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Abstract 

Convergence of cubic spline interpolation for discontinuous functions are investigated. It is shown that the complete 
cubic spline interpolation of the Heaviside step function converges in the LP-norm at rate O(h l/p) for quasi-uniform meshes 
when 1-%< p < oo, and diverges in the L°°-norm when the uniform meshes are used. No matter how small the uniform 
mesh size is, the complete cubic spline interpolation always oscillates near the discontinuity. Although this oscillation 
decays exponentially away from the discontinuous point, the maximum overshoot is not decreasing. Especially, we obtain 
the asymptotic maximum overshoot when the uniform mesh size goes to zero. The knowledge on the Heaviside function 
is utilized to discuss convergence properties of cubic spline interpolation for functions with isolated discontinuous points. 
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1. Introduction 

Convergence of spline interpolation for smooth functions has been investigated intensively in the 
literature, see, e.g., [2, 4, 6], and references therein. However, we know very little about approxi- 
mation properties of spline interpolation for functions with discontinuity. It has been observed from 
numerical computation that the complete cubic spline interpolation oscillates near a discontinuous 
point and has an overshoot when uniform meshes are used [7, p. 122]. Since this behavior is similar 
to Gibbs' phenomenon in Fourier's series (see, e.g., [3]), it is called Gibbs' phenomenon of splines. 
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The periodic spline with equal knots spacing that best approximates the square wave function 
in the norm of  L 2 [ - I ,  1] was investigated in [5]. The overshoot at the discontinuity was found for 
splines of  degree k ~< 8 when the knots number goes to infinity. 

Aforementioned periodic spline does not really "interpolate" the function at "knots", rather, it 
approximates the function in a "Fourier" sense. A more practically interesting problem would be a 
spline that interpolates the function at knots, the complete spline interpolation. In the current work, 
we shall analyze convergence of  the complete cubic spline interpolation in the LP-norm (1 ~< p < c~) 
for the Heaviside step function. An optimal convergence rate of O ( h  1/p) is established under quasi- 
uniform meshes. Moreover, we provide an explanation for the Gibbs' phenomenon under uniform 
meshes. The asymptotic overshoot when the mesh size goes to zero equals (v/-6 + v/3)/4 - 5(V/-2 + 
1 )/12 ~ 4%. It differs from that of  the periodic cubic spline obtained in [5] which is about 10%. The 
results obtained for Heaviside function is used to study the behavior of cubic spline interpolation 
for functions with isolated discontinuous points. Furthermore, we indicate that there is no oscillation 
and overshoot in the B-spline interpolation. 

2. The complete cubic spline interpolation 

The construction of the complete cubic spline interpolation can be found in many standard numer- 
ical analysis textbooks (cf., e.g., [7]). For the convenience of our analysis, we outline an approach 
based on the Hermite interpolation. 

Given interpolating points a = to<t1 < " "  <tn : b, and data 3~ : f ( t i ) ,  flo : f ' ( a ) ,  ~n ~- f ' ( b ) ,  
we want to construct a cubic spline snEC2[a,b] such that on each subinterval [ti-l , t i],  

s . ( t )  = Z - l p i ( t )  + f iq i ( t )  + fl i-lUi(t)  q- flivi(t), 

with 

pi ( t )  -- - -  

u i ( t )  = 

(t t i )  2 (t t, 
[hi + 2(t - ti-1)], qi(t)  - --_~-1 [h, - 2(t - ti)], 

h3i h i 

(t - ti)2(t - ti-1) (t - t i_l)2(t  - ti) 
i , v , (  t ) = ' 

(2.1) 

where hi = ti - ti-1, and/~i, i = 1,... ,n - 1 are parameters to be decided. It is easy to verify that 

s , ( t j ) = f j ,  S'n(tj)=fly,  j = 0 , 1  . . . .  ,n, 

and hence snECl[a,b] .  In order that s,  EC2[a,b],  we enforce the continuity condition s ' , ' ( t i -  O ) =  
s~,'(ti +0) .  As a consequence, we have the following system of  linear equations for/~i, i =  1,. . . ,  n -  1: 

f l i -1+2  i f /+  f l i +  fli+ 1=3J~ ]~2 h2+l +3\h/--~+ 1 h/2 , 

or A # = f  with A = D + B ,  where D = 2 d i a g ( 1 / h i  + l /hi+l)  n-1 and B is a symmetric tridiagonal i=1 ' 
matrix with bii = 0, bi+l,i = 1/hi+l. Obviously, A is diagonally dominant. Hence, • can be uniquely 
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solved. Once ~ is decided, the cubic spline can be constructed from (2.1). We have the following 
theorem regarding the norm of A -1 which will be used later in the convergence analysis. 

