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A model for the activities of N agents in an economy is presented as the solution to a system of stochastic
differential equations with stochastic coefficients, driven by general semimartingales and displaying weak
global interaction. We demonstrate a law of large numbers for the empirical measures belonging to the
systems of processes as the number of agents goes to infinity under a weak convergence hypothesis on
the triangular array of starting values, coefficients and driving semimartingales which induces the systems
of equations. Further it is shown that tue limit can be uniquely characterized s the weak solution to a
further (nonlinear) stochastic differential equation.
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Introduction

The model

In this paper we will be investigating laws of large numbers for systems of stochastic
processes with weak global interaction. The type of law of large numbers to be
considered is formalized in a concept we refer to as point convergence. Let ({2, o, P)
be a probability space and E a topological space. For every NeN, let
(&Y, ..., EN): 2> EN be avector of random elements in E. The sequence of vectors
A=(&))NY N can be seen as a ‘triangular array’ of random elements in E. Such
arrays arise in a natural fashion in those areas of probability theory that deal with
asymptotic results, the classical example being of a sequence of sample vectors of
size N, NeN. Let (5,),  be a sequence of i.i.d. randem variables and f:R->R a
bounded continuous function. Defining for every i=1,..., N, NeN, &N =y, it
follows from the classical weak law of large numbers that the normed sum
(I/N)Z:ilf(gi'v) converges in probability to the constant E(f(7n,)). For xeR
denote with &, the Dirac measure on x. Then, for every NeN, the ‘empirical
measure’ belonging to the vector (£)Y, ..., &N) is given by o} Z(l/N)ZL &
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One can interpret (¢ Y nen as a sequence of random elements in the space of
Borel measures on R (equipped with the weak topology) The normed sum given
above is then the integral of f with respect to ¢4 for every N eN. Since f was
arbitrarily chosen, the convergence in probability noted above has as consequence,
that the sequence (¢} )n.n converges weakly to the point £{m,} (i.e. denoting
with % the weak convergence of measures, L{p '} % €y, for N >0, where ¥{¢}
denotes the law of a random element ¢ (see Section 1)).

Let A =(£))Y_n be a triangular array of random elements in some topological
space E and u a Borel probability on E. We say that A is point convergent with
limit p if the sequence of empirical measures induced by the array 4 converges
weakly to the point u. This type of convergence is referred to in the theory of large
deviations as ‘level Il convergence’ (see Ellis, 1985), and with respect to arrays of
interacting stochastic processes as ‘propagation of chaos’ (see Sznitman, 1% ;4a, or
Dawson, 1983). We refrain from using these titles since they sometimes appear
rather unmotivated in our context.

Let d, m eN. The model we will be considering describes the activity of N agents
in an economy, as a vector (X,..., X N) of stochastic processes. These processes
are derived as the solution to the following stochastic differential equation:

xr<t>=1<,-+j V(s XN, o) dZM(s), i=1,....N, (N)
(4]

where ¢l = (i/N)Zl] &éxn~ is the empirical measure belonging to the vector
(XN)i-\...n. Here, for every NeN, i=1,..., N, K" is a square integrable R*
valued (starting) variable and g is an R“*" valued process which depends on the
paths of the process X' and (weakly) on the paths of the other processes X}"’ ,
j=1,..., N, j#i through the empirical measure ¢} . Finally, Z is an R™ valued
semimartingale (driving process).

The starting values represent the initial value of some observable microeconomic
data of the respective agents (for example age, wealth, consumption of some good
up to time 0, etc.). The driving processes describe the basic behavioral patterns of
the respective agents which can’t be explained through the systematic influence of
observable e~ 1omic data. These systematic influences are captured for a given
agent-i by the coefficient process g, which records the dependency of the agent’s
behavior on his own past behavior and microeconomic starting values (given by
XY and K} =XDN(0)), and the influcnces of macroeconemic variables (such as
prices, rate of inflation etc.) given implicitly through the empirical measurz ¢ .

Assume now that a triangular array A = (KN, g", ZM)XN § of starting values,
coefficients and driving proccsses as described above is glven, representing such
values for the agents i=1,..., N in an economy of N agenis for ever larger
economies (i.e. N - 0). Our goal is to determine whether, under weak assumptions
on the array 4, there exists for every NEN a unique solution (X{V, XN to

,,,,,

w:th some iimit u. Moreover, in what way can this hmlt i be characterized?
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The economic interpretation of these questions is as follows: It is assumed that
an economy of N agents can be described at the microeconomic level by the solution
(XY,..., X}) to an equation (N) for every N e N. Further, the same economy can
be described at the macroeconomic level by the empirical measure (1/ N) le Exn.
Then, one wants to know whether, for N ‘large’, (i.e. for N »0), there exists a
macroeconomic model for this economy that is essentially deterministic (this descrip-
tion being given by the limit measure to the point convergent array (X M)NV ).
There has been considerable debate in recent years as to whether the dynamics
of macroeconomic variables are deterministic or stochastic (see Grandmont and
Malgrange, 1986, and related articles appearing in the same volume). Our results
provide some insight into the conditions under which the deterministic hypothesis
can be given a rigorous microeconomic foundation.

Considering the case without interaction, a fairly minimal condition for the point
convergence of an array of solutions (XV)X\" 5 is that the array A be point
convergent. Assume that the limit of A is given by the law of a triple (K, g, Z),
which is defined in an analog fashion to the elements (K", g, Z") of the array
A. The sort of limit that one can expect for the array of solutions can be derived
with the following heuristic considerations. First, assume that the elements of the
array A are i.i.d. with law #{(K, g, Z)}. Then A is point convergent with limit
Z{(K, g, Z)} (see Section 1). Now, assume for a moment that forevery i=1,..., N,
N eN, the coefficient g!¥ only depends on the path of the process X but not on
the empirical measure ¢™. Then, since there is no interaction, the elements in the
array of solutions are i.i.d. as well, with law £{X}, where X is solution to the
following equation:

.....

X(t)=K+ .[ g(s, X)dZ(s). (30)
J O
If one reintroduces the empirical measure in the coefficient gl (ie g'=
gN(-, -, ok)), then one would expect, given the preceding remarks, that the limit
of the array of solutions could be characterized as the law of a process X, where
X is solution to the following equation

X(t)=K+j g(s, X, Z{X}) dZ(s). (c0)
0

Therefore, our task will be as follows: Given a point convergent array 4 of starting
values, coefficients and driving processes with limit #{(K, g, Z)}, find conditions
under which a unique solution (X',..., X~N) (resp. X) exists to (N) for NeN
(resp. to (0)) so that the array of solutions is point convergent with limit £{X}.

Comparison of methods and hypotheses

In the last decade there has been a great deal of work done concerning the asymptotic
properties of stochastic systems with weak global interaction of the type described
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above. In statistical physics interaction through the empirical measure is referred
to as ‘mean field interaction’. The limiting procedure given above is then calied a
‘Vlasov’ or ‘McKean-Vlasov’ limit (see Brown and Hepp, 1977; Dobrushin, 1979;
Dawson, 1983; Spohn, 1980).

The systems that have been most thoroughly investigated {and are furthermore a
special case of the systems we consider) are multidimensional diffusion processes.
The first results concerning the point convergence of such systems were derived
under very strong hypotheses by McKean (1967). Later, results of this type have
been shown under weaker assumptions and in different situations (see Meleard and
Roelly-Coppoletta, 1988; Dawson, 1983; Leonard, 1986; Nagasawa and Tanaka
1987a,b,c; Oelschlager, 1982, 1984; Sznitman 1984a.b; Graham, 1988; Graham and
Metivier, 1988; Gartner, 1988). For related work, including a variety of applications
in physics, chemistry and population dynamics, consult Bose (1986), Borde-Boussion
(1990), Dawson and Gartner (1987), Finnoff (1989, 1990), Grunbaum (1971),
Maruyama (1977), Murata (1977), Nappo and Orlandi (1988), Nagasawa (1980),
Scheutzow (1986), Shiga (1980), Sznitman (1984a, 1986), Tanaka (1984) and Wang
(1975).

