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Abstract Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satel-

lite navigation applications, an approach based on channel blind equalization and real-time recur-

sive least square (RLS) algorithm is proposed, which is an application of the wireless

communication channel equalization theory to GPS receiver tracking loops. The blind equalization

mechanism builds upon the detection of the correlation distortion due to multipath channels; there-

fore an increase in the number of correlator channels is required compared with conventional GPS

receivers. An adaptive estimator based on the real-time RLS algorithm is designed for dynamic esti-

mation of multipath channel response. Then, the code and carrier phase receiver tracking errors are

compensated by removing the estimated multipath components from the correlators’ outputs. To

demonstrate the capabilities of the proposed approach, this technique is integrated into a GPS soft-

ware receiver connected to a navigation satellite signal simulator, thus simulations under controlled

dynamic multipath scenarios can be carried out. Simulation results show that in a dynamic and

fairly severe multipath environment, the proposed approach achieves simultaneously instantaneous

accurate multipath channel estimation and significant multipath tracking errors reduction in both

code delay and carrier phase.
ª 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Despite continuing improvements in global positioning sys-
tem (GPS) receivers, multipath signal propagation has re-
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mained an unsolved problem.1 Since a conventional

receiver provides no inherent discrimination against multi-
path signals, the reception of additional signal replica due
to reflections causes a bias error in the code delay tracking
loop, and also affects the carrier phase tracking loop. When

employing 1-chip (early-late correlator spacing) wide stan-
dard delay lock loop to track the delay, multipath can intro-
duce a ranging error up to a hundred of meters into a GPS

L1 receiver.2 Meanwhile, the resulting differential carrier
phase estimation error can be orders of magnitude higher
compared to the case of no multipath propagation in GPS

precision applications.3
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So far receiver-based approaches to GPS multipath mitiga-
tion have obtained significant progress, notable among them
are modified tracking channel and multipath estimation tech-

niques. Modified tracking channel methods, such as strobe
correlator4 or pulse aperture correlator,5 achieve the modified
delay-lock discriminator function shape through combination

of two correlation discriminators for multipath error reduc-
tion. The advantages of this family of methods are that they
are relatively simple and able to work in real time. Neverthe-

less, these methods can only reduce code multipath error to
a limited extent, and are not effective in eliminating carrier
multipath error. Multipath estimation methods, such as multi-
path estimation delay lock loop (MEDLL)6 or multipath mit-

igation technique (MMT),7 estimate the unknown parameters
of the multipath signal model for multipath error compensa-
tion. MEDLL applies the maximum-likelihood estimation the-

ory and can mitigate code and carrier multipath errors, while
MMT improves the real-time performance of MEDLL. How-
ever, they are only suitable for quasi-static multipath scenar-

ios. Multipath estimators based on the sequential Bayesian
estimation are designed for dynamic multipath scenarios,8,9

i.e., particle filters (from navigation signals’ point of view, mul-

tipath belongs to multiplicative noises, and standard Kalman
filters are not suitable), which require state transition models
as a first step towards dynamic estimation, e.g., the multipath
delay sequence is usually assumed to be a first-order Markov

process.10 However, for complex and time-variant multipath
environments, it is usually difficult to build prior models for
actual multipath processes.

From the perspective of navigation satellite channels, and
without making an assumption of channel statistical models,
channel equalization techniques based on adaptive algorithms

are capable of tracking the dynamics of channels and achieving
simultaneous multipath estimation and mitigation of multi-
path tracking errors. The channel equalization methods for

global navigation satellite system (GNSS) multipath estima-
tion and mitigation have been addressed in a few literatures.
For example, in Ref.11, a least square algorithm was used
and simulation results for multipath scenarios with up to six

multipaths were illustrated. In Ref.12, a modified back-propa-
gation (BP) algorithm (a stochastic gradient least mean square
algorithm) was presented to mitigate multipath tracking

errors. However, neither the least square algorithm nor the
BP algorithm can provide the capability of processing real
dynamic multipath.