Theorem 2.1. For 1 ~ p < cx~, 

(h~. h/~l) -1 max + 

1 Proof. It is easy to verify that all rows of  D-1B add up to ~ except the first and the last (which are 
1 except the first and the last (which are less than less than ½); and all columns of  BD -1 add up to 

½). Therefore, lID -1Bllcx~ ~-- ½ and linD -1111 = ½. Now A = D + B = ( I  +BD -1 )O, A - 1  = 9 - 1 ( 1 + B D  -1 )-1, 
and hence 

1 (1 1 )  -1 1 
[[A-'II1 <~ [[D-'IIIlI(I + BD-I)-IIII <<. ~ l~i<<n_l ~ii + 

- max + 
l <~i<<.n--1 

Similarly, we can verify that 

(~---~. hi~l) -1 max + . Ila-lH  

Therefore, by the Riesz-Thorin interpolation theorem [1, p. 2], for 0 < 0 <  1, 

IIA-1]Ip~,IA-1 1-o--1 0 (~__~. hi~l) -1 [[1 [[1 II~ ~ max + , 
l <~i<~n-1 

where l ip  = 1 - 0, or p = 1/(1 - 0). This complete the proof. [] 

i -IIBD-III  

3. L p convergence 

We interpolate the step function 

0, - 1  ~<t<O, 

f ( t ) :  ½, t : O ,  

1, 0< t~< l ,  

by the complete cubic spline and discuss convergence in the LP-norrn (1 ~< p < cx~). For simplicity, 
we use tm= 0 as an interpolating point and assume that the derivative is interpolated exactly at the 
boundary, i.e., r0- -O,  ft, = O. 

Since sn interpolates f at all nodal points, we have on (to, tin)= ( - 1 , 0 ) :  

s , ( t ) - - f ( t )=f lk- - lUk( t )+f lkvk( t ) ,  tk_l<<.t<.tk, k = l , . . . , m - 1 ,  

s.(t) - f ( t )  = ½qm(t) + tim--lUre(t) -k flmVm(t), tin-1 < t  <tm. 
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Therefore, 

0 ~--- m--1 f t f k  f_  lSn(t) -- f ( t )[  p dt y ~  Iflk-~uk(t) + flkvk(t)l p ds 
1 k=l  -1 

+ 1½qm(t)+flm-lUm(t)+flmVm(t)lPdt. 
--1 

Introduce a change of  variable t - tk_~ = hks, k = 1,... ,m, and we have 
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qm(t) = q(s), 

u ' ( 1 ) = v ' ( 0 ) = 0 ,  u ' (O)=l ,  v ' ( 1 ) = l ,  

uk(t) = hku(s), vk(t) = hkv(s), 

where u, v, q satisfies 

u(O) = u(1) = v(O) = v(1) = O, 

q ( 0 ) = 0 ,  q ( 1 ) = l ,  q ' ( 0 ) = q ' ( 1 ) = 0 .  

It is easy to verify that 

I l u L , , :  Ilvllp,,, 1 -- (o, 1). 

Now, we have 

m, /01 
Iflk-luk(t) + flevk(t)f  dt = "'k 

k=l  

Iflk__lU(S) ~- flkl)(S)l pds  

(3.1) 

m--I 
l + p  ~< 2P-~llull~,z Y~'~hk (I/~k-il p + I/~klP). (3.2) 

k=l  

Here, we have applied an inequality 

Ilu + vl[~ ~2p-l(llull~ + Ilvll~), 1 ~< p < c ~ .  

We have also, /1 
ftm I lqm(t)+f lm-lUm(t)+f l , ,Vm(t) fd t=hm [½q(s)+flm-lhmu(S)+flmhmv(S)l pds 

tin-- 1 

P U p <~ hm3p-l[2-PllqllPp,, + hPm(lflm-~] p + Iflm[ )11 lip, A- 
(3.3) 

In the last step, the inequality 

Ilu + v + w[l~ ~<3p-'(llull ~ + Ilvll~ + Ilwll~), 1 ~ < p < c ~ ,  

is used. Combining (3.1)-(3.3), we obtain 

/ 0  m Thl+P(3) p 
l + p  p - m  Ilqll~,,. [s,(t)-f(t)lPdt<~3P-~llul]~,z~--~hk (I/~k-ll + I/~klP)+ 

1 k=l  
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Similarly, we can estimate the error in (0, 1). Denote h = maxl~i~, hi, and we have established: 

T h e o r e m  3.1. IIs, - f l i p  ---~0 with rate h 1/" if (~-'~=1 Ihk~k-ll " + Ihk]~kl') 1/" is bounded uniformly 
with respect to n, 1 <~ p < oc. 