All of these authors working with stochastic differential equations in recent years
follow a similar program to derive their results. We have followed a somewhat
different program. The primary difference lies in the fact that we make a detour
from the systems of equations (N), NeN by going over first to discrete time
approximations, which w2 feul ire interesting in their own right. Our results go in
many respects bey.:ad those found in the literatire to take into account the economic
background. We recall the interpretation of the equation ( V'), */ €N, as description
of the microeconomic activity of N agents in an economy. Due to the different
backgrounds (age, education, etc.) of the agents, one cannot presume the vectors
of the array A to be identically (much less symmetrically) distributed. Neither can
one make any of the usual independence or decay of correlation assumptions, since
one must assume a high degree of (unobservable) interaction between individual
agents, which must be collected in the stochastic elements of the array A. (For an
economic justification of the point convergence condition consult Finnoff, 1989).

Further, f~ NeN and r€[0, ) the coefficients (g/",..., gN) at time t depend
on the entire past (X[¥(h),..., X N(h)),. , of the solution to (N) (since people, in
contrast to pariicles, do have a memory), and are themselves stochastic (reflecting
for example stochastic lags, individuai optimization procedures or utility functions,
etc., see McFadden, 1981). Finally, the Lipschit. condition that we requiic of our
coefficients refers only to discrete measures, which makes verification much simpler
for concrete examples. A precise description of the hypotheses that we make is
given at the beginning of Section 3 (see (CM), (CL) and (CP)).

The things that we didn’t consider were first, coefficients with singularities or
growth that is nonlinear (as in Nagasawa and Tanaka, 1987a.b; Gartner, 1988;
Leonard, 1986), and second, systems with boundary conditions (as in Graham and
Metivier, 1988; Graham, 1988; Sznitman, 1984b).
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Our method for demonstrating point convergence goes as follows: First, show
for every N €N, that there exists a unique solution (X, ..., X ¥) to (N) and define
a sequence of ‘approximative solutions” ("X [,...,"XN)),.., to (N) by time dis-
cretization. Second, show that for every neN, the array A" =("XM)N" | of
approximative solutions is point convergent with limit u" = #{X"}. Third, demon-
strate that the arrays of approximative solutions converge ‘uniformly in N’ to the
array of genuine solutions. Finally, use this uniform convergence to show that the
array of solutions (X ),N:ﬁ'f’__.N is point convergent with limit £{X}. Here X is
identified as the unique limit point of the sequence (u"), ., and as such, solution
to the equation (00) using a stability theorem due to J. Jacod and J. Memin.

What one gains by using our methods is, first of all, the very general result for
discrete time processes contained in Theorem 3.3, which requires no martingale
theoretic, boundedness or Lipschitz hypotheses. This result, together with the
approximaiion Theorem 2.5 may be of independent interest to those working with
discrete time models, or performing Monte Carlo simulations and ‘approximation
through simulation’ using Monte Carlo methods for certain types of nonlinear partial
differential equations, (see Babovski, 1989; Lecot, 1989; Griffiths and Mitchell, 1988;
Engquis. and Hou, 1989; Seidman, 1988). Second, by the application of our methods,
one gains insight into the close relationship between point convergence and the

classical stability theory for stochastic differential equations.

Formal organization of the paper

In the first paragraph definitions are given, a number of topological results are
collected and several necessary and sufficient criteria for the point convergence of
an array are derived. Further, we show that one can transform a point convergent
array in a number of different ways without losing this property and we prove an
approximation theorem for point convergent arrays. In the second paragraph we
present the martingale theoretic concepts and results we require in the sequel. The
final paragraph is devoted to proving the point convergence of arrays of solutions
to stochastic different equations.

The author wishes to thank P. Imkeller, A. Schief, H.O. Georgii and H. Spohn
for their useful advice and suggestinns.

Notation

Here we list the notation and conventions we will be using in the sequel. In the
following E will ailways dencte a topological space and ({2, «, F, P) a fixed filtered
probability space on which all random elements that appear are defined. Here, the
filtration F=(%,), (0., F <A for every te[0,00) will be assumed to be right
continuous (i.e. F, = ),..F, for every s€[0,c)) and compiete w.r.t. P.

General |
(1) N (resp. R) will denote the natural (resp. real) numbers. N* (resp. Z, resp.
Z.) will denote Nu {oc} (resp. the integers, resp. the positive integers).
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finite set and {x,: i€ I} < E.
by [t]=max{neZ,: n= 1} the integer part of 1, by |I|

he s v x, the vector {(x.).
1 y Xx; the vecto (Xi)ios-

Probability spaces
{3) (i) Let £:2- E be a Borel measurable mapping (random eiement) in E.
The Borel probability induced by such ¢ is denoted by F{¢}.
(it} For pe[1,00), ||-||, will denote the L,(P) norm. We denote with |- ||,
the L, pseudonorm defined for any random variable ¢ by setting ||£[o= E(|£|A 1).
Let I b: a countable index set. For every i e I let X| be a set, &; a sigma algebra
on X; and u; a prcbability measure on ;. Finally, let i,, i~ I and let f: X; - X,

& e D 5 -
(4Y (i) We denonte with . (resn. . .1:.) the nroduct sisma aleebra on
\_l'} ‘I’ Y W B ET UL YY 1Ll O,, ’ I", \lvuy O,‘ "-li/’, AR W ..llvw“v‘- [~ c aane “IDVV - ~aa
Tr V (vncen mradiict maccnra an (IT Y. . o V)
Iijcj 2 \1COP. PIUGULL IHVGOUIN URL \11,, [/, \TYjc V%))
T S DU P T pyry R I T S
(1) Jju denotes the image measure of (i, unaer tne pplugj

Topological Spaces
Let A, B< E, xe€ E and I some index set. Then, we denote with
(5) (i) G(E) (resp. H(E), resp. F(E), resp. B(E)) the family of open (resp.
compact, resp. closed, resp. Borel measurable) sets in E,
(ii) E' the product space equipped with the product topology,

(ili) M(E) (resp. M,(E)) the set of Borel measures (resp. Borel prob:bil.ties)
on E eaninned witi the weak tonoloovy
LD L LLRippPes weak OpOiley.

{;‘l\ ,Au IV'DCI" Al’\ t o I‘Incll"ﬁ tl‘n(‘n NnNnan 'If-\"nﬂ]\ n“ ;n

\IV[ 4R \l\/ﬂ} B J Lile IO UL V \l\i\) T \"P\'ll NVLIIIVI ) UL 73 111 .,

{ay C€ sl I\ ................ than ca~iamd

\V) e, tnc 1JiraC measure on tne point X,

Y

(vi) A= E\A={xe FE: x¢ A} the complement of A in E.
Let 4 be a Borel measure on E. T
(6) () M(E) (resp. Mn(E)) denotes the set of Borel measurable fuuciions

f:E->R (resp. {fe M(E): f bounded}).

(ii) Let fe “(E) be such that the integra! j, S du exists. We write {f u)=
J. fdp.

(i1i) A function f < #M(E) with {x€ E: f is continuous in x}€ B(L } iz calic !
p a.s. continuous ift u(xe E: fis continuous w1 x) = u(E). Then €(E) (resp. €.(E),
resp. €5 (E)) denotes the family of continuo

Db\ &= L RIVUOLLS Rilh 21488l J MR

ou; (ves).. bounded confinuoys, rosp
ions (- E >R

s4-. bout S Tosp.

hounded 14 2.¢ rontinuong) functin >

PIiINE W RS AN TTEAe TRATFRA ] E R3BANVRARIELD .[ s Lo

I ar F he mateiz.inlo urith seotse prvy

LY L UL L UNILdUIC Wikl INCUie e

(I I 3 e al T L0 [N I oo v .