In this paper, the wireless communication channel equal-
ization theory is applied to the tracking channel processing
of GPS receivers, and a dynamic multipath mitigation meth-
od based on channel blind equalization and the real-time

recursive least square (RLS) adaptive algorithm is proposed.
Aiming at effectively mitigating the multipath effect in dy-
namic and accurate GPS navigation applications, a multi-

path equalizer at the receiver tracking channel level is
especially designed for dynamic navigation satellite channels,
which can compensate time-variant multipath tracking errors

in both code delay and carrier phase, and differs from the
techniques for measurement or positioning domain of the re-
ceiver. By employing a navigation satellite signal simulator

and a GPS software receiver, simulations and the corre-
sponding results for a dynamic and fairly severe multipath
environment are given.
2. Blind channel equalization for dynamic multipath mitigation

Telecommunication applications of channel equalization are
techniques for dealing with channel distortion problems to im-

prove communication performance. For conventional channel
equalization approaches, training sequences periodically trans-
mitted through the channel are needed in order to obtain opti-

mal or near optimal coefficients of the equalizer by training.
However, for satellite navigation systems, no training sequence
is available, so that a blind equalization approach is employed.

From a single receiver channel’s point of view, according to

the telecommunication channel equalization theory,13 the mul-
tipath propagation channel corresponding to a navigation sa-
tellite can be modeled as

yðtÞ ¼ sðtÞ � hcðtÞ ð1Þ

where sðtÞ represents the transmitted satellite signal, ‘‘�’’ is the
convolution operator, and hcðtÞ represents the impulse re-
sponse of the multipath channel that is time-variant and un-

known to the receiver.
After the receiver correlation processing equivalent to the

impulse response function sð�tÞ, the correlator output

becomes

heðtÞ ¼ yðtÞ � sð�tÞ ¼ RsðtÞ � hcðtÞ ð2Þ

where RsðtÞ is the auto-correlation function of sðtÞ and heðtÞ is
the equivalent signal channel response, i.e., heðtÞ � hcðtÞ; there-
fore, the multipath channel output can be approximated by the
correlation outputs.

In the presence of multipath, as an important effect in the re-
ceiver tracking channel, the ideal triangular correlation function

would lose its symmetry. This distortion of the correlation func-
tion is illustrated in Fig. 1, where only one-path multipath ar-
rives in the receiver tracking channel, which is just in-phase

(see Fig. 1(a)) or out-of-phase (see Fig. 1(b)) with the direct sig-
nal. Note that the circle-marker dotted line represents the origi-
nal triangular correlation function, the cross-marker dotted line

the multipath correlation function, and the solid line is the com-
posite of the two. Whereas for multiple-path multipath scenar-
ios, the correlation function distortion could be very complex.

For conventional receiver tracking loops, the operation of

code delay tracking loop is based on the measurement of the
early and late correlation outputs. According to the early
and late correlation values Ye and Yl, the prompt correlation

value Yp can then be computed.14 In the case of no multipath,
one in-phase multipath, and one out-of-phase multipath, the
early, prompt, and late correlation outputs are illustrated

respectively in Fig. 2 (the correlator spacing of 0.5 chip is as-
sumed). It indicates that the prompt correlation value would
coincide with the ideal correlation peak only if Ye ¼ Yl; the

correlation function distorted by multipath, i.e., Ye–Yl, results
in an additional code tracking error. Since the carrier phase
estimation depends on the in-phase and quadrature-phase
components of the prompt correlation, an additional carrier

phase tracking error is also introduced.
In this paper, the above characteristic of the multipath

channel outputs is utilized in the multipath equalizer. In order

to obtain the details of the correlation function, a conventional
tracking channel is expanded to consist of a set of correlators
that cover the code delay from �1.5 chips to +1.5 chips (the

multipath effects corresponding to the code delay out of this



Fig. 2 Correlation distortion resulting code tracking error.

Fig. 1 Correlation function distortion due to multipath.
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scope are assumed to be suppressed by the correlator itself)

and have a resolution of 0.01 chip (i.e., the minimum corre-
lator spacing). In contrast, only a pair of the early and late cor-
relators is employed for a conventional receiver channel. The
above design is equivalent to over-sampling of the complete

correlation function, which would result in the innovation
acquirement and transformation of a non-stationary process
for multipath channels into a cyclostationary process, and thus

the two-order statistics can be applied.15

Fig. 2 depicts the ideal correlation function shape, but in an
actual receiver, only its approximator can be got, and there is a
loss of the correlation peak. In order to combat this effect, a
considerably wider pre-correlation bandwidth (e.g., 20 MHz
or above) compared to conventional receivers is required,

which would result in higher sampling frequency. Despite the
challenges, a software receiver (as used in this paper) can fulfill
the above requirements much more easily than inflexible hard-

ware receivers.
In telecommunication applications, a channel equalizer has

two modes: a direct channel filter; an estimator for channel im-

pulse response estimation plus an inverse-filter for channel re-
sponse equalization. The latter one is more suitable for time-
variant channels and has the advantage of robustness.16 In this
paper the latter equalizer mode is chosen.

