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A mode1 for the activities of N agents in an economy is presented as the solution to a system of stochastic 

differential equations with stochastic coefficients, driven by general semimartingales and displaying weak 

global interaction. We demonstrate a law of large numbers for the empirical measures belonging to the 

systems of processes as the number of agents goes to infinity under a weak convergence hypothesis on 

the triangular array of starting values, coefficients and driving semimartingales which induces the systems 

of equations. Further it is shown that tile limit can be uniquely characterized ;IS the weak solution to a 

further (nonlinear) stochastic differential equation. 
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The model 

In this paper we will be investigating laws of large numbers for systems of stochastic 

processes with weak global interaction. The type of law of large numbers to be 

considered is formalized in a concept we refer to as point convergence. Let (0, &, 

be a probability space and E a topological space. For every NEN, 

(5 
N eN) : 0 + EN be a vector of random elements in E. The sequence of vectors ---9-N 

A &~)~;” ,...,N can be seen as a ‘triangular array’ of random elements in E. s 

arrays arise in a natural fashion in those areas of probabilit 

asymptotic results, 

ac measure on x. 
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One can interpret (q ) T NcN as a sequence sf random elements in the space of 

morel measures on [w (equipped with the weak topology). The normed sum given 
above is then the integral of f with respect to cpy for every N EN. Since f was 

arbitrarily chosen, the convergence in probability noted above has as consequence, 

that the sequence (~p:)~,~ converges weakly to the point JZ{ 7,) (i.e. denoting 

with + the weak convergence of measures, %‘(~~} -% %“rll?,l for N + CQ, where .Z’{t} 

denotes the law of a random element 5 (see Section 1)). 

Let A = ( (?)iN_‘jF..,N be a triangular array of random elements in some topological 

space E and p a Bore1 probability on E. We say that A is point convergent with 
limit ,u if the sequence of empirical measures induced by the array A converges 

weakly to the point p. This type of convergence is referred to in the theory of large 
deviations as ‘level II convergence’ (see Ellis, 1985), and with respect to arrays of 

interacting stochastic processes as ‘propagation of chaos’ (see Sznitman, I, ;Ga, or 

Dawson, 1983). We refrain from using these titles since they sometimes appear 
rather unmotivated in our context. 

Let d, m E fV. The model we will be considering describes the activity of N agents 
in an economy, as a vector (X,“, . . . , X:) of stochastic processes. These processes 

are derived as the solution to the following stochastic differential equation: 

X:(t)= KY-I- 
I 

‘g”(s,Xy,(pN)dZy(s), i=l,.. 
l 9 N 

0 
W) 

where cp: = (i/ N)CE, 2&y is the empirical measure belonging to the vector 

tXN)i= I,...,N- Here, for every N E N, i = 1,. . . , N, K 7 is a square integrable R” 

valued (starting) variable and g,! is an Rdxm valued process which depends on the 
paths of the process Xy and (weakly) on the paths of the other processes X.,?, 

j=I,..., N, j # i through the empirical measure cp:. Finally, Z,! is an R”’ valued 

semimartingale (driving process). 
The starting values represent the initial value of some observable microeconomic 

data of the respective agents (for example age, wealth, consumption of some good 

up to time 0, etc.). The driving processes describe the basic behavioral patterns of 
the respective agents which can’t be explained through the systematic influence of 

observable er ,aomic data. These systematic influences are captured for a given 
agent-i by the coefficient process g,!, which records the dependency of the agent’s 
behavior on his own past behavior and microeconomic starting values (given by 

X,? and K ,y = X y(O)), and the influences of macroeconomic variables (such as 
prices, rate of inflation etc.) given implicitly throdgh the empirical measur: &‘. 

Assume rrag!v that a triangular array Q = ((KY, gy, Zy))ki”. N of starting values, . . 
coefficients and driving processes as described above is given, representing such 
values for the agents i = 1,. . . , N in an economy of N agents for ever larger 
economies (i.e. N -+ 00). 0ur goal is to determine whether, under weak assumptions 

there exists for every N E N, a unique solution (X;“, . . . , XE) to 
(N) so that the array fbr ese solutions ( y) fi_r,y..,N is point convergent 
with some limit p. Moreover, in what way can this limit p be characterized? 
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The economic interpretation of these questions is as follows: It is assumed that 
an economy of N agents can be described at the microeconomic level by the solution 

(X 
N . . . , X :) to an equation (N) for every N E N. Further, the same economy can 

be ALscribed at the macroeconomic level by the empirical measure (I/N) C,“_ 1 i&x. 

Then, one wants to know whether, for N ‘large’, (i.e. for N + CD), there exists ‘a 

macroeconomic model for this economy that is essentially deterministic (this descrip- 

tion being given by the limit measure to the point convergent array (X~)~~~___J. 