\/7) Ly L) Uciiowes fammy Ol je o,(LC) 5S¢ nat 10r CVCI'y X.ve 7]
\ £ \ £ | S— s \ 2 .. —— .
LS (x)=f(»<m(x, y)and |f]< 1. m denotes the induced me-ric on Vi (E). This is

defined for A, u € M(E) by setting m(A, u) =sup,. el { fdu - {rdal
(8) Let X and Y be topological spaces. Then C(X, V') cenotzs the space of
continuous functions f: X > Y equipped with the compact open t = ‘ogy.
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The spaces C“ and D"
Let d eN.
(9) (i) C?=C"[0, ) denotes the space of continuous functions x: [0, ©0) > R
with the compact open tcpoiogy.
(i) D' = D"[O o) denotes the d-dimensional Skorokhod space of functions
x:[0, ) >R so that x is right continuous and has left hand limits. D¢ is equipped
with the Skorokhod topology.
Let X be either D or CY and Fc M (X).
(10) We define F-={ge %: There exists a t€[0, ©) so that for every x, ye X,
Xlt0.01= Yljo.» then g(x) =g(»)}.
Let xe DY and t€[0, ).
(11) Denote with x(1—)=lim;,x(s) and with $x(¢)=x(t)—x(t-).
Let Z be a rar Jom element in D* (stochastic process).
(12) Define S(Z)={t€(0,00): L{Z} x(t)# x(t—))=0}.
(13) (i) Define on D' the canonical o-algebra &7 = B(D) and filtration ¥ =
(F,),..0o, where F,=("),..,a{X(h): h=<t} for s€ (0, ).
(ii) The product space 29 = 2 x D equipped with the o-algebra 4 = 4 ®
% and filtration F’=(F,), ., (where F,=(), ..F,®F)) is referred to as the (d-
dimensional) canonical extension of ({2, s, F).

1. Topolegical preliminaries

In this paragraph we introduce the concepts we will be dealing with and collect a
number of general results from the field of topological measure theory. Further, we
will derive the results we need to demonstrate the point convergence of arrays of
approximative solutions. We wiil frequently be concerned with questions as to the
continuity of mappings defined on a space of measures. Let I be a finite index set,
X a topological space and f: E > X a continuous mapping. We recall then that the
following mappings are continuous (see Topsge 1970, p. 68, p. 48; resp. Schief, 1986,
p.5):
M(E)>M(X), p—fu (see (6)(ii),

E'S>M(E), x,—=>(&.)i 1

Therefore, for every NeN the mapping N EN > M(E), (x)i.1 N~
N . .
(1/N) Zi;l &,, is continuous.

Definition 1.1. Let A =(&N)NS"Y n be a triangular array of random elements in E

and ¢ a further random element in E.
(i) Forevery N eN we denote with ¢y =(1/N) X" & the empirical measure
belonging to (¢]Y), .,

,,,,,
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(ii) We say that A is point convergent with limit £{¢} iff
Llel}> €, for N->oo,

and write, (4, £{&}) (resp. (4, €)) point convergent.

In the sequel, a triangular array such as 4 of random elements in E will be
referred to simply as an array in E. If such an array 4 is extended by a potential
limit £ to (4, £), this will be referred to as a closed array in E.

Lemma 1.2. Let x E a subbase of neighborhoods of x, Ec ¥ and (un)"™ a

ﬁﬁﬁﬁﬁﬁﬁﬁﬁ Al n PR | E Thow (;: VNV nnmasunse foe anu Ce A
L. 1 I

scqucernce UJ DU! €1 l qaoie ricre \‘wN} LUnucIgeo H % IJJ Jur uu_y T UT,

un(I)y>1 for N 0.

Preof. By definition (un)™'™ converges weakly to &,iff for any Ge
%(E),liminfy .y un(G) = &,(G). Since this is trivially the case if x¢ G, (un) NN
converges to &, iff for any open neighborhood of x,

un(G)->1 for N>, (%)

Now if (*) holds for some set, then it holds for any larger set. We must show
then, that the system # ={Bc E: B is a neighborhood of x so that (*) holds for
B} is closed to finite intersections. To see this, let G, H € #. Obviously then
G U H € & and, as such

un(GUH)=un(G)+un(H)—un(GNH)->1 for N-o0,

Therefore G H € J¢. Since N < ¥, the lemma is immediate. [

The following lemma provides us with some necessary and sufficient criteria for
the point convergence of an array.

Lemma 1.3. Let A be an array in E and p a Borel probability on E. Then:
(i) (4, u) is point convergent iff for every F e $(E) (resp. Ge 9(E)) and € >0,

Jim P(e (F)<p(F)+ej= 1 (R’Sp- lim P(¢§(G)>,u(G)—s)=1)).

(ii) 1F (4, u) is point convergent, then for every f € €L (E) the sequence of random
variables ((f, o)™ converges in probability to the constant {f, ).

(iii) Let E be perfectly normal (see Kuratowski, 1966a, p. 133) (resp. E = D"), and
F = 6,(E) (resp. F=(%,(E))"). Then (A, n) is point convergent iff for every fe ¥
the sequence of random variables ((f, o})) " converges in probability to {f, ).

(iv) Let E be a separable metric space with metric m. Then (4, u) is point convergent
iff the sequence of random variables (m(e?, u))N'™ converges in probability to zero.
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Proof. All four cases are shown through an application of Lemma 1.2.

{{xe M\(E): A\(F)<u(F)+e}: FeJ(E), >0}

forms a neighborhood subbase for u in M,(E). (The case with open sets Ge 4(E)
is completely analogous).

(ii) Let fe €5(E) and £>0. The set {A € M,(E): |(f, u)—{(f, A)| <&} is a neigh-
borhood of u in M,(E) (see Topsge, 1970, Theorem (8.1) vii)).

(iii) The family of sets

{Ae M(E): (L) —(fim)l<e}: fe F e<0}

forms a neighborhood subbase for u in M,(E) (see Topsge, 1970, Theorem (8.1),
and Kuratowski, 1966a, VI Theorem (1)) (resp. Jacod and Shiryaev, 1987, VI
Theorem (1.14) and (1.24)-(1.27)).

(iv) This is shown as above using the fact that the metric i induces the topology
on M(E). O

Let X and Y be separable metric spaces. Then the space C(X, Y) is, generaily
speaking, not a Suslin space (see Michael, 1961). It turns out though, that C(X, Y)
has sufficient countability properties to avoid any problems of measurability that
otherwise might be encountered. We recall that a topological space X is called a
hereditarily Lindelof space iff to every subset A< X and open cover of A there exists
a countable subcover. In the following we will often construct new arrays as image
of an existing array under a measurable mapping (see Theorem 1.8, Corollary 1.9).
The product spaces on which the new arrays are defined often contain the space
C =C([0,0)x D x M,(D"), R*™) where the (random) coefficients of the
equations we consider take their values. The mappings used to generate the new
arrays are usually only known to be coordinatewise measurable, (and not necessarily
product measurable). The hereditary Lindelof property of the product spaces demon-
strated in the following lemma will insure the product measurability of these
mappings, since the Borel sets of the product space is then equal to the product of
the Borel sets of the coordinate spaces.

Lemma 1.4. Let X, E and Y be separable metric spaces. Then, for any N €N the space
((E x C(X, Y))N is perfectly normal and hereditarily Lindelof. Further, the evaluc tion
mapping e: C(X, Y)x X > Y, (f. x)—f(x) is Borel measurable.

Proof. Let Ny (resp. Ny ) be some countable base for the topology on X (resp. Y).
Denote with C the set of continuous functions f: X > Y. For two sets B X, Dc Y
set [B, D]={fe C: f(B)< D}. Finally let 7 (resp.7) denote the compact open
topology, (resp. the topology generated by the family of sets U = {[ B*, D"]: Be N,
De Ny}). Since U is countable, (C, 7) is second countable. We will show that the
evaluation mapping e:Cx Y- Y is continuous when C is equipped with the
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topology 7. Let G # () be some open set in Y and (f; x) € e '(G). Since Y is normal,
there exists an open set D< Y such that f(x)e D, D" < G. Because V) is a base
for the topology on Y, it is no restriction to assume that D e V.. By the continuity
of f and normality of X one can find a Be Ny with x¢ B*c f~Y(D). Thus (f, x) e
[B*, D‘]xB=H. If (g,y)e H then g(y)€ G. Therefore H<e '(G). Since H is
open in (C, 7) x X, this proves the proposed continuity of e. It then follows from
classical results that 7 is coarser than 7 (see Kelley, 1955, p. 223). The idea for this
proof is taken from Michael (1961).