The proposed approach consists of first adaptively estimat-
ing the impulse response of the time-variant multipath chan-
nel, which is based on the channel observations from the

expanded correlators (each correlation arm corresponds to a
specific code delay) with the digital intermediate frequency
(IF) signal as input. This step is followed by achieving an in-

verse-filter that equalizes the multipath channel response to
the desired channel response of multipath free to the maximum
extent possible. This multipath channel blind equalizer inte-

grated into a receiver tracking channel is illustrated in Fig. 3.
If no multipath occurs, i.e., no correlation distortion is de-
tected, the equalization would not take effect.

3. Adaptive estimation of dynamic multipath channel

Assuming an ideal channel with no multipath, the incoming
line-of-sight (LOS) navigation signal to a GPS receiver channel

can be expressed as

sðtÞ ¼ Accðt� s0Þ cosðxcðt� s0ÞÞ þ nðtÞ ð3Þ

where Ac is the received signal amplitude, cðtÞ the spread-spec-
trum code (i.e., C/A code), xc the angular frequency of the re-

ceived signal, s0 the time delay of the LOS signal, nðtÞ the
additive white Gaussian noise, and the navigation data are
not taken into account here. Whereas in the presence of mul-

tipath,N-path multipath components are assumed, then the in-
put signal is now given by

smðtÞ ¼ Accðt� s0Þ cosðxcðt� s0ÞÞ þ nðtÞ þ a1Accðt� s1Þ
� cosðxcðt� s1Þ þ hm1Þ þ a2Accðt� s2Þ cosðxcðt
� s2Þ þ hm2Þ þ � � � þ aNAccðt� sNÞ cosðxcðt� sNÞ
þ hmNÞ ð4Þ

where the vector ½ a1 a2 � � � aN � represents the multipath

amplitude ratio with respect to the LOS signal,
½ s1 s2 � � � sN � is the multipath delay vector and
½ hm1 hm2 � � � hmN � the multipath phase vector.

After the correlation with the receiver’s locally generated
signal, the resulting in-phase (i) components of a pair of early
and late correlator outputs can be described as

REiðsÞ ¼ h0iRcðs� sdÞ þ h1iRcðs� sd � s1Þ þ h2iRcðs� sd

� s2Þ þ � � � þ hNiRcðs� sd � sNÞ ð5Þ

RLiðsÞ ¼ h0iRcðsþ sdÞ þ h1iRcðsþ sd � s1Þ þ h2iRcðsþ sd

� s2Þ þ � � � þ hNiRcðsþ sd � sNÞ ð6Þ

while the corresponding reference signals are



Fig. 3 Multipath channel blind equalizer for a receiver tracking channel.

Fig. 4 Multipath estimator based on an adaptive filter.
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sEðtÞ ¼ 2 cos x0tþ cðt� sþ sdÞ
p
2

� �
ð7Þ

sLðtÞ ¼ 2 cos x0tþ cðt� s� sdÞ
p
2

� �
ð8Þ

and the local carrier may be written as

liðtÞ ¼ 2 cosðx1tþ hÞ ð9Þ

where s represents the code delay estimated by the receiver,
which consists of the LOS signal propagation delay estimation
and the code tracking error caused by multipath; sd is the off-

set delay for the early or late correlator, i.e., the correlator
spacing; h represents the estimated carrier phase, which con-
sists of the LOS signal carrier phase estimation and the carrier

phase tracking error caused by multipath; x0 is the reference
angular frequency, x1 ¼ xc � x0; Rcð�Þ the correlation func-
tion; ½ h0i h1i � � � hNi � represents the discrete channel im-
pulse response coefficients for the in-phase components, and