There has been considerable debate in recent years as to whether the dynamics 

of macroeconomic variables are deterministic or stochastic (see Grandmont and 

Malgrange, 1986, and related articles appearing in the same volume). Our results 

provide some insight into the conditions under which the deterministic hypothesis 

can be given a rigorous microeconomic foundation. 

Considering the case without interaction, a fairly minimal condition for the point 

convergence of an array of solutions (X,!) iN,‘IfU ,_._,,, is that the array A be point 
convergent. Assume that the limit of A is given by the law of a triple (K, g, Z), 
which is defined in an analog fashion to the elements (K,?, g,?, Z,?) of the array 

A. The sort of limit that one can expect for the array of solutions can be derived 

with the following heuristic considerations. First, assume that the elements of the 

array A are i.i,d. with law JZ’{( K, g, 2)). Then A is point convergent with limit 

ZW, $5 Z)) ( see Section 1). Now, assume for a moment that for every i = I,. . . , N, 
N E N, the coefTicient gy only depends on the path of the process Xl? but not on 

the empirical measure qN. Then, since there is no interaction, the elements in the 

array of solutions are i.i.d. as well, with law Y(X), where X is solution to the 

following equation: 

x(t) = K + ll ’ g(s, X) dZ(s). I 
J 0 

If one reintroduces the empirical measure in the coefficient gy (i.e. gr = 

gN(*, l f qr)), then one would expect, given the preceding remarks, that the limit 

of the array of solutions could be characterized as the law of a process X, where 
X is solution to the following equation 

X(t)=K+ ‘g(s,X,Z{X))dZ(s,. 
I 0 

Therefore, our task will be as follows: Given a point convergent array A of starting 

values, coefficients and driving processes with limit Z{( K, g, Z)}, find conditions 
under which a unique solution (X r, . . .,Xt) (resp. X) exists to (N) for NEN 

(resp. to (m)) so that the array of solutions is point convergent with limit Z(X). 

Comparisor-I qf methods and hypotheses 

In the last decade there has been a great deal of work dcne concerning the asymptotic 

properties of stochastic systems with weak global interaction of the type described 
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above. In statistical physics interaction through the empirical measure is referred 

to as “mean field interaction’. The limiting procedure given above is then calied a 

‘Vlasov’ or ‘McKean-Vlasov’ limit (see Brown and Hepp, 1977; Dobrushin, 1979; 

Dawson, 1983; Spohn, 1980). 
The systems that have been most thoroughly investigated (and are furthermore a 

special case of the systems we consider) are multidimensional diffusion processes. 

The first results concerning the point convergence of such systems were derived 

under very strong hypotheses by McKean (1967). Later, results of this type have 
been shown under weaker assumptions and in different situations (see Meleard and 

Roelly-Coppoletta, 1988; Dawson, 1983; Leonard, 11986; Nagasawa and Tanaka 

1987a,b,c; Oelschlager, 1982, 1984; Sznitman 1984a,b; Graham, 1988; Graham and 
Metivier, 1988; Gartner, 1988). For related work, including a variety of applications 

in physics, chemistry and population dynamics, consult Bose (19863, Borde-Boussion 

(199O), Qawson and Gartner (1987), Finnoff (1989, 1990), Grunbaum (1971), 

Maruyama (1977), Murata (1977), Nappo and Qrlandi (1988), Nagasawa (1980), 

Scheutzow (1986), Shiga (1980), Sznitman (1984a, 1986), Tanaka (1984) and Wang 

(1975). 
All of these authors working with stochastic differential equations in recent years 

follow a similar program to derive their results. We have followed a somewhat 

different program. The primary difference lies in the fact that we make a detour 

from the systems of equations (IV), N EN by going over first to discrete time 

approximations, which +Z ff:t 1 :tre interesting in their own right. Our results go in 
many respects bell ::rd those found in the literyfl!rc to take into account the economic 

background. We recall the interpretation of the equation ( q’), ‘1 E N, as description 

of the microeconomic activity of N agents in an economy. Due to the different 

backgrounds (age, education, etc.) of the agents, one cannot presume the vectors 

of the array A to be identically (much less symmetrically) distributed. Neither can 

one make any of the usual independence or decay of correlation assumptions, since 

one must assume a high degree of (unobservable) interaction between individual 

agents, which must be collected in the stochastic elements of the array A. (For an 
economic justification of the point convergence condition consult Finnoff, 1989). 

Further, fc NE N and ?E [0, a) the coefficients (gp, . . . , gz) at time t depend 
on the entire past (Xp( h), . . . , X:(h)),,. , of the solution to (IV) (since people, in 
contrast to particles, do have a memory), and are themselves stochastic (reflecting 

for example stochastic lags, individuar optimization procedures or utility functions, 

etc., see McFadden, 1981). Finally, the LipxhitL condition that we requir@ of our 

coeficient:: refers only to discrete measures, which makes verification much simpler 

for concrete examples. A prxise description of the hypotheses that we make is 
given at the beginning of Section 3 (see (CM), (CL) and (CP)). 