The space ((E x(C, 7)) is regular {sce Kuratowski, 1966b, p. 76). Since ((E X
(C, 7)))" is second countable and G((E <(C, 7))V)< G((E x(C, #))"), it follows
that ((E x(C, 7))V is hereditarily Lindel6f. A regular Lindel6f space is normal
(see Engelking, 1968, p. 140). Further, every regnlar, hereditarily Lindelof space Z
is perfect. To see this consider any open set G < Z. Then there exists to xe G a set
H, with xe H} < H < G. By the hereditary Lindelof property of Z there then exists
a countable subset I < G so that G =, H5.

Finally, since (C, 7) is second countable, B((C, 7)) is generated by U As U<
B((C, 7)), the measurability of e with respect to B((C, 7)) is immediate. [

The space D

Let d eN. We will be considering stochastic processes realized in the d-dimensional
Skorokhod space D = D“[0, c) equipped with the Skorokhod topology. We collect
here some facts about this topology that we require later.

Lemma 1.5. (i) Ler X be a random element in D“. Then there exits a countable set
T < [0, ) so that ([0,00)\T)< S(X) (see (12)).

(ii) Lette[0, ). Then the functions x—x(t), x—>x(- v t) and x - x(- A t) are Borel
measurable and continuous in every point o € D with $a(t)=0.

(iii) Let x, ye D and (x,)ncn, (Vu)nen be sequences in D so that x, > x, y, =y
Sfor n-00. Assume that for every t >0 there is a sequence (t,),.n in [0, 0), t,—> t with
Ix,(t,) > $x(t) and $y,(t,)=> Fy(t) for n>oco. Then, x,+y,—> x+y for n >0,

Proof. (i) See Jacod and Shiryaev (1987, VI (3.12)).

(ii) The measurability foliows dirc.i;y from the fact that the Borel sets of D
are generated by the mappings x—x(t), 110, ) (see Jacod and Shiryaev, 1987,
VI (1.46)). The proposed continuiiy can then be easily derived using any of the
usual characterizations of convergence in D? (see Jacod and Shiryaev, 1987, VI
(2.3), (2.5)).

(iii) See Jacod and Shiryaev (1987, VI (2.2)). O

Lemma 1.6. Let1,, 1,€[0,00), t, <t and m eN. Define H{t,, 1) ={(x, z) € D! x D™:
x=x(-nt)) and $z(t;)= $z(t.) =0}, C=C([0,0)x D*x M, (D), R*™) and
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finally
W Dd X D™ X éxRif=i?i_) Du’ x D™ X é,
(x, z, gs,")"“’((x'f')"(z(fzf\(' Vt]))—Z(t|)), Z,g).

Then we have:

(i) The set H(t,, t,) is measurable in D x D™,

(ii) The mapping ¢ is Borel measurable and every (x, z, g, y) € H(1,, 1) X C xR*"™
is a continuity point of .

Proof. (i) Trivial.

S50 Ny o FESUNY SR § [PPSR L OUps N o S 1 0A 1 4 £~ sy freen —
(i) 10Is 101IOWS Qirecuy 1irom cemma i.4 ana i.5 (1), (in). O

Lemma 1.7. For x, ye D, keN set

1

hk(xsy): sup “x(f)—}’(’)“ and mu(X,)’)‘—' Z k(h’\(x’y)/\l)'

1c10k) Kol 2
The metric m, induces the topology of local uniform convergence on D*. Further, there
exists a complete bor.nded metric m, on D which induces the Skorokhod toralogy on
L% sa that for every x, ye DY, = (x, y) < m,ix, y).

Proof. See Jacod and Shirvaev (1987, VI (1.24)-(1.27)). O

Point convergence of transformed arrays

In the following we show that a point convergent array can be transformed in a
variety of ways without losing the property of point convergence. Further, we
demonstrate that if one can approximate an array of random elements ‘uniformly’
with a sequence of point convergent arrays, that the approximated array is itself
point convergent.

Theorem 1.8. Let X be a topological space with the property that X" is hereditarily
Lindelof for any N eN. Further, let f: E > X be a Borel measurable mapping and
(f;-"'),-“i‘,’f’__,,\, = A a point convergent array in E with limit p € M,(E). Finally, suppose
that one of the following conditions is satisfied:
(i) X is perfectly normal and the set C,={y€ E: f is continuous in y} is Borel
measurable with u(C;)=1.
(ii) There exists an increasing sequence (K,),. «, of closed sets in E with
(a) f|K, is continuous,
(b) P(oY(K,)>1/n)<1/n jor every n, N eN.
Then, the array f(A) = (f(&N)NSY « in X is point convergent with limit fu.

Proof. By the hereditary Lindelof property of X ™ for N €N, all the random elements
in the array f(4) are well defined.
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(i) By Lemma 1.3 (iii) we must show that for every ge %.,(X), the net
~
N I
({g, ©/13))) nen converges in probability to (g, fu). Since the function gofe €} (E)
we have by Lemma 1.5 (ii) and definition of f(4),

- . prob. , -
<gs ‘P;\(’A)>:<g,f¢.[:’>=(gofv QD.T)_——)\goj;“) for N - .

By definition (g°f, u)=(g, fp,). This completes the proof of (i).
(ii) Let Fe $(X), £ > 0. For any 6 > 0 choose some m €N with 1/ m <max{8, 3¢}.
Since f|K,, is continuous, the set F,, =f '(F)n K,, is closed in E. Define

B=f"(F)nK,
We then have for NeN,

P(p]\s(F)<Ju(F)+e)
=PloN(F, )+ oY (B)<u(F,)+u(B)+z)
= P(o}(F)+ oY (B)<u(F,)+¢)
=P({¢ ) (F,)+1/m<u(F,)+e}n{el(B)<1/m})
= P(¢ ) (F,) <u(F,)+3¢) - P(e5(K,)>1/m)
= P(eY(F,) <u(F,)+18)—8.

By the point convergence of (4, u) and Lemma 1.3(i), the last expression above
converges for N ->00 to 1—6. Since 8 was arbitrarily chosen, the first expression
above converges to 1 for N > 00, Apply Lemma 1.3/i) again to finish the proof. [

An application of Theorem 1.8 that we require in the sequel is contained in the
following:

Corollary 19 Let E be Polish and Y, S separable metric spaces. Further, let A =

.....

.....

is point con .. _ont with limit ESP{(X“\, zZ*,g", g“ (XN}

Proof. Let e:EXC(E, Y)Y, (x, g)—~g(x) denote the evaluation mapping. By
Lemma i.4, ¢ is Borel measurable and the space H" is hereditarily Lindel5f and
perfectly normal for any N eN. The array 4y =(XN)Y\™ « is by Theorem 1.8(i)

together with 4, point convergent. In particular, since M(E) is Polish, the weakly
convergent sequence

(Ll hHN

is~ by Proctorov’s theorem, tight. Thus, for every neN there exists a compact set
K, < M(E so that for every N eN,

Lot HK)=1-1/n.
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A second application of Prochorov's theorem to K,, delivers the existence of a
compact set U, = E with the property that for every u < K,,,

M(Un)al_l/n

Define for every neN the closed set K, = U, xS x C(E, Y) X Y. We then have for
every n, NeN,

P(e5(K,)>1/n)=P(eS(U,)>1/n)<1/n.

Defining ¢ = (idy, e), it follows that A=y(A)and F{X>,Z", g, g (X))} = dpu.
By classical results, (see Dugundji 1966, p. 259), the restriction of e to U, x C(E, Y)
is continuous for every neN. As such, for every neN, |, is continuous. The
proposition then follows from Theorem 1.8(ii). [

Our next theorem shows that a point convergent array of random elements can
often be ‘woven together’ with a convergent sequcrice of random elements to form
a new point convergent array.

Theorem 1.10. Let X and E be topological spaces so that for any N eN, (E x X )V is
hereditarily Lindeléf. Further, let A=(£)S" n be a point convergent array in E

.....

with limit u, x € X and (™ )N ™ a sequence of random elments in X se that £{n"} > €,
Jor N <00, Then the array in E X X,

A=((&N, "W N

.....

is point convergent with limit u® €,.

Proof. Since (E x X)" is hereditarily Lindelof for every N €N, all of the random
elements in A are well defined. We propose that for any Be 9(E x X), 6> 0 there
exist G,€ 9(E), G-€ 9(X), € >0 so that

IAe M(EXxX):AG,XG,)>u®&.(G,xG-,)—¢}
c{de M{(ExX): A(B)>u®¥&.(B)—8}.