the kth vector element can be expressed as

hki ¼ akAc cosðhmk � hÞ ð10Þ

The corresponding quadrature-phase (q) components of the
correlators’ outputs can be obtained by replacing cosine-func-

tion in the above equations with sine-function.
The multipath channel blind estimator is achieved by an

adaptive filter, in which the correlation function for the ideal

multipath-free channel is used as the input signal of the filter,
and the correlation output vector corresponding to the actual
multipath channel is used as the desired output signal. The or-
der of the adaptive filter (i.e., the number of delay taps plus 1)

depends on the time delay resolution for the multipath, and in
this paper the delay resolution is 0.01 chip, i.e., the sampling
interval of the correlation function (this interval and the signal



Fig. 5 Prompt correlator output of a receiver channel under a

dynamic multipath scenario.
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sampling interval of the receiver are both independent). The
adaptive algorithm is utilized, that is, when the filter ap-
proaches convergence, its tap coefficients can represent the

channel parameters. This adaptive filter for the multipath
channel blind estimation is illustrated in Fig. 4, in which the
time delays of the filter taps represent the discriminable multi-

path relative delay, and the weights of the filter taps represent
the multipath amplitudes in complex forms (the absolute value
and phase angle for amplitude and carrier phase, respectively).

Thus, the multipath components are rebuilt by the adaptive fil-
ter based on the measurements of the correlators’ outputs.

The adaptive filter approaches the channel impulse re-
sponse recursively by using the real-time RLS adaptive algo-

rithm13, which is characterized by the forgetting factor and
quite suitable for time-variant channel parameter estimation.
In this algorithm the tap weights are updated by minimizing

the accumulative square error function as

JðnÞ ¼
Xn
j¼1

kn�je�ðj; nÞeðj; nÞ ð11Þ

where k is the forgetting factor that determines the dependence
degree of the algorithm upon the channel’s historical sampled

data; e�ðj; nÞ represents the complex conjugate of eðj; nÞ, which
is the error computed by using the tap weight vector at time
instance n to test the channel’s sampled data at time instance

j. If the algorithm has converged at time instance n, which indi-
cates that JðnÞ has reached the minimum value, the channel
impulse response coefficients are obtained, i.e., they can be
represented by the tap weight vector at that time.

4. Receiver tracking error compensation

The multipath estimator is followed by a compensator, so that

the correlation outputs distorted by multipath can be compen-
sated, and thus the multipath tracking errors in both code de-
lay and carrier phase are mitigated. With the estimated

multipath channel parameters, the correlation function for
each multipath component would be obtained. Since the corre-
lation function for the ideal multipath-free channel is known, it

can be used to separate the multipath components from the
LOS signal. In addition, the multipath signal is assumed to
be delayed and has lower power compared to the LOS signal.

Therefore, the correlation function can be decomposed into
the LOS signal part and the multipath components part, and
then the correlation distortion is compensated as follows:

RcomðsÞ ¼ RrðsÞ �
XN
p¼1

RmpðsÞ ð12Þ

where RrðsÞ represents the correlation value of received signal,PN
p¼1RmpðsÞ is the sum of the correlation values of multipath

components and RcomðsÞ the compensated correlation value.
Since the tracking errors caused by multipath in code delay

and carrier phase tracking loops mainly come from the distor-
tion of the correlation function, the correlation compensation

enables the tracking loops to track the LOS signal, i.e., it
achieves multipath mitigation in the tracking loops.

5. Simulation results

For performance assessment, simulations with the proposed
adaptive blind multipath equalizer have been carried out.
The multipath signals are generated by a navigation satellite
signal simulator,17 which provides multipath modeling for
urban navigation environments.18 In the simulations, a typ-

ical dynamic multipath scenario is specified in which a vehi-
cle carrying a receiver with an antenna mounted on its roof
moves along street surrounded by high buildings and has a

straight line trajectory at a speed of 20 m/s. Near echoes
that have shorter delays and a lower power (their power de-
crease exponentially with their delays) play a leading role in

the simulated multipath scenarios. Being incorporated with
the above multipath channel blind equalizer, a software re-
ceiver19,20 processes the signal simulator’s generated signals
with the non-coherent early-minus-late delay lock loop