The things that we didn’t consider were first, coefficients with singularities or 
at is nonhnear (as in Nagasawa and Tanaka, 1987a,b; Ggrtner, 1988; 

Leonard, 1986), and second, syste s with boundary conditions (as in Graham and 

Metivies, 1988; Graham, 1988; Sznitman, 1984b). 
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Our method for demonstrating point convergence yoes as fo!lows: First, show 

for every M E N, that there exists a unique solution (X;“, . . . , X:) to (N) and define 

a sequence of ‘approximative solutions’ ((“X,“, . . . , “X{)),,, YJ to (N) by time dis- 

cretization. Second, show that for every n E N, the array A” = (‘IX,!) ,~‘,~._,,w of 

approximative solutions is point convergent with limit $’ = 2(X”}. Third, demon- 

strate that the arrays of approximative solutions converge ‘uniformly in N’ to the 
array of genuine solutions. Finally, use this uniform convergence to show that the 

array of solutions (X N) ,E:7..,N is point convergent with limit Z(X). Here X is 
identified as the unique limit point of the sequence (I_L”),,,~, and as such, solution 

to the equation (a) using a stability theorem due to 9. Jacod and J. Memin. 

What one gains by using our methods is, first of all, the very general result for 

discrete time processes contained in Theorem 3.3, which requires no martingale 

theoretic, boundedness or Lipschitz hypotheses. This result, together with the 
approximaiion Theorem 2.5 may be of independent interest to those working with 

discrete time models, or performing Monte Carlo simulations and ‘approximation 

through simulation’ using Monte Carlo methods for certain types of nonlinear partial 
differential equations, (see Babovski, 1989; Lecot, 1989; Griffiths and Mitchell, 1988; 

EngquisL and Hou, 1989; Seidman, 1988). Second, by the application of our methods, 

one gains insight into the close relationship between point convergence and the 

classical stability theory for stochastic differential equations. 

Formal organization of the paper 

In the first paragraph definitions are given, a number of topological results are 

collected and several necessary and sufficient criteria for the point convergence of 
an array are derived. Further, we show that one can transform a point convergent 

array in a number of different ways without losing this property and we prove an 

approximation theorem for point convergent arrays. In the second paragraph we 

present the martingale theoretic concepts and results we require in the sequel. The 

final paragraph is devoted to proving the point convergence of arrays of solutions 

to stochastic different equations. 
The author wishes to thank P. Imkeller, A. Schief, H.O. Georgii and H. Spohn 

for their useful advice and suggestions. 

Notation 

Here we list the notation and conventions we will be using in the sequel. In the 

following E will always denote a topological space and (0, &‘, ) a fixed filtered 

probability space on which all random elements that appear a fined. Here, the 
filtration F = (s!),( ro,x ), 9, c & for every t E [O, 00) will be assumed to be right 

continuous (i.e. F, = 11, ..,F, for every s E [O, 0~)) and complete w.r.t. 

General 

(1) N (resp. R) will denote the natural (resp. real) numbers. N‘ (resp. Z, resp. 

2,) will denote NW {OC} (resp. the integers, resp. the positive integers). 
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Let t E [0, CO), I some finite set and {xi : i E I} c E. 

(2) Then we will denote by [t] = max{n E E, : n 5 t} the integer part oi;‘ t, by 111 

the cardinality of the set 1 and by x1 the vector (x,),, /. 

oba biCi ty spaces 

(3) (i) Let 5 : f2 -3 E be a Bore1 measurable mapping (random element) in E. 

The Bore1 probability induced by such c is denoted by JZ{t}. 
(ii‘) For p E [ 2, m), I! l 11 P will denote the L,(P) norm. We denote with ]I l Ilo 

the L,, pseudonorm defined for any random variable 5 by setting II& = E( 151 A 1). 
Let I b: a countable index set. For every i E I let Xi be a set, SQi a sigma algebra 

on Xi and t_ci a probability measure on cd,. Finally, let i, , i2 E I and let .f: Xi, + Xi, 

be a ,rdi,, di, measurable function. 

(4) (i) We denote with @i, ,.PQ, (resp. @It Ipi) the product sigma algebra on 
IIif I Xi (resp. product measure on (IT. IX,, @i( ld,)). 

(ii) &;, denotes the image measure of pi, under the mapping J 

Let A, H c E, x E E and I some index set. Then, we denote with 

(5) (i) %(E) (resi9. Z(E), resp. <a(E), resp. 2(E)) the family of open (resp. 

compact, resp. closed, resp. Bore1 measurable) sets in E, 

(ii) E’ the product space equipped with the product topology, 

( E) (resp. M,( E )) the set of Bore1 measures (resp. Bore1 probJ9Cties) 

on E equipped wit i 1 the weak topology, 

‘I (resp A”) the closure (resp. open kernel) of A in E, 

,. the Mac measure on the point x, 
(vi) A = E\/, = {x E E: x& A} the complement of A in E. 