A sequence of meshes are called quasi-uniform if there exists o-> 0 independent of n, such that 

maxi hi 
- -  ~< or. ( 3 . 4 )  
mini hj 

Theorem 3.2. Assume  that the mesh is quasi-uniform. Then Ils.- fNp ---*0 with rate h lip f o r  
1 ~<p<oe. 

Proof. A sufficient condition for Theorem 3.1 to hold is hll#[[p <<. C, where C is a constant inde- 
pendent of h. We need to estimate 

[1#11, ~< IIA -~ II,l lfl l , .  
We have an upper bound for IIA-~II, by Theorem 2.1. From (2.2), it is easy to verify that 

3 3 ( 1  1 ) 3 
f = ( 0 , . . . , 0 , 2 - - ~ ,  ~ ~-~+~.~----- , ~ , 0 , . . .  0) z, 

hm+l 

311 (, 111  
[Lf[lp ~ ~m p + ~ + hm+l h2mP+lj 

2 - - + , . - r - -  = 21/' 1 1 ~<~ h.+,) I ~ + ,.-r-- h.+, 
Therefore, , )1(,  + ,) 

3~21/,max g ~ ~ ~ . II/~11, 

Applying the quasi-uniform condition (3.4), we then have 

hll/~ll ,  -" 3,~l/p,.z 

The assertion is proved by applying Theorem 3.1. [] 

Remark 3.1. Theorem 3.1 does not include the case p = oo. In fact, the complete cubic spline 
interpolation does not converge to f in the L~-norm under the uniform mesh. See details in the 
next section. 

R e m a r k  3.2. The convergence rate O(h 1/p) is optimal. Indeed, in the case of uniform mesh, we will 
establish a lower bound for the approximation error in the next section. 
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4. Gibbs' phenomenon 

In this section, we shall study the Gibbs' phenomenon of the complete cubic spline interpolation 
for the step function f when the equidistance nodes are used. 

Set n = 2m in (2.2), then h = 1/m, tm = 0. Note that lk values are symmetric with respect to fin, 
i.e., f,,+k = 1m-k, k = 1, . . . ,  m. Therefore, we only need to consider half of  them by examining the 
following system of  equations: 

411 + 12 = 0, 

t k - 1  "~- 41k + l k + l  : 0,  k = 2 , . . . ,m  - 2, 

3 
1m-2 + 4 f i r e - , - ] - l m  : 2-h, 

3 
flm--l At-aflm"~- flm--l = - i (flm+l = flm--1). 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

Theorem 4.1. f k ' s  have the following properties: 
(a) Alternatin 9 sign: 

fm_k(--1)/¢ <0, k = 1 , . . . , m -  1. 

(b) Exponential decay: 

111k+, l< l lk l<(2- -  vS)llk+~l, k = 2 ,  . , m - 2 .  4 "" 

(c) Upper and Lower bounds: 

3 - v/'3 33. 
2 < f m h  < ~2~, 

3 3 
-(-~ < flm_lh < X/~ 2" 

(d) Asymptotical behavior: 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Proof. We first show that f l  # 0. Suppose fll : 0 ,  then 12 = 0 from (4.1), and consequently 13 = 
0 . . . .  ,1m-1 = 0 from (4.2). Therefore, fm = 3/2h by (4.3), and l m - - 3 / 4 h  by (4.4). This is a 
contradiction. 

It is easy to see that 117-L0 yields 1112<0 and 1t21--41111 from (4.1). We then deduce from 
t l  -It- 412 + 13 -- 0 that t 213  < O, and 

1412[ = I - 13 - 1,1 = 1131 + Illl = 1t31 + 11121 [ <1131 + (2 - v /3)1121,  
[ >1131, 

- 3 flm--2 lim flmh = 3 x/3 lim flm-lh = x/3 - ~, lim - x/3 - 2. (4.9) 
m--,~ 2 ' m-.-+~ m-.-->~ tim--1 
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which yields 

]f131 < lfl2l < ~- lfl3[ = (2 -- X/3)lf13[. 
2 +  ' / 3 ' '  

By mathematical induction, we can deduce for k = 1 , . . . , m -  2 that flkflk+l <0,  and 