If w® &.(B)=0, then this is trivial. Suppose that u® &,(B)#0. Since EX X is
hereditarily Lindelof there exist A;€ 9(E), D;e 4(X) for ieN, with

B=J A, x D,

el

Set I, ={ieN: xe D,;}. Then
u®éE(B)= p.@%,f\.( U A, x D,-).
R
Further, one can find a finite subset J < I, with

w(Ua)>u(Ua)-1s

icJ icl,
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Define G| =U,'CJ Ai, Gg':'m,',_J D,u Then Gl X Gzc B and
p®E (G X G:)=u(G\)>pu®@E(B)—1b.

Set £ =36.
Recall the result stated in Lemma 1.3(i). Assume that € >0, G, € 4(E), G,€ 4(X)
are given. We must show

P(oY(G,xG:)>pu®E(G,xG,)—€)>1 for N,
It is no restriction to assume that x € G,. By definition,

P(‘PEI(GIXG2)>M®%x(Glez)"f)

(;, Y € ,(Glxcz)>u<c,>—s)

=P({eY(G)>u(G)—etn{n" e G}).
The point convergence of (4, u) implies

P(eN(G)>u(G)—€)>1 for N-o.

NeN

From the weak convergence of (n") to x it follows from Lemma 1.2,

P(n"eG,)»1 for N-oo.

This proves the proposition. [

An example of an array with the properties listed in Theorem 1.10 is given in the
following:

Corollary 1.11. Let X, Y and E be separable metric spaces and ((x,gN))N “'f’._,
point convergent array in X X C(E, Y) with limit £{(x, g)}. Then the array

(( N 1 N NeN
xN, g, =Y € ))
NS N

.....

is point convergent in X X C(E, Y)x M,(X) with limit #{(x, g)}® &,/

N NcN NEN

Proof. The array (x;"),2, . ~ is togeiner with ((x, g")XY + point convergent.
Further, since M,(X) is together with X a sepaiable metrlc space, it follows from

Lemma 1.4 that the space (X x C(E, Y)x M,(X))" is hereditarily Lindelof for any
NeN. O

In the following theorem we will show that if one can approximate an array of
ranidom elements A™ ‘uniformly’ through a sequence of point convergent arrays
then there exists a uniquely defined probability measure u so that (4™, u) is point
convergent. We recall the definition of || - ||, given in (3)(ii).
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Theorem 1.12 (Approximation Theorem). Let E be a Polish space with complete metric
d. Further, for every neN, let A" be a point convergent array of random elements in

E with limit {£"} and A™ a further array of random elements in E. Finally, denoting
with d the induced metric on M(E) suppose that

sup ||d(o, o<)lo>0 for n—co.
NeN

Then there exists a uniquely defined Borel probability p on E so that £{£"} > u and
(A%, w) is point convergent.

Proof. Define for every n, NeN,
nn =d(elh, £1£") and pN=d(plh, o).

By the point convergence of (4", £{£¢"}) and Lemma 1.3(iv) it follows forevery n e N,
In2llo>0 for N -co.

Moreover, for any n, m, NeN,
d(L{gm), LED<n) +y)+un+ql.

Hence, our hypothesis insures that (£{£"}),.n is a Cauchy net with respect to the
complete metric d. Let u denote the limit of this sequence. For N €N one has for
any neN,

d(eXe, w)<yN+qN+d(£{e"), p).

Therefore, it follows from the preceding and Lemma 1.3(iv) that (4™, u) is point
convergent. [

2. Martingale theoretic preliminaries

In this section we present several concepts and results from general martingale
theory that we require in the sequel. The first result is a standard stochastic Gronwall
type Lemma. The second (Lemma 2.2) relates a type of L, convergence with the
weak convergence of discrete random measures. We then introduce the solution
concepts for stochastic differential equations we use, and conclude the paragraph
with a simpiified version of a stability theorem for stochastic differential equations
due to J. Jacod and J. Memin.

In the following we wili always assume that the filtered probability space
(2, o, F, P) is given, on which all processes that appear are defined and with respec
to which all relevant concepts (stopping time, semimartingale, etc.) refer. Further,
it is assumed that all ‘processes’ that appear are right continuous and have left hand
limits. Finally, we set sup #=0.
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Lemma 2.1. Ler S and R be stopping times, S< R and K, p, [€[0, o). Further, let ¢
and A be adapted increasing processes with sup,,. o|A(R(w))—A(S(w))] <1< 00,
Finally, assume that for any stopping time U, S< U <R,

E(qS(U—))sK%-pE(j d)(h~)dA(h)).

[S.U)
Then,
[2p1])

E(¢(R-))<2K ¥ (2pl)’.

i=0

Proof. This lemma is a slightly modified version of Lemma (7.1) in Metivier and
Pellaumail (1980). [

Lemma 2.2. For every neN™, let A" =("X} )" « be an array of random elements

in D* and m, the complete metrlc on D" given in Lemma 1.7. Recalling the definition
of the induced metric m,, we define for every neN,

¢" = sup ||, (o5, @5) 0.
NeN
Assume that for every €, T € (0, ) there exists a set K| < s, so that P(ET) < e and

1 -, ~
supE((ﬁ\ supH"X (1)— X;J(t)||“>lxg)—>0 for n- 0.

i=] 1~

Then ¢" -0 for n— oo,
Proof. By the definition of the induced metric it follows for every n, NeN,
A N N <_1__ A ny N x N
'ns((p_\", ‘ID._\‘)\N Z ms( Xi s Xi )°
i1

Recalling the del. ‘ion of the metric m, given in Lemma 1.7, it follows for every
leN, x\,..., XN, Viy..., v~ € DY

rﬁ(—l—if —]-‘N%)ngm\ Vi)
N 7, N~ " N
1 N
=7 L, b )
<Y sup 0=k + 5
i o 2

Let £>0 be arbitrarily chosen. Choose some [N large enough so that 1/2'<e.
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Noting that m < m, <1, we have by hypothesis and the preceding for every neN,

¢"<sup Z(r (¢, 9 )k +e

N Ry
] N
<sup E(— Y sup II”X.»”(t)—‘X.-N(t)I!lK:”)HE
NeN Ni—l 1<10.1]

‘l N 1/2
ssupE((—Z sup ||"X?’(t)—‘X§}’,,||21Kg+-) )+23

NeN N Ziiciouen

(Cauchy-Schwarz)

1 N ) ) 1/2
gsup(E(—Z sup H"X,N(t)—‘Xf"(t)||“1,¢w)) +2¢

NeN Ni—=ln[(),l+l)
(Jensen).

Since £ was arbitrarily chosen, the proposition follows from our hypotheses by
using the monotony and continuity of the square root function. []

Stochastic differential equations

Let m € N. We recall that an adapted, R™ valued process Z ic a semimartingale iff Z
admits a control process A. A positive, increasing adapted process A is calied a
control process for Z iff for every IeN, R"™ valued elementary predictable process
X and stopping time 7, one has

J X dz ~)sE(J,A(T—)J llXIIépdA(s)),
[0.n [o.7)

where J,> 0 is some constant that only depends on /, and || — ||,, denotes the operator
norm on R"™ (see Metivier, 1982, p. 157).

We further recall that if Z is an R™ valued, locally integrable semimartingale,
there exists a uniquely defined triple (V, C, 9) called the local characteristics of Z,
consisting of a predictable R™ valued process V and a continuous R valued
process C, both with paths of locally bounded variation, and a predictabie random
measure ¢ on R™\{0} which can be used to characterize Z as the solution to a
martingale problem (sce Jacod and Shiryaev, 1987). although we won’t be making
direct use of this characterization it is central to the concept of a ‘weak solution’
to a stochastic differential equatio. (see (2.1)) and to the stability Theorem 2.8 that
we apply in the sequel. The following definitions and notation with regards to
stochastic differential equations follow Jacod (1980), Jacod and Memin (1980, 1981).