Let 114 be a ore1 measure on E. Then: 

(6) (i) .:zi4( E) (resp, .~?4,( E)) denotes the set of ore1 measurable fuilc+: ions 

E A(E): f bounded}). 

“f(E) be such that the integra! 5,: . f d,u exists. We writt { !: JLL) = 

c .A?!( E) with {x E E: f is continuous in x} E %( 15 ) i.: c 111; 7 

G (resp.. bounded contInuo~~:~. r.:p 

e induced mcric on .‘@ t E I. ‘T’hi~ is 

) the space 
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The spaces c”’ and 

Let d E IV. 

(9) (i) C” = C”[O, m) denotes the space of continuous functions x : [o, co) + R” 

with the compact open topology. 

(ii) D” = D”[O, 00) denotes the d-dimensional Skorokhod space of functions 

x : [0, 00) + Rd so that x is right continuous and has left hand limits. ’ is equipped 
with the Skorokhod topology. 

Let X be either D” or C” and c%=A(X). 

(10) We define sL = {g E 9: There exists a t E [0, m) so that for every x, y E 

xllo.,] = Yl[0,,lY then g(x) = g(v)}. 
Let x E Dd and t E [O, m). 

(11) Denote with x( t-) = lim,,,x(s) and with $x(t) = x(r) -x( t-). 

Let Z be a rar riom element in ‘I (stochastic process). 

(12) Define S(Z) = {t E (O,m): 3(2)(x(t) f: x(t-)) = O}. 

(13) (i) Define on D” the canonical a-algebra 2” = .%I( D“) and filtration 

(c’.) ._ \ \ -09 where F, = n,l.sa{X( h): h s t} for s E (0,~). 

(ii) The product space ad = 0 x D” equipped with the o-algebra A? = &O 

9” and filtration F” = (1’,), Jo (where F, =-n, .,F,@ F,) is referred to as the (d- 

dimensional) canonical extension of (0, .$ F). 

ogical prehninaries 

In this paragraph we introduce the concepts we will be dealing with and collect a 

number of general results from the field of topological measure theory. Further, we 

will derive the results we need to demonstrate the point convergence of arrays of 
approximative solutions. We wilt frequently be concerned with questions as to the 

continuity of mappings defined on a space of measures. Let I be a finite index set, 

X a topological space and f: E + X a continuous mapping. We recall then that the 

following mappings are continuous (see Topsoe 1970, p. 68, p. 48; resp. Schief, 1986, 

p. 5): 

M(E)-+ M(X), lu H_& (see (6)(ii)), 

erefore, for every 

(l/ IV) xi”_, &, is continuous. 

e mapping cpr : E" + ,(a, (-%),- 1.2-P 

e a triangular array of ra 

belonging to ((N)i: 1,...,N- 

) C ,“: I iiQ the empirica r 



(ii) We say that A is point convergent with limit Z(5) iflF 

and write, (A, T{ 5)) (resp. (A, 5)) point convergent. 

In the sequel, a triangular array such as A of random elements in E will be 

referred to simply as an array in E. If such an array A is extended by a potential 

limit 5 to (A, t), this will be referred to as a closed array in E. 

emma 1.2. Let x E E, JV a subbase of neighborhoods of x, E E N and (p,,, ) IutN a 

sequence of Bore1 probabilities on E. 7;hen ( peN ) Nf A’ converges to &. iff_for any f E N, 

roof. By definition ( pN ) Nc N converges weakly to %, iff for any G E 

g(E), lim inf NCN PN (G) a Z!&(G). Since this is trivially the case if -‘IS & G, ( /LN ) eN 

converges to Z!& iff for any op:n neighborhood of x, 

/LN(G)+ 1 for N+m. (*) 

Now if (*) holds for some set, then it holds for any larger set. We must show 

then, that the system SV = (B c E: B is a neighborhood of x so that (*) holds for 

B} is closed to finite intersections. To see this, let G, H E 2%‘. Obviously then 

G v H E X and, as such 

~~Wufil)=pN(G)+ PN(H)-~N(G~ H)-+l for IV+m. 

Therefore G n H E 2’. Since NC X, the lemma is immediate. 0 

The following lemma provides us with some necessary and sufficient criteria for 

the point convergence of an array. 

3 Let A be an array in E and p a Bore1 probability on ES Then: 

(i) (A, p) is point convergent ifffor every,F E 9( E) (resp. GE S(E)) and & > 0, 

((p,N(G)>p(G)-&)=I) . > 
(ii) [!Q,j_4) i s point convergent, thertfor everyf E V;(E) the sequence of random 

variables ((j; cpy)) lVtN conL>erges io probability to the constant (f p). 
(iii) Let E be perfectly normal (see Kuratowski, 1966a, p. 133 j (resp. E = D“), and 

5 = V$,( E) (resp. S= (S’,(E))‘). Then (A, 1~) is point convergent ifffor every f E 9 
the sequence of ran variables ((f cpy)) ” ” converges in probability to (J; p). 

etric space with etric m. aen (A, p ) is point convergent 
iflthe sequence of random variables (rfi(cpy, p)) Nc N converges in probability to zero. 
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roof. All four cases are shown through an application of Lemma 1.2. 