14/~k[ = I/~k+ll + Iflk-ll ~ < I/~k+ll + ( 2 -  x/~)lflk[, 
( > I, 

which yields (4.6). 
Now we estimate tin-1 and fin. Solving (4.3) and (4.4) yields 

3 2 
f l m - l h -  14 7 f l m - 2 h ,  

1 = 9 + 

Recall flm--2fl,n-l<0 and 
fl,,-2 <0,  and furthermore, 

2 { >t im--1  2(2 V / 3 ) f l m -  1 3+2~x/3 tim_ 1 ' 
14h - -  t i m - 1  + ~ f l m - 2  ~-- t i m - 1  - -  Iflm--21 

"~ tim--1 2 1 0  13/~ f f a P m - I  ~-- ]~]Jm--1, 

(4.10) 

(4.11) 

If lm_ll /a<lf lm_2l<(2-  V/-3)lflm_,[, we see from (4.10) that f l , ,_,>0, 

(4.12) 

which yields (4.8). Using (4.4) and (4.8), we have 

3 v~ + 3 _ 3-v~ 
3 flm-lh > "4 - -  ~ -  4 2 ' 

flmh - -  4 2 < 43 263 __ 3352. 

This proves (4.7). (4.5) is a direct consequence of fin >0,  fl,,-1 > 0  and flk-~/3k <0,  k = 2 , . . .  , m -  1. 
For the asymptotic limits (4.9c), we observe that x/~ - 2 is the root with modular less than 1 of 

the difference equation 

i lk-1 -~- 4ilk + flk+l = 0. 

Further, we can show that flmh is a monotonically decreasing sequence with a lower bound, and 
flm-lh is a monotonically increasing sequence with an upper bound. Hence, they both have limits, 
and so does flm-2h. We denote these limits as fli*, i =  m -  2, m -  l, m. Taking limit in (4.10) and 
(4.11 ), using the relation 

fl*-2 _ x/-3 - 2, 
tim-- 1 

we then have 

- -  - 2 ) f l , n _  , ,  ( 4 . 1 3 )  tim-- 1 14 

ft. = 9 + } ( x / 3 -  2)fl*_,. (4.14) 

Solving (4.13) and (4.14) yields (4.9a) and (4.9b). [] 
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For the complete cubic spline interpolation with uniform mesh 

u(s) = s(1 - s) 2, v(s) = -s2(1 - s), q(s) = s2(3 - 2s). 

Since signs o f  flk's alternate, we have for each k = 1,2 . . . .  , m - 1, 

max ( - ~ u ( s ) -  v(s)) . max Is,(t) - f ( t ) l  -- max [flk-lUk(t) +/~kvk(t)l : I /~klh O~<s~<l 

From (4.6), we see that 

4-m+'+k/~m-, < l / ~ k [ < ( 2  - v ~ ) m - l - k B z - 1 ,  ¼ < .  - - -  

for k = 1 , . . . ,m  - 1. Let 

9(s) : is(1 - s) 2 + s2(1 - s), 

then a simple calculation shows that 

max g( s ) = 9 >9 = 
O~<s~<l 

max G(s) = G ( 3 - v ~  + v ~ )  _ x / 2 + 1  
o~<~<1 6 6 

Hence, for k = 1 , . . . , m -  l, 

5 ilk-, x / 2 +  1 x / 6 +  x/3 
- -  < - - - u ( s )  - v ( s )  < - -  
32 //k 6 18 

The estimate o f  Iflkh I comes from (4.6) and (4.8): 

4 - m + l + k 3  < Iflkh[ < ( 2  - ~ / 3 ) m - l - k ( v ~  - -  3 ) .  
13 

~k-1 < 2  - x/3, 

G(s) = (2 - v~)s (1  - s) 2 +s2(1 - s), 

v~+v5 
18 

Substituting (4.16) and (4.17) into (4.15), we have for k = 1 , . . . , m  - 1, 

max [ s n ( t ) - - f ( t ) [ < ( 2 - - X / - 3 ) m - l - k ( X / ~ - - ~ ) (  _V~_+I V/-6~V/-3) 
tk--1 <~t<~tk 

= (2 -- V/3)m-l-k ( V~ -{- V~ 4 5(X/2 + 1 ) )  12 

< (2 -- X/3)m-l-ko.0395, 

max isn(t) _ f ( t )  I > 4-m+l+k 3 5 >4-m+l+ko.036. 
tk- i  <~t<~tk 13 32 

Setting k = m -  1 in (4.18) and (4.19), we have 

(4.15) 