Assume to be given: An m-dimensional semimartingale Z with Z{0) =0 (driving
process), an R“-valued F, measurable random variable K (starting value) and 2
coefficient g: 09 x[0,c)->R*™ which, viewed as a process on the canonical
extension (29, 7, F!) {see (13)), is predictable. Such processes are referred to as
predictable functionals. This is due to the fact that if X is an adapted process on
the original space ({2, ¢, F¢ P), then one can define a predictable ‘functional

E(sup

<7

m-m
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process’ Y on ({2, &, F, P) by setting for every (w,1)e 2x[0,), Y(w,t)=
g(o, t, X(w)). Moreover, since Y(w, t) only depends on the values of X(w, s) for
s<t, it is possible to define Y(w,t) when X{w, s) is only known for s<1 (see
Metivier and Pellaumail, 1980, (6.4)). Consider the following equation:

t

X(',t)=K(')+J.0 g(-, 5 X(-,-))dZ(:,s) (2.1)
(Doleans-Dade and Protter’s equation). In the equations we consider, the law £{ X}
of the solution X will sometimes appear in the coefficient as well. This case can be
treated though in a canonical fashion without leaving the framework given by
equation (2.1). We now give precise meaning to what we mean by a ‘solution to
the equation given above.

Definition 2.3. A strong solution (or solution process) to (2.1) with respect to the
driving system (0, o, F, P, K, Z) is an R“ valued process X on £ with the following
properties:

(i) X is adapted to F.

(ii) Define the process g(X) by setting for every (w, t) € 2 X [0, ), g(X)(w, t) =
g(w, 1, X(w)). Then, g(X) is integrable with respect to Z and for every t € [0, o)
and P ae. we (),

{

X(w, t)= K(w)+J‘ g(w, s, X(w, ) dZ(w, x).

Let ¢r: 29> 0, (w, x)—wo denote the projection of ¢ onto Q. Then, a weak solution
(or good solution measure) to (2.1) is a probability measure P on (2, #“) which
satisfies:

(i) The 2 marginal P|, of P (i.e. the image measure of P under ¢) is equal
to P.

(i) The process Z = Zoy is a semimartingale on (2¢, 4“ F’, P).

(iii) If (B, C, 9) denotes the local characteristics of Z on ({2, &, F, P) then
(B, Co, Do) are the local characteristics of Z on (29 4, F¢. P).

(iv) Def:nc K = Ko The process (X(t)),.., on 2¢ given for every ((w, y), t)€
0 %[0, 00) by setting X ((w, y), t) = y(1) is a solution process to (2.1) with respect
to the driving system (2¢, 44, F*, P 7 K).

We now present a simplified version of a stability theorem due to J. Jacod and
J. Memin, decaling with the convergence of sequences of solution measures (weak
solutions). Assume that for every n e N™, a coefficient g" : 29 x [0, 0) > R“™ is given,
which is a predictable functional on (29, &9, F*). Then define for every n eN* an
equation

!

X"(t)=K+J g"(s, X")dZ(s). (2.1n)
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Weak solutions to equations such as (2.1n), neN*, are measures on the space
=d d . . .
0° =0 x D" Since ({2, o) is an abstract measure space, one needs to introduce a
convergence concept for measures on spaces such as 2.

Definition 2.4. Denote with Bm,c(ﬁ") the set of all bounded &/ measurable functions
V:8% >R such that V(w, -) is continuous on D for every w € £2. We then define
M., .(227) to be the space of all probability measures on (2, 5#) endowed with
the topology induced by the mappings u — [ V du, for Ve B,, .. This topology is
called the weak-strong topology on Mm.c(ﬁ").

We now list the hypotheses which are required for the stability theorem.

P_lypothesis 2.5 (Compactness). For every neN, there exists a unique weak solution
P"e M,, (027) tothe equation (2.1n), and the sequence (P"|5¢),,.,, converges weakly
to a measure u™ € M,(D?).

Hypothesis 2.6 (Continuity of g*). For every (w,t)e x[0,0) the function
g% (w, t,+): D* > R*™ is continuous.

Hypothesis 2.7 (Convergence of (g"),.n). For every (w, t)e 2 x[0,00) and every
compact subset K = D“, the sequence of functions (g"(w, f, *)),cn CONverges uni-
formly on K to g*(w, 1, *).

Theorem 2.8 (Stability Theorem). (i) Under Hypothesis 2.5, the sequence (P"), o IS
relatively sequentially compact in M,, {(2).

(ii) Assume that Hypotheses 2.6 and 2.7 hold as well. Then, all liniit points of ihe
sequence (P") are weak solutions to (2.10). Further, if P~ is such a limit point,
Pl ="

Proof. Under Hypothesis 2.5, (i) follows from Theorem (2.8) of Jacod and Memin
(1981). The result stated in (ii) can be derived using Theorem (3.24) of Jacod and
Memin (1980), (hereafter simply [JM]). The conditions [JM](3.11), [JM](3.13) iii),
[JM](3.20) and [JM](3.21) (resp. [JM](3.10)) are trivially satisfied in our situztion.
The condition [JM](3.18) is not required, since it is only used to demonstrate the
relative compactness of the sequence (P"), .~ Which we already have by (i), (see
[JM] Lemma (3.56)). The condition [JM](3.15) follows from Hypothesis 2.6 and
the condition [JM](3.19) corresponds to our Hypothesis 2.7. Finally, the fact that
P*|;5_ .~ for any limit point P* follows directly from Hypothesis 2.5.

Theorem (3.24) of [JM] is a very general stability theorem which also permits
the starting values, the driving semimartingales and the basic filtered space to vary
with neN~. The proof itself is, as such, very complex. A reader only interested in
the proof to Hypothes's 2.8 is advised to consult Jacod and Memin (1981) and the
proof of the (simpler) Theorem (1.8) therein. This contains all the steps needed to
demonstrate the theorem (although the proposition itself is actually an existence
theorem). O
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3. Point convergence for solutions to stochastic differential equations with
global interaction

We recall the systems of equations (N), N €N, and (o) given in the introduction.
In this paragraph we will show that under appropriate hypotheses on the array
A=((KN,zY,g"N " n of starting values, driving proczsses and coefficients for
every N eN there exnsts a unique solution (X{",..., X}N) to (N), and the array of
solutions (X)X  is point convergent with limit ${X}, where X is a unique
solution to the equation (o) induced by the limit #{(K, Z, g)} of the point convergent
array A.

We require three conditions of the closed array (4, (K, Z, g)). The first, (CM),
specifies the martingale theoretic structure which is required so that the equations
make sense. The second hypothesis, (CL), is a Lipschitz and growth condition that
insures the existence of a unique solution to the equation ( N) for every N eN. The
final condition, (CP), is a point convergence property, sufficient then to prove the
point convergence of the array of solutlons to (N), N eN. In the following, for k,
leN, xeR*' we denote ||x|*=Y" xR

Conditions 3.1. Let d, meN.
(CM) We assume to be given

.....

integrable random variables, and I > 0 a constant so that for every NeN,

B(3 2 IKN) <1

N

(iii) A closed array of coefficients ((g”) ™ v, g),
g’_ , g,ﬂ_) C({O, m) X Dd X M](Dd), qun)

with the following properties:

(a) Define for every NeN an (R“™)"™ valuved random functional on the
canonical extension (ﬂ'(LN’ &_gtl-N’ de-N)’

GN () x [O, CD) X Dtl-N - (Rll-m)N

1 N
(wa F, (xli" ‘,xN))a(gl[\’<w’ !‘! xl’_ Z g!')) .
N,:,.l ' i 1., N

Then, GV is adapted, hence predictable.

(b) [}eﬁne for every u € M,(D“) a random functional g* on the cancnical
extension (29 «‘ FY),

gll :Q X [0’ CX\) X Dd _)Rd-m

(w, 1, x)>g(w, 1, x, u).
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Then g* is adapted, hence predictable on this extension. Further, for any
random element Y, (o, 1, x) € 2¢ we have

glo, t,x, Z{Y}) =glo, t, x, Z{Y (- n t-)}).