(i) By definition of the weak topology, the family of sets 

((AE M:(E):h(F).=+(F)+e}: F&(E),e>O) 

forms a neighborhood subbase for p in M,(E). (The case with open sets GE 3(E) 

is completely analogous). 

(ii) Let j% %‘c( E) and E > 0. The set {A E M,(E): l(J &-(_J A)1 < E} is a neigh- 
borhood of p in M,(E) (see Topsee, 1970, Theorem (8.1) vii)). 

(iii) The family of sets 

forms a neighborhood subbase for p in M,(E) (see Topsoe, 1970, Theorem (8.1), 

and Kuratowski, 1966a, VI Theorem (1)) (resp. 3acod and Shiryaev, 1987, VP 
Theorem (1.14) and (1.24)-( 1.27)). 

(iv) This is shown as above using the fact that the metric &i induces the topology 

on M(E). Cl 

Let X and Y be separable metric spaces. Then the space C(X, Y) is, generally 

speaking, not a Suslin space (see Michael, 1961). It turns out though, that C(X, Y) 

has sufficient countability properties to avoid any problems of measurability that 

otherwise might be encountered. We recall that a topological space X is called a 
hevediravi/_v LindelGf space iff to every subset A c X and open cover of A there exists 

a countable subcover. In the following we will often construct new arrays as image 
of an existing array under a measurable mapping (see Theorem 1.8, Corollary 1.9). 

The product spaces on which the new arrays are defined often contain the space 
C = C([O, m) x D” x M,(P), lFPH) where the (random) coefficients of the 

equations we consider take their values. The mappings used to generate the new 

arrays are usually only known to be coordinatewise measurable, (and not necessarily 

product measurable). The hereditary Lindeiijf property of the product spaces demon- 

strated in the following lemma will insure the product measurability of these 
mappings, since the Bore1 sets of the product space is then equal to the product of 

the Bore1 sets of the coordinate spaces. 

Lemma 1.4. Let X, E and Y be separable metric spaces. 7Ien, for any N E fV the space 

(( E x C( X, Y))) N is perfectly normal and hereditarily Lindel6J Further, the eualuc tion . 

mapping e : C( X, Y) x X + Y, (f, -u)~f (x) is Borel meastsruble. 

roof. Let c/v;, (resp. NY) be some countable base for the topology on X (resp. Y 1). 

Denote with C the set of continuous functions f: X + Y. For two sets B c X, D c Y 

set [B, Lb] = {f e C: J(B) c W}. Finally let r (resp. 7^) denote th 

topology, (resp. the topology generated by the family of sets 021= {[ 

W E N),}). Since % is countable, (C, ?) is second countable. We will show that the 

evaluation mapping e: C x Y + Y is continuous when C is equipped with the 
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7ken we have: 

(i) ?%e set H( tY , t2) is measurable in D” x D”‘. 

(ii) T&e mapping II, is Bore! measurable and every (x, z, g, y ) E H ( t, , t2) x c x Rd.“’ 

is a continuity point of $. 

Proof. (i) Trivial. 

(ii) This follows directly from Lemma 1.4 and I.5 (ii), (iii). II! 

Lemma 1.7. For x, y E D”, k E N set 

hk _,v) = SUP 11x(t) -yWlI and m,(x, y) = 
PC[O,k J 

k;N; Mx, y) A 1). 

The metric m, induces the topolo,, 017 o,f local uniform convergence on Dd. Further, there 
exists a complete ho*-nded vnetr ic m, on D” which induces the Skorokhod to4ogy on 
t‘l” ?c? that for every x, y E D”, *T-(x, y) s mu& y). 

Proof. See Jacod and Shiryaev (1987, VI (1.24)-(1.27)). Cl 

Point convergence of transformed arrays 

In the following we show that a point convergent array can be transformed in a 

variety of ways without losing the property of point convergence. Further, we 
demonstrate that if one can approximate an array of random elements ‘uniformly’ 

with a sequence of point convergent arrays, that the approximated array is itself 

point convergent. 

Tiworem 1.8. Let X be a topological space with the property that X N is hereditarily 

Lindeliif for any N E N. Further, let f: E + X be a Bore1 measurable mapping and 

(8;) jv=h:..,N = A a point convergent array in E with limit p E M, ( E ). Finally, suppose 

that one of the following conditions is satisfied: 

(i) X is perfectly norvnal and the set C, = (y E E : f . is continuous in y) is Bore1 

measurable with p ( Cl ) = 1. 