(4.16) 

(4.17) 

(4 .18)  

(4.19) 

0.036 < max Is,(t) - f ( t ) l  < 0.0395. (4.20) 
tm-2~t~tm--1 
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Furthermore, we know asymptotically, 

lim tim-2 __ X/~ -- 2, lim flm-ah = ~ 3 
m--*~ tim-1 m ~  2" 

Therefore, 

lim max 
m---~c~ --l ~t~tm_~ 

[ s , ( t ) -  f ( t ) l  = lira max I s . ( t ) -  f ( t )  I 
m---*oo tin--2 ~ t  ~tm--I 

=limm_~oo flm-lh O~<s~<lmax ( - ~ u ( s ) - v ( s ) )  

_ x/6 + ~ 5 (v~  + 1) ,~ 0.0394628199 . . . .  
4 12 

(4.21) 

(4.22) 

o r  

hl/p hl/p 

2(2p + 1) lip < 1Is" - f l ip  < 21_l----S- 

Setting p- - ,  c~ in (4.25), we will have 

[Is. - f l l ~  _ 1  

which is precisely the error in the maximum norm (it appears in the subinterval (tm-l,tm)). 
Summing up, we have proved the following theorem. 

Hence, 

fti[ ISn(t ) - f ( t ) lPdt=hfol l lq(s)+flm-lhU(s)+flmhv(s) lPds{  

On the other hand, from (4.18), we have 

m-- I ftkt k m--1 Y~ Isn(t) - f(t)lP dt <h y~  (2 - X/~)(m-l-k)PO.Oa95P <hE-P. 
k=l - l  k=l 

Adding up (4 .23)  and (4 .24)  yields, 

h f ~  2h 
2p(2p + 1) < ~ Is.(t) - f ( t ) [  p dt < 2--~' 

~<h2 -p, 
(4.23) 

>~h2-P(2p + 1) -1. 

(4.24) 

(4.25) 

l q(s) + f l m - l h U ( s )  q- f lmhl)(s)  = (3  __ s ) s  2 q_ f lm_lhs (  l - s 2 )  - flmhsZ(1 - s )  

{ ~ 1/2, 
2 1 

= s  [5 + (1 - s)(1 - fl,nh)] + flm_lhS(1 - s) 2 ~s2/2. 

We see that asymptotically, the maximum overshoot is about 4%. 
In case of uniform meshes, we have a more accurate error estimate in the LP-norm. First, it is 

easy to verify that 



368 Z Zhang, C.F Martin/Journal of Computational and Applied Mathematics 87 (1997) 359-371 

Theorem 4.2. When uniform meshes are used, the complete cubic spline interpolation converges 
to the step function f in the LP-norm ( l ~ < p < c ~ )  with an optimal rate O(hl/P); it diverges in 
the L~-norm and oscillates near the discontinuous point with a maximum overshoot estimated 
by (4.20). In the limit h--. O, this overshoot is given by (4.22). Moreover, the oscillation decays 
exponentially away from the discontinuity in a pattern estimated by (4.18) and (4.19). 

Remark 4.1. The discussion for the cubic spline gives us some insights for other polynomial splines. 
Indeed, the numerical tests indicates that the complete quintic spline interpolation for the step 
function f behaves very much like the cubic spline. 

Remark 4.2. The Gibbs' phenomenon occurs for many other complete spline interpolation such as 
classical exponential splines. But every different spline may have a different overshoot value. 

We plot the complete cubic spline interpolation for the step function f with uniform meshes 
when n - -  10, 20,40, 80 in Fig. 1. It clearly indicates a 4% overshoot. 

5. Convergence for functions with isolated discontinuities 

In this section, we discuss spline interpolation for functions with isolated discontinuous points. 
Let F be such a function, then it can be expressed as 

F(t) = g(t) + ~-'~ ci f( t  - ti), (5.1) 
i 

where gEC[a,b] and f is the step function defined in Section 3. Clearly, C i is the jump at the 
discontinuous point ?;. Here, we take the liberty to define the function value at the discontinuity as 
the average of the limits from two sides. For simplicity, we consider only one discontinuous point 
which is located at the center of the interval: F(t)= g(t)+ cf(t) .  Again, the interpolating interval is 
assumed to be [ -1 ,  1 ], since an arbitrary interval [a, b] can be transfered to it by a linear mapping. 