We further stipulate that for every i=1,..., N, N eN, the coefficient g/ satisfies
the following Lipschitz and growth conditions:
(CL) There exist constants L, G >0 so that:
(i) Forevery we, t, §€[0,0), X;, yy, ..., Xn, Y, X, y€ D,
] / 1 N + N \ B2
lgM o, t,x,—Y €. )—gle t+6,y,— Y & )
I\ N i<, NS

<L(3+ sup |[x(sat=)—y(sa(t+8)-)|°

se]0,x)

1 N

+iz sup |[xi{(sAi=)—yi(sA(t+8)- )||,
iv =] &([U X)

(ii)) For every (w, 1)€ 2x[0,): |g]N(w, t,0, &)’ <
Finally, there exists a [0, c0) valued increasing, continuous, adanted process A

with A(0) =0, so that
(CP)Y () A=(( N 7N G.N\\IN_aN i 1€ nomn converoent  wunt limit g =
A \2) — \\&£=2, 9 -— 9 6, ,’._' ..... N i }I\Jllllv \I\Ill'\vlb\.«lll Y iLiL 21AK1I1L
LK 7 o)\l
ol |\ 1Ny £y 5’]»
(25 Baan ac;me — 1 AN AT ~R! A e 0 ~meted a0 ZN
\I1) TUL CvECly I — 1, s IV, IV EIN, A IS d COINTIOLI Process 10r £ .

The condition (CL) can be interpreted 2s stating that there is a bound to the size
of the reaction an agent will exhibit by a small variation of his environment and
experiences. The condition (CP)(ii) may be seen as stipulating the exisiciice of a
common bound to the expected maximal growth of the processes Z Noi=1,...,N,
NeN.

N - N
i

Theorem 3.2. For every N €N there exists a unique strong solution (X,,..., XN)
to (N).

Proof. See Metivier and Pellaurmail (1980, Chapter 111, Sections 6,7). [

 § ¥ R 4 tlan smces 1Y cmnesmnit 22o b Aamnncirata tha nnint canver.
YWEC HUW DICOCIIL U i€ chull Wlllbll Wiii PUIIHIL UD U ULinulidtiaty v pPuUliit vulivei

] ~ rn ~ys Nd o ag mdy ppdmy

gence of arrays of approximative solutions. Set C = C{{{,c}x D" X M{D" ), R" )

Theorem 3.3. Let A=((K,Z",gN)N" « be a point convergent array in R x

D" x C with limit P{(K, Z, g)}. Furtl:zr let (). +, be a strictly increasing sequence in
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(0,00) with t;-> for j»>00 and T={t,:jeN}c S(Z) (see (12)). Define for every
i=1,...,N, NeN, 1€[0,00),

(KY forte[0,1],
; N
XX =4 X )+, XY (/N ESNZN ) -ZN (1)
forte(tk, tk+l]9 kEN,

and

K Jor te{0,1,],

X(F)z{X(tng(tk,X,E{X})(Z(t)—z(’k)) Jorte(t, tisy], keN.

Then A=(XN)NN_ is point convergent with limit ${X}.

.....

Proof. We define recusively for every keN a closed array in DY x D" x C,
(4, (X, Z,g)) = ("X, Z}, g1 v, (OX, Z,8)).

To define the first array ('4, (' X, Z, g)), interpret for every i=1,..., N, NeN the
random element K in R’ as a (constant) process in D, then set ' XN = K. One
defines 'X = K analogously.
If (*4, (*X, Z, g)) is already defined, then set for every i=1,..., N, NeN,
X =g, X,

1 N |
N E‘ %er?)(Z,N((th')/\tl\-+|)_'le(tk))a
i=1

and
IX =X 4 g4, "X, PEXINZ((4 v ) A tery) — Z(1)).

For s, 1€[0, ) recall tuie set H(s, t) defined in connection with Lemma 1.6. We
will show using induction that for every k €N, the array *4 is point convergent with
limit £{(*X, Z, g)} and that FIEX, Z)YH(ty, ti4,))=1. For k=1 this is part of the
hypothesis. Assume that the proposition has been shown for keN. By Corollary
1.11 the array

' 1 N NoN
((exr.zramt 3 )
\ i-=1 i N

is point convergent with limit Y{(*X, Z, g)}® &, . \,.
By Corollary 1.9, the array

A=(kx,~ ZN gN gN(,k XV LS e )
r o t 9 9 ! 9 "Niril b ’))

is point convergent with limit %°{n}, where

n=0"X, Z, g g, " X, I*X})).



W. Finnoff / LLN for SDE i7

Lh

Define then the mapping
ﬁHI:Dd >(Dm>< éde'rn_) Dd % Dmxfw
(x,z, 8 yy=>(x+y (z((t v )nt ) —z(8)), 2, 8).

By induction and Lemma 1.6, the mapping f,., and the closed array (4, ) satisfy
the conditions of Theorem 1.8(i). Since “*'A =f.,(4) and (recalling (4)(ii)),
FerLin=L{(**' X, Z, g)}, the point convergence of (**'4, (*"'X, Z, g)) then fol-
lows from this theorem. The fact that L{(*"' X, Z)}(H (t;.+;, tx+2)) = 1 follows from
our hypotheses and the definition of ***X.

To verify that the array (X[)X{" 5 is point convergent with limit £{X}, it is
adequate by Lemma 1.3(iii) to consider the array restricted to bounded intervals of
[0, ). For any bounded interval I < [0, o0) there exists a j € Nsothat ¢, >sup{r: te I'}.
Since forevery i=1,..., N, NeN, iIXN and X (resp.’X and X) coincide on 1,
the proposition is immediate. []

Definition 3.4 (Approximating arrays). For every neN let (") 2, be an increasing
sequence in S(Z) (see (12), Lemma 1.5(i)) with "t,=0,and 1/(2n) <|"t,_, = "t|<1/n
for every n, k e N. We then define to (4, Z{(K, Z, g)}) and ("t )«.2, a point conver-
gent array A" = ("X )XV y with limit £{"X}, as in Theorem 3.3. Further define
forevery neN,iel,..., N, NeN a predictable functional on the d- N dimensional
canonical extension by setting

"gN: 2 x[0,00)x DN >R
(0, (e X ))»—>{0 o N forte [?, ”!,I.]’
gN(w, ", X, I/ NYEY | €,) forte (", "], keN.
Let "u = £{"X} for every neN. We then define
"g: 2 x[0,00)x DY >R*™

(0.1 %) {0 for 1[0, "t,],

X )=
D5 X)\ (@, "t %, ") for 1€ ("te, "tt], keEN.
For every N, neN, ("X,...,"X}) is a solution of the equation

1

nXiN(t):K"N+J‘ "g,N(s, "X{\Ia‘P.I,;I")dZ:'}\I(S), i"—‘l,...,N. (n, N)

0

And by (CM)(iii)(b) for every neN, "X is a solution of

]

"X(t)= K+J g(s,"X, L{"X})dZ(s). {n, )

G

In the following we denote

A% = (X.N).l\i{l‘\l N-

.....
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To complete the third step of our program we need some technical results.

Definition 3.8. Let 7, 5[0, 00), H e 4.
(i) Set
ns(%, T)=supi{|A(o, s)— Ao, 1)]: we ¥, s, 1[0, T],|s —t|< 6}
We now define a number of stopping times.
i) T(%)=inf{ze[0,0): A()> 7, (% T)}aT
(iii) For every neN, ke Z, set
"1 (%, T) =inf{t € ["t, 00]: A(t) = A("t) > 01/u(%, TV} A T(I) A "t41.

(iv) For every neNset "k =min{k e N: "t, > T}. Then define the adapted process

"k—1
n —
V._ y l["l;\."r,\(i(,T))

=

k=0
and stopping time
"T=inf{te[0,00): "V(t)=0}.

In the foliowing, the indexes # and T will be dropped whenever the reference is clear.

Lemma 3.6. For every T, £ >0 there exists a set ¥ e oA with:
(i) P(¥T)<e.
(ii) (9], T)<o and n,/,,(%z, T)-0 for n—> o,

Proof. The process Alj, r) is realized in the Polish space C[0, T] (=C([0, T],R)).
Therefore, for every £ >0 there exists a compact set K, = C[0, T] so that #{Al;o 7}
(Z) < g. Set

%;T = (A‘[(),T])—](Ks)-

By the Arzela-Ascoli theorem, the set K, is uniformly bounded and equicontinuous.
The result is then immediate. [

In the following two lemmata we will assume that T, € € [0, c0) are arbitrarily
chosen, but fixed and # = %] € o is the set given in Lemma 3.6. Further, any of

the symbols 7, "7, ’f "T, etc., which appear, will be assumed to refer to T and
7. Finally, for every se€ [0, ), neN, we wiite

,,S__{U ifsel0,"n],
"t ifse("t," "t ,]forsome keN.