(ii) There exists an increasing sequence ( K,, ),,+ by of closed sets in E with 

(a) flKn is continuous, 
> I/n)< ijnfbr every n9 IV&I. 

Then, the array f (A) = (f ([~))~~~.._N in X is point convergent with li 

rooiF. By the hereditary Lindelof property of X N for IV E N, all the random elements 

in the array f(d) are well defined. 
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(i) By Lemma 1.3 (iii) we must show that for every g E %&(X), the net 

((g, <P_&,))~~~ converges in probability to (g&Q. Since the function gofE V:(E) 
we have by Lemma 1.5 (ii) and definition of f(A), 

(g,cp~J~)=(g,~~~)=(go!;a~)~(go~CL) forN+=g 

By definition (gof, p) = (g, &). This completes the proof of (i). 

(ii) Let FE 9(X), E > 0. For any S > 0 choose some m E N with l/m < max{S, 3~). 

Since $lKm is continuous, the set F,,, =f-‘( F) n K,, is closed in E. Define 

B =f’( F) n I?,,, 

We then have for N E N, 

By the Faint convergence of (A, p) and Lemma 1.3(i), the last expression above 

converges for IV + 00 to l- 8. Since S was arbitrarily chosen, the first expression 
above converges to 1 for N + 00. Apply Lemma 1.3(i) again to finish the proof. Cl 

An application of Theorem 1.8 that we require in the sequel is contained in the 
following: 

Corsllary 1.9. Led E be Polish and Y, S separable metric spaces. Further, let A = 

((X;, Zy, gy))iN_CIN .-**. N be point convergent in H = E x SX C(E, Y) with limit 
Z((Xf”, AZ”, g”)}. 7% en, the array in H x Y, 

d = ((Xy, Z;, gy, g~(X~)))~,~ . .-. N 

is point con /Lb &pnt with limit Lf{(X’“;, Z”, g”, g’ (Xx))]* 

roof. Let e: E x C( E, Y) + I’, (x, g)-p(x) denote the evaluation mapping. By 

emma i.4, t! is Bore1 measurable and the space H N is hereditarily Lindelijf and 
perfectly normal for any I+/ E IV. The array A,Y = ( X,‘) :?‘{“.,N is by Theorem 1.8(i) 

together oint convergent. In particular, since M(E) is Polish, the weakly 
convergent sequence 

eorem, tight. Thus, for every y1 E N there exists a compact set 

r every N E N, 
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A second application of Prochorov’s theorem to k,,, dehvers the existence of a 

compact set U, c E with the property that for every p G I?,, 

Define for every n E NJ the closed set K, = U,,XSXC(E, Y)x Y. We then have for 
every n, N&l, 

~(~~~(~,j>l/n)=P(~~~(~~)~1/n)<1/n. 

Defining $ = (id”,, e), it follows that 8 = $(A) and Z{(X”, Z”, g”, g”(X”))} = &. 

By classical results, (see Dugundji 1966, p. 259), the restriction of e to U, x C(E, Y) 
is continuous for every n E IQ. ‘4s such, for every rz E N, I,!&,, is continuous. The 

proposition then follows from Theorem 1 .8(ii). Cl 

Our next theorem shows that a point convergent array of random elements can 
often be ‘woven together’ with a convergent sequence of random elements to form 

a new point convergent array. 

Theorem 1.10. Let X and E be topological spaces so that for any N E N, (E x X) N is 
hereditarily Lindel6J Further, let A = (57) E:T__,N be a point convergent array in E 

wikhlitnitp,xE Xand (vN)NcN a sequence of random elments in X so that Z( 7 N > + S$ 

for M c- 00. Then the array in E x X, 

is point convergent with limit p @ 2?,. 

Proof. Since (E x X) N is hereditarily Lindeliif for every IV E IV, all of the random 

elements in i are well defined. We propose that for any B E %( E x X), 6 > 0 there 

exist 6, E %( E ), G2 E %(X ), E > 0 so that 

If p 0 8.J B) = 0, then this is trivial. Suppose that p 0 8,( B) # 0. Since E x X is 
hereditarily Lindelijf there exist Ai E s(E), 0, E S(X) for i E N, with 

