiments).

2.4. Toxin purification and synthesis
d-SVIE (Q9XZK5) was synthesized as previously described [14]. The

scorpion a-toxins Lqh-2 (P59355) and Lqh-3 (P56678) [15] from Leiu-
rus quinquestriatus hebraeus were generous gifts of D. Gordon (Univer-
sity Tel Aviv, Israel).
wt DE QE KT

Fig. 1. Effect of d-SVIE on wild-type NaV1.4 channels and receptor
site-3 mutants. (A) Current responses to depolarizations to 0 mV for
NaV1.4 channels under control conditions (center) and after applica-
tion of 2 lM d-SVIE (bottom). The arrow marks 5 ms, the time where
inactivation of the channels was assayed. (B) Dose–response curve for
the effect of d-SVIE to remove inactivation at 0 mV (n = 5). (C)
Alignment of the S3/S4 linker of domain-4 of the indicated mammalian
NaV channel types. Residues that were shown to take part in forming
receptor site-3 are highlighted (arrows). The residues following to the
right, i.e., towards the voltage sensor S4 are rather conserved. (D)
Normalized current records at �20 mV of the wild-type channel
NaV1.4 as well as the indicated single-point mutants in the background
of NaV1.4. The control currents are superimposed to the records taken
after application of 2 lM d-SVIE. The difference between the two
traces is shown as filled surface to indicate the increase in current
integral upon toxin application. (E) Analysis of the mean inactivation
at 0 mV, here expressed as I5ms/Ipeak, after application of 2 lM d-
SVIE. The filled bars indicate the corresponding values for the effect of
5 nM Lqh-2 (green) and 5 nM Lqh-3 (blue) (from [18,19]).
3. Results and discussion

3.1. Effect of d-SVIE on channel inactivation

The d-conotoxin SVIE investigated here, proved to be highly

potent in modifying the gating of rat skeletal muscle NaV1.4

channels expressed in mammalian cells (Fig. 1A). The major

effect of d-SVIE is to impair rapid channel inactivation. The

concentration dependence for slowing channel inactivation at

0 mV yielded an apparent KD value of the toxin effect of

500 ± 130 nM (n = 5; Fig. 1B) and a Hill coefficient close to

unity (0.93 ± 0.18) suggesting a simple one-to-one reaction

between toxin and channel molecule.

The effect of d-SVIE on NaV1.4 channel inactivation is sim-

ilar to that of scorpion a-toxins, which bind to receptor site-3

[13,16–19]. This prompted us to perform an analysis of the

functional impact of d-SVIE on NaV1.4 channel mutants that

were previously shown to exhibit quite different properties

regarding their interaction with the scorpion a-toxins Lqh-2

and Lqh-3 [15]. Rat NaV1.2, a representative of NaV channels

from the central nervous system is insensitive to Lqh-3, and

human NaV1.7 from peripheral nerves, is less sensitive to

Lqh-2 than NaV1.4, when expressed in HEK 293 cells [13].

This difference in toxin-channel interaction could be attributed

to single charged residues in the S3/S4 linker of domain-4 (Fig.

1C). Mutation D1428E of NaV1.4 reduces the activity of Lqh-3

by about a factor of 1000; Q1431E and K1432T had strong im-

pacts for the action of Lqh-2 ([19], Fig. 1E). However, as illus-

trated in Fig. 1D and E, these mutations did not result in a

reduction of the ability of 2 lM d-SVIE to remove inactivation

of the channels.
3.2. Identification of the d-SVIE interaction site at the NaV
voltage sensor element

Alterations of non-conserved residues in the putative inter-

action site for scorpion a-toxins only had moderate impacts
on the effect of the d-conotoxin. Therefore, a cysteine-scanning

mutagenesis of the conserved part of the S3/S4 linker of do-

main-4 was carried out, starting from Q1431C and ending at

F1440C, the residue before the first arginine of the voltage sen-

sor (Fig. 1C). All mutants were functionally expressed in HEK

293 cells and the effects of 2 lM d-SVIE, 5 nM Lqh-2, and

5 nM Lqh-3, concentrations producing about the same effect

on the inactivation of wild-type NaV1.4 channels, were tested

(Fig. 2A). The potency of d-SVIE was slightly reduced by

K1432C while the toxin was basically inactive on mutants

Y1433C and F1434C. Surprisingly, it exhibited stronger effects

on mutant V1435C. Thus, the ability of d-SVIE to functionally

modify NaV1.4 channels is mainly determined by the hydro-

phobic triad Y1433–F1434–V1435 supporting the hypothesis

of a hydrophobic interaction of d-conotoxins with NaV chan-

nels [10,20].