Lemma 3.7. There exists a constant W so that for every n, N e N,

1N ,
E(— Y J sup | XN (hna“s=)— X (h-)|° dA(s)) < Wn,,.
N /5, [0."T) h- s '

/
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Proof. Since all norms on RY" are equivalent, there exists a C > 0 so that lgllop=<
Cllg|* for any g€ R“". Let J, be the constant belonging to the control process A
and d, (described in the section on stochastic differential equations), then set
C= CJ(,

(1) Let U be some stopping time, U < T Then, for every NeN,

N

! >
B3 £ sup 1X Y00~ KIP)
i=1h- U

)

o0 dA(t)) ((CP)(ii))

| S
=E(-,;,~z sup J g, XY, oY) dzZN(1)
i=1h-U [0.h)

1 N
i—=1 [o.U)

| R
<2cB( T AW | M X ek~ n0 gt aacn)

i=1 [0,U)

+2CE(—:7 % A(U)J

IN j=1 forr;

||g, (2.9, '())!!:dA(I))

1 N 2 \ 2
s4CLnTE(—A7 y J sup ||Xf”(h)i|~dA(t))+2C6‘s;-:T
i=1Jj

0.y h-t

(2) For any t€[0, o) define

(t)——— Z sup || X (h)|}>.

llhl

A

Recalling (CM) (ii), we have for any stopping time U< T,

E(¢N(U—))<21+2E(N y sup I1xNh)- KNH)

i=1h-

< SCL,,,E(J' dN(1-) dA(t)) +2[ +4CGny
[o.U)

Setting K =21 +4CGn7, p =8CLyy, it follows from Lemma 2.1 that there exists a
constant W, =0, such that

E(e™N(T-)=Ww,.

Now, using the second and third inequalities in (1), it follows for any N eN,
1 N A
E(— > J:IA(T)J oM (e, X ,m\)llor,dA(t)>
N i=1 [0.7)

<4CLy3W,+2CGn7r=W.
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(3) Finally, let neN be arbitrarily chosen but fixed. Then,

E’(i g J sup IIX,N(h/\"S—)—va(h—)lfdA(S))

N i=1 0,"T) h=s

N k-1
( Yy ¥ J sup | XN(h=) - X" ("3 '))
Nl 1 k=0 J[","7) "h=n< s

(Def."T)

"k—-1 1 N s )
<X E(ﬁ Y osup  IXN(h=)= X"t o)AMY —A( tk)))
k=0 i=1" <p<tg

"k~1 1 N‘
<Ni/n Z E( 2 sup
"k—1
s’r)l/n ( Z Z leA TI\)J' “gl (t XI s‘P.\\)”()pdA(t))
")

f N XN, oY) dZN (1)
["tr.s)

i=1 nl‘;‘—\:.\'( "‘r;\

“o \N
(Def. ")
i=1 k=0

((CP)(ii))
= nl/nE(% igl JJA( T) J' R ”g,{\"(f, XnN

[0.7)

dA(t))

snl/n‘ll ((2)) D

Lemma 3.8. For every n €N, define

1 N . s
"B = sup E(— Y sup ["XN()- XN 1/)-
N Zion

NoRN

Then we have "B -0 for n - .

Proof. By the definition of the stopping time "T, we have for every neN, 1 (0.1 <
1y0.n). Therefore, for every n, N eN,

1N i
—N-leupg)ug||"X,-N(h)-XfV(h)||“l,,\-Z sup "X (h) = XY (h ()

i1 h T

Now let neN be arbitrarily chosen but fixed and U any stopping time, U <"T.
Then, for every NeN,

1 ,
( Y sup ["XN(h)— X! (m;;)

ilh [

= Su
erl h KL)J !

j (g5, "X 2, o) -85 X2, o 0220 | )
[0.h)
/1 N ,
$E{7\/f Y J(:A("T)j‘ I"g N (s, ”X:V,%N")—ng(s,X.vN,w’J”\)!lf>pdA(S)>
] fo.th

=4

((CP))
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‘i N ) .
$2Can<N ) J (I"gN (s, "X Y, @8 —"gN (s, X, 0¥
i-1 Jjo,u)

+"gN s, XY, 08 ) —gNis, XY, o¥)|) dALs))

1 N .
S4C7]TLE(-[ —_ 2‘ sup “"XJN(I)"X,N(I)“"dA(s))
=H [0,U) R T PEAY

1N o ,
+2Can(ﬁ le Hg.N("s,X.~N,‘P‘}x)—g;“(s,X?,«pi\\’x)ll“dA(S))

[0.U)

((CL))

1 , -
(—+sup IXY(ha"s=)=XN(h-)|

1 N
< HE(-- -)+HE(—— ¥ J
Ni—:l n h- s

[0,U)

((CL))

i=1 L«

1 N .
sHE(j ~ Y sup ||”X,N(h)—X,N(h)||'dA(s)>+H1;T/n+HW:7,,,,
fo,U)

(Lemma 3.7).

Define then for ¢ € [0, ),

N
Y osup "X N (s)=XN(s)|-

1

AY

nt:—
¢() Ni—‘l\-l

Further, for neN set
K(n)=H(ny/n-+- Wn,,,).

Finally, define p = H and I = 7;. Then, by Lemma 2.1,

[2p1]

E($,)("T-)<2K(n) T (2pl)'

By Lemmua 3.6, 7,,, >0 for n—oo. Therefore,
K(n)-0 forn- oo,

The proposition then foilows directly from (). [

This result completes the third step of our program which we summarize in the
following theorem. Recall the sequence of measures (" },cx given in Definition 3.4.
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Theorem 3.9. There exists a uniquely defined Borel probability u. on D? so that
"1 - py for n—>oo and so that (A, u.) is point convergent.

Proof. This follows directly from Lemma 2.2, 3.8 and Theorem 1.12, 3.3. O

We now can complete the final step of our program. That is the subject of the
following:

Theorem 3.10. (i) There exists a weak solution P to ().
(ii) The D* marginal of P is uniquely defined and equal to .

Proof. Recall the processes "X, n €N, introduced in Definition 3.4. Define for every
neN a mapping

"h:Q -0 w—(w,"X(w))

and the induced measure "P = "/iP, on the canonical extension (2, ). For every
neN, "P is the unique weak solution to (n,c0). We want to apply the stability

Theorem (2.8) to the sequence ("P), .. For this purpose we introduce the predictable
random functional

g§:02x[0,00)x D >R (o, t, xX)—=glw, t.x, 1)

and equation

!

X(t) K+L g2(s, X)dZ (@)
We are now in the situation described by the stability theorem. A measure P on
(029, .d") with P|,,» =, is a solution to (%) iff it is a solution to (c0). To apply
Theorem 2.8, three conditions must be fulfilled. The continuity condition (Hypothesis
2.6) on g follows from (CM) (iii). The compactness property (Hypothesis 2.5) of
("w),. n+ is a consequence of Theorem 3.9. What remains to be demonstrated, is
that the convergence condition (Hypothesis 2.7) is fulfilled.

Let ## K< DY be compact and (w, 1) £2 x[0,0). We must show that the
sequence of functions ("g(w, 1, )|« ),.«, converges uniformly to g(w.t,-)|x. For
t€[0,00) and neN it follows from the definition of "t that |"t — t] < 1/ n. Therefore,
"t->1t for n—> 0. 1. s the set

K =({"neNu{thx K x({"u:neN}u{u.})

is compact in [0, ) x DY x M(D"). It foliows that the function
h:K >R (5, A)>g(w,s X, 1)

is uniforinly continuous. Therefore

sup I"g(w, 1, x) - g(w, t, x)|?
=sup ||"glw, t, x)—glw, t, x, u.)|
v R

=sup [[h("t, x,"w)—h(t, x, u )" =0 forn- co.
o K
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All the conditions of Theorem 2.8 have been fulfilled. An application of this theorem
then completes the proof. [
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