B= IJ Ai X Die 
ILN 

Set I, = {i E N: x: E Di}. Then 

Further, one can find a finite subset J c I, with 
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Define G, = UicJ Ai, 62 = nil _I Die Then G, X G, c B and 

~~~.~(G,xG~)=~~(G,)>~~~~(PZ)-~~. 

set E = 4s. 
Recall the result stated in Lemma 1.3(i). Assume that E > 0, G, E S(E), G7 E S(X) 

are given. We must show 

It is no restriction to assume that x E Gz. By definition, 

The point convergence of (A, p) implies 

P(&(G&+(G,)--E)+~ for N+a. 

From the weak convergence of (v “9 NCN to x it follows from Lemma 1.2, 

(~N~Gz)+l forN+a. 

This proves the proposition. Cl 

An example of an array with the properties listed in Theorem I.10 is given in the 
following: 

Co~olllary 1.11. Let X, Y and E be separable metric spaces and ((AT:., g~))~~~__,N a 

point convergent array in X x C( E, Y) with limit Z’((x, g)). Then the array 

(( 

iJEN 

i = I ,..., N 

is point convergent in X x C( E, Y) x M,(X) with limit Z’((x, g)}@ %,(TJ. 

roof. The array (x,“),:‘,” ,._.,N is togetner with ((X,?, g~))I~~~_,,N point convergent. 
Further, since M,(X) is together with X a beparable metric space, it follows from 
Lemma 1 .A that the space (X x C( E, Y) x , (X )) N is hereditarily Lindeliif for any 
N&J. 0 

n the following theorem we will show that if one can approximate an array of 

ents ia’- ‘uniformly’ through a sequence of point convergent arrays 
then there exists a uniquely de probability measure p so that (A”, p) is point 
convergent. We recall the definition of 11 l Ilo given in (3)(ii). 



W. Finnofll LLN jbr SDE 167 

Theorem 1.12 (Approximation Theorem). Let E be a Polish space with complete metric 
d. Further, for every n E N, let An be a point convergent array of random elements in 

E with limit LQ”) and A$* a further array qf random elements in E. Finally, denoting 

with dA the induced metric on M(E) suppose that 

Then there exists a uniquely dejned Bore1 probability p on E so that Y(c”) -+ /-c and 

(A”, pc) is point convergent. 

Proof. Define for every n, IV EN, 

By the point convergence of (A”, 2’{ 5”)) and Lemma 1.3(iv) it follows for every n E N, 

~~77~/J0-+0 for N--O. 

Moreover, for any n, m, NE N, 

Hence, our hypothesis insures that (Z{~“}),IERI is a Cauchy net with respect to the 
complete metric 2. Let 7~ denote the limit of this sequence. For NE N one has for 

any nEN, 

Therefore, it follows from the preceding and Lemma 1.3(iv) that (A”, p) is point 

convergent. Cl 

2. Martingale theoretic preliminaries 

In this section we present several concepts and results from general martingale 

theory that we require in the sequel. The first result is a standard stochastic Gronwall 

type Lemma. The second (Lemma 2.2) relates a type of L2 convergence with the 
weak convergence of discrete random measures. We then introduce the solution 

concepts for stochastic differential equations we use, and conclude the paragraph 

with a simphfied version of a stability theorem for stochastic differential equations 
due to J. Jacod and J. Memin. 

In the following we wili always assume that the filtered probability space 
) is given, on which all processes that appear are defined and with respect 

1 relevant concepts (stopping time, semimartingale, etc.) refer. Further, 

it is assumed that all ‘processes’ that appear are right continuous and have left hand 

limits. Finally, we set su.p 0 = 0. 
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Let S and R be stopping times, S G R and K, p, I E [Q, 00). Further, Iet C#I 

and A be adapted increasing processes with sup,,, rrlA( R( CL) )) - /I( S( w>)l < J < 00. 

Finally, assume that *for any stopping time U, S s U s R, 

4W-) Wh) 

Then, 

. This lemma is a slightly modified version of Lemma (7.1) in Metivier and 

Pellaumail (1980). q 

. For every n E N”, let A” = (“X ~)fv’i~..,rv be an array qf random elements 
in D’ and m, the compIete metric on LY’ given in Lemma 1.7. Recalling the dejnition 

of the induced metric 6,) we define for every n E N, 

Assume that for every E, T E (0,~) there exists a set K I E &, so that P( K T) < E and 

Then qb”+O for n+oc?. 

By the definition of the induced metric it follows for every n, N E IV, 

ecalling the de?, *ion of the metric m,, given in Lemma 1.7, it follows for every 

oose some 6~ N Earge enough so that I/2’< E. 
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Noting that sn,s m, s 1, we haviz by hypothesk and the preceding for every pz E M, 

k$‘% sup E(ria,(&t, y$)lk.;“)+& 
NC bd 

s sup E -I-2& 
Nc N 

(Cauchy-Schwarz) 

s sup 
NC N 

1 N l/2 

1 sup IJ”XN( t> - xXy( t)lp&+i +2& 
= ii1 fr [(),/+I) >) 

(Jensen). 

Since E was arbitrarily chosen, the proposition follows from our hypotheses by 