(DLL) for code delay tracking and a Costas phase locked
loop (PLL) for carrier phase tracking. Only GPS L1 signal
is involved in the simulations, and the signal’s carrier-to-

noise-density ratio (C/N0) is set to be 45 dB-Hz. Lower C/
N0 is expected, but the C/N0 that this equalization approach
can reach mainly depends on the multipath component of

the lowest power.
In this dynamic multipath scenario, a specific satellite

(Satellite 22) channel example is given hereafter. Despite

multipath occur in multiple satellite channels in this sce-
nario, each satellite channel can be considered indepen-
dently. The multipath signals and their associated satellite
channel signals could enter the same receiver channel, which

leads to the multipath effect, but they would not affect other
receiver channels owing to cross-correction. At the beginning
of the simulation scenario taking effect, there is only a direct

path between the satellite and the receiver antenna. After the
first 3 s of the scenario, the multipath signal components ap-
pear and enter the receiver, which causes the obvious track-

ing errors. Finally, after 8.3 s of the multipath duration, the
normal tracking is recovered. In the above process, the cor-

responding prompt correlator output (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 þ q2

p
) values for

this satellite are shown in Fig. 5.
For evaluation of the multipath estimation performance, an

example at a specific simulation epoch is given. At this simula-
tion epoch, the signal simulator simulates the received signal
for a specific receiver channel composed of one direct-path sa-

tellite signal and 12 multipath components. The multipath esti-
mator is based on the adaptive filter with 151 delay taps and
the RLS algorithm having a forgetting factor of 0.98 (the expe-
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rience values for the forgetting factor are from 0.95 to 0.99,
and this value is obtained by a trial). In the test, this multipath
estimator has converged after five iterations. It indicates that

this approach is qualified for processing dynamic multipath,
in contrast to the conventional adaptive algorithms that re-
quire dozens or even hundreds times of iterations. The
Fig. 6 Estimation improvement over the iteration number.

Fig. 7 Estimation performance for multipath amplitude and

multipath phase.

Fig. 8 Compensation performance for code tracking error.
improvement in the multipath amplitude estimation over the

RLS algorithm iteration number is depicted in Fig. 6.
The resulting estimation performance is shown in Fig. 7,

in which the estimated channel parameters for every 0.01
chip step are compared to those the simulator has generated.

Fig. 7(a) and (b) represent the estimation performance for
the amplitude ratio and carrier phase, respectively. The
resulting multipath estimation errors for the amplitude ratio

and carrier phase are 0.014 (i.e., 0.3 dB) and 0.086 rad (i.e.,
0.01 cycles).

According to the estimated multipath parameters, the cor-

relation function for each multipath component is determined
and removed from the actual correlator outputs. The resulting
performance for mitigating the tracking errors over 8.3 s of the
multipath duration are shown in Figs. 8 and 9, in which the

tracking errors after the channel equalization are compared
to the original multipath tracking errors. Fig. 8(a) and (b) rep-
resents the original tracking error and compensation perfor-

mance for the code. Meanwhile, Fig. 9(a) and (b) represents
the original tracking error and compensation performance
for the carrier phase. The original code and carrier phase

tracking errors caused by multipath and noise are 0.09 chip
(1r) and 0.21 rad (1r), respectively, and the corresponding er-
rors after multipath mitigation are reduced to 0.04 chip (1r)
and 0.09 rad (1r), respectively. Then the normal tracking of
the receiver is recovered, although the specific tracking errors
relate to the receiver design.



Fig. 9 Compensation performance for phase tracking error.
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6. Conclusions

A receiver-channel based dynamic multipath mitigation ap-

proach for simultaneous estimation of multipath channel re-
sponse and compensation of multipath tracking errors in
both code delay and carrier phase loops is proposed in this

paper, which is achieved by the channel blind equalization
technique and the real-time RLS adaptive algorithm.

For evaluation of performance, simulations in which a nav-

igation satellite signal simulator and a GPS software receiver
are employed are carried out. Under a dynamic and fairly se-
vere multipath scenario involving up to 12 multipath compo-

nents, the proposed approach achieves accurate multipath
channel estimation within a few iterations of the adaptive algo-
rithm, and simultaneously reduction of multipath tracking er-
rors in both code delay and carrier phase to reach the normal

tracking level of the receiver.
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