Interestingly, cysteine substitutions in the hydrophobic triad

also modulate the effects of the a-toxin Lqh-2, while they leave

the effects of the a-like toxin Lqh-3 unchanged (Fig. 2B).
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Fig. 2. Cysteine scan of the S3/S4 linker. (A) Cysteine-substituted
NaV1.4 channels were expressed in HEK 293 cells and current
responses to �20 mV before and after application of 2 lM d-SVIE,
5 nM Lqh-2, or 5 nM Lqh-3 were recorded. The shaded areas illustrate
the increase in current integral upon toxin application. (B) The effect of
the toxins on the inactivation time course at 0 mV was normalized
to the values obtained for the wild-type (NaV1.4) and is plotted as a
function of the position of the mutated residue on a logarithmic scale.
While mutagenesis of the channel sequence had virtually no impact on
the effect of Lqh-3 (squares), both d-SVIE (circles) and Lqh-2
(triangles) are strongly affected when cysteines are introduced between
residues K1432 and V1435.
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Fig. 3. Competition and synergy between d-conotoxin SVIE and
scorpion a-toxins. (A) Current trace in the presence of 2 lM d-SVIE
for the indicated pulse protocol. The center pulse to +80 mV was given
for variable durations, here shown for 170 ms. (B) Time course of
depolarization-induced loss of toxin effect for 200 nM Lqh-2, 2 lM d-
SVIE, and both toxins together. The apparent dissociation of the
individual toxins was described by single-exponentials yielding time
constants of 247 ms (d-SVIE) and 29 ms (Lqh-2). The combination of
both was described by a double-exponential with s1 = 29 ms (56%) and
s2 = 340 ms (44%). (C) Similar experiments as in (B) but with Lqh-3
and Lqh-2, yielding 490 ms for Lqh-3. The combination of both toxins
obeyed a double-exponential time course: s1 = 25 ms (78%) and
s2 = 810 ms (22%). (D) Dissociation experiments with Lqh-3 and d-
SVIE. In combination with d-SVIE the toxin effect could not even be
eliminated by very long depolarizations. Only about 3% of the
channels showed a dissociation constant of 490 ms. For the remaining
97% a time constant of at least 15 s was estimated. Such long
depolarizations cannot be tested experimentally because of slow
channel inactivation taking place (n = 5).
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Together, these results are compatible with Lqh-2 and d-SVIE
sharing common interaction epitopes on NaV channels. Con-

sidering that the S3/S4 linker in domain-4 of NaV channels is

longer than the S3/S4 linkers in the other domains, it is con-

ceivable that it harbors both, parts of receptor site-3 and

site-6, where site-3 is located more towards S3 and site-6 to-

wards S4.

It can be concluded that a broad variety of neurotoxins

affecting inactivation of NaV channels (e.g. [16,21–24]) all func-

tion according to a common mechanism. One part of the toxin

presumably binds to the surface of the channel protein. This

channel section forms the major part of a ‘‘receptor site’’,

i.e., receptor site-3 for a-toxins and receptor site-6 for d-cono-
toxins. With a second moiety the toxins attack the voltage sen-

sor of domain-4, which is tightly coupled to the process of

inactivation.

3.3. Competition and synergism between d-conotoxin SVIE and

scorpion a-toxins
Scorpion a-toxins interact with the channel in a state-depen-

dent manner. When the membranes are subjected to depolari-

zations strong enough to drive all channels into an open state,

the toxin effect is diminished, i.e., the toxin appears to dissoci-

ate from its binding site. Such an experiment with the d-cono-
toxin d-SVIE is shown in Fig. 3A, where a 170-ms
depolarization to +80 mV removes part of the toxin effect in

the following test depolarization. Varying the time of depolar-

ization yields a single-exponential dissociation (Fig. 3B, open

circles). Hence, also d-SVIE appears to bind to NaV channels

depending on the channel�s conformational state.

The apparent overlap of residues in the channel protein

important for the interaction with d-SVIE and Lqh-2 should

result in functional competition of these toxins for the overlap-

ping site; this may not be the case for d-SVIE and Lqh-3. To

address whether there are functionally competitive interactions

between toxins, we measured toxin dissociation when mem-

branes were depolarized to +80 mV for 2 lM d-SVIE and

for 200 nM of the a-toxins, separately and in combination.

Dissociation proceeds with a single-exponential time course

(Fig. 3B–D) when only one type of toxin is present; the individ-

ual toxins had the following dissociation time constants: d-
SVIE, 247 ± 12 ms; Lqh-2, 29 ± 2 ms; Lqh-3, 488 ± 19 ms

(n = 4 each). Coapplication of d-SVIE and Lqh-2 resulted in

a biphasic disappearance of the toxin effect with roughly the

same time constants, consistent with the toxins competing

for the same binding domain (Fig. 3B). The same holds true

for Lqh-2 and Lqh-3 (Fig. 3C).

In the presence of d-SVIE and Lqh-3, however, the dissoci-

ation rate under depolarization was very much slowed down.

Although the more slowly dissociating a-toxin Lqh-3 exhibits
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a dissociation time constant of about 500 ms, a pulse of 2.5 s to

+80 mV only removed about 10% of the toxin effect when

2 lM d-SVIE was coapplied. Therefore, the two toxins clearly

do not directly compete for the same binding site at the voltage

sensor (Fig. 3D). Instead, they apparently stabilize each other

at their target sites such that these toxins affect the gating of

NaV channels in a highly synergistic manner.

When applied together, Lqh-3 and d-SVIE dissociated at a

strikingly slower rate from the channel protein during depolar-

ization than would have been predicted from the off-times of

each of the individual toxins. Translocation of the domain-4

S3/S4 voltage sensor element is presumably required before

the faster dissociation kinetics can occur. If the voltage sensor

with both toxins bound were unable to undergo this conforma-

tional change upon depolarization, in effect, Lqh-3 and d-SVIE
immobilized the domain-4 S3/S4 element in a conformation

different from that of the fully translocated voltage sensor.

With respect to the interaction motif between the S3/S4 lin-

ker and neurotoxins various possibilities are utilized in nature

yielding competition or synergism between neurotoxins. d-
SVIE and Lqh-3, which are unrelated in structure and origin,

co-operate in immobilizing the channel�s voltage sensor. The

results, thus, identify the molecular mechanism of d-conotoxin
action on NaV channels and present an unprecedented syner-

gism of neurotoxins with therapeutic potential.
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