Recall the construction of the complete cubic spline interpolation, parameters fl;, 1-%< i ~<n- 1, can 
be solved uniquely from flo, fin, and J), O<~i<.%n. Therefore, the spline interpolation (2.1) can be 
written symbolically as 

n 

S n ( t ) = f l o ~ ( t ) + f l n ~ ( t ) + Z ~ i ( t ) ,  
i=0 

where fro, f , ,  and ~bi are some piecewise cubic polynomials. Denote by sf, the cubic spline inter- 
polation of f ,  we then have SF = Sg + CSf where 

n 

so(t) = flofo(t) + fl, fn(t) + Z giq~i(t), sf(t) = ~dpi(t). 
i=0 /=0 

Recall the interpolation property of the complete cubic spline (cf. [2, p. 61, Problem 7(d)]): 
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Fig. 1. 

for gEC~[-1,  1]. We then have 

5 h I ]IF - sell~ ~< g IIg II~ + cllf - sfll~. 

The analysis of the last term on the right-hand side was discussed in previous sections. Hence, 
we conclude: For a function with isolated discontinuity, its complete cubic spline interpolation 
oscillates near the discontinuous points with a maximum overshoot about 4% in the limit h---, 0; 
in the region away f rom the discontinuity, the oscillation decays exponentially and the standard 
interpolation error estimate applies. 

It is interesting to know that the B-spline interpolation does not oscillate when the function 
"jumps". We provide a brief explanation in the following. For simplicity, we again consider F has 
one "jump" only. We make the discontinuous point as a nodal point tk and assume that the nodes 
are equally spaced. We denote by Nj, the normalized B-spline that centered at the node tj, and by 
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BF, the B-spline interpolation o f  F.  Notice that ~ j  Nj = 1, then 

F ( t )  - B E ( t )  = Z [g(t)  - 9 ( t j ) J N j ( t )  + c Z [ f ( t  - tk) - f ( t j  - tk)]Nj(t). 
J J 

By the standard theory (cf., [4, p. 159]), 

Ig(t) - Bo(t)] =- j~ .  [g(t)  - g( t j ) ]Nj . ( t )  <<. Coo(g; h) ,  

where o~(g; h) is the modulus o f  continuity of  9, and C is a constant independent of  9 and h. We 
need to examine the B-spline interpolation for the step function. To fix the idea, we use the cubic 
B-spline as a model in which case Ni(t) has a support (ti-2, t,-+2). Note that f has only three different 
values, therefore, 

f ( t )  - B f ( t )  = Z [ f ( t  - tk)  - f ( t j  - t i)]Nj(t)  
J 

Note that 

N/tj)-- 

= [ f ( t  - tk) - f ( t k - 1  - t k ) ] N k - x ( t )  + [ f ( t  -- tk)  -- f ( t k  -- t k ) ]Nk( t )  

+ [ f ( t  --  tk)  --  f ( t k + l  --  t k ) ]Nk+l ( t )  

= f ( t  - t k ) N k _ l ( t )  + [ f ( t  -- tk)  -- ½]Nk(t) + [ f ( t  -- tk)  -- 1]Nk+l(t) 

f-Nk(t)/2-Nk+,(t), 
= I N k _ l ( t ) + N k ( t ) / 2 ,  

( 0 ,  

tk-2 < t < tk, 

tk < t  <tk+2, 

otherwise. 

N j . ( t j _ I ) = N j ( t j + I )  = 1, N j ( t i ) = O  i f  [i-jl>l, 

we then have 

lim [ f ( t )  - B f ( t ) ]  = Nk-l(tk) + N k ( t k ) / 2  --  1 
t--~tk +O 

lim t~tk -0 [ f ( t )  - B f ( t  )] = --Nk (tk) - Nk+l (tk)/2 = -- ½, 

f(tk+l ) -- Bf(tk+l  ) = Nk-l(tk+l ) + Nk(tk+l )/2 = I ,  

1 
f ( t k - ~  ) - B f ( t k _ l  ) = - - N k ( t k -  ~ )/2 -- Nk+~ (tk-1 ) ~ - -  ~.  

We see that there is no oscillation and overshoot. B s ( t  ) equals f ( t )  on most part o f  the domain 
except on a small subinterval o f  length 4h that centered at the discontinuous point tk. In this small 
subinterval, B s ( t  ) approximates f ( t )  smoothly, its value increases monotonically from 0 to 1, and 
the graph passes through (tk-1, 1 ) ,  (tk, 1), and (tk+l, 1 - I ) "  

B-splines o f  order other than three can be analyzed similarly. 
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