using the monotony and continuity of the square root function. q 

Stochastic diflerenrial equations 

Let m EN. We recall that an adapted, IF!“’ valued process Z is a semimartingale iff Z 

admits a control process A. A positive, increasing adapted process A is called a 
control process for Z iff for every 1 E N, RI.“’ valued elementary predictable process 

X and stopping time T, one has 

+uy 11 ~~~,,~XdZ/I~)~G(~/A(i-)~ailllXllXndA(S))~ 

where .!, > 0 is some constant that only depends on 1, and Ii- IloP denotes the operator 

norm on BP” (see Metivier, 1982, p. 157). 

We further recall that if Z is an R”’ valued, locally integrable semimartingale, 

there exists a uniquely defined triple ( V, C, 6) called the local characteristics of Z, 

consisting of a predictable R”’ valued process V and a continuous 03”“‘” valued 

process C, both with paths of locally bounded variation, and a predictable random 

measure 8 on R”‘\(O) which can be used to characterize Z as the solution to a 

martingale prsblem (see Jacod and Shiryaev, 1987). Although we won’t be ma 

direct use of this characterization it is central to the c 

stochastic differential equations follow Jacod (19803, Ja 

), then one can define a predictable ‘functional 
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process’ Y on (0, J& F”, Ip) by setting for every (0, t) E JI x [0, a), Y( U, t) = 

g(o, t, X(W)). Moreover, since Y(w, t) only depends on the values of X(W, s) for 

s < t, it is possible to define Y(o, t) when X(0, s) is only known for s < t (see 

Metivier and Pellaumail, 1980, (6.4)). Consider the following equation: 

X(9, t) = K(m)+ 
I 
’ g(e, s, X(e, l )) dZ(a, s) 

0 
(2.1) 

(Doleans-Dade and Protter’s equation). In the equations we consider, the law .Z’{ X} 
of the solution X will sometimes appear in the coefficient as well. This case can be 

treated though in a canonical fashion without leaving the framework given by 

equation (2.1). We now give precise meaning to what we mean by a ‘solutiori to 
the equation given above. 

efinition 2.3. A strong solution (or solutim process) to (2.1) with respect to the 
driving system (0, d, F, P, K, 2) is an R” valued process X on 0 with the following 

properties: 

(i) X is adapted to F. 
(ii) Define the process g(X) by setting for every (0, t) E 0 x [0, a), g(X)(o, t) = 

g(o, t, X(w)). Then, g(X) is integrable with respect to Z and for every t E [O,OO) 
and p a.e. o E 0, 

X(o,t)=K(w)+ ‘g(w,s,X(w,=))dZ(w,x). 
I 0 

Let rC, : @’ + 0, (a, X)-O denote the projection of &?’ onto 0. Then, a weark solution 

(or good solution measure) to (2.1) is a probability measure F on (0, ~8~) which 

satisfies: 

(i) The 0 marginal PI,, of B (i.e. the image measure of P under J/) is equal 
to l? 

(ii) The process z = Zo$ is a semimartingale on (fi”, s$‘, Fd, F). 

(iii) If (B, C, 6) denotes the local characteristics of .Z on (a, SQ, F, P) then 
(Bo rC/, Co $, fio#) are the local characteristics of 2 on (@‘, a”, Fdr p). 

K+. The process (X(a)),-.,, on ad given for every ((w, y), t) E 

a“ x [0, 00) by setting X((U, y), t) y(t) is a solution process to (2.1) with respect 
to the driving system (..@I, &?‘, Fd, 

We now present a simplified version of a stability theorem due to .l. Jacod and 
J. Memin, dealing with the convergence of sequences of solution measures (weak 
solutions). Assume that for every n E IV”, a coefficient g” : @’ x [0, 00) -+ IRd*“1 is given, 

which is a predictable functional on (@‘, ,c;8”, P’“). Then define for every n E N’” an 
equation 

X’,(t) = K + g”( s, X”) dZ( s). (2.1 n) 
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Weak solutions to equations such as (2.ln), 11 E N”, are measures on the space 

C.! -” = 0 x D”. Since (a, d) is an abstract measure space, one needs to introduce a 

convergence concept for measures on spaces such as @‘. 

Definition 2.4. Denote with B&fid) the set of all bounded dd measurable functions 

V: ~2” + R such that V(w, 0) is continuous on D” for every o E 0. We then define 

IL&.,,,(fid) to be the space of all probability measures on (a”, a”) endowed with 

the topology induced by the mappings t_~ I-+ j V dp, for V E B,.,. This topology is 

called the weak-strong topology on A&,,,( 0” ). 

We now list the hypotheses which are required for the stability theorem. 

Hypothesis 2.5 (Compactness). For every II E N, there exists a unique weak solution 

P’l E A4,,,C(fid) to the equation (2.ln), and the sequence (~“~D~~)RENconverges weakly 
to a measure P’~ E M,( Dd ). 

Hypothesis 2.6 (Continuity of gx). For every (w, t) E i2 x [0, ao) the function 
g”‘(o, t, l ) : D” -, Rd”‘1 is continuous. 

Hypothesis 2.7 ( Convergence of (g n ) ,, c N ). For every (w, t) E 92 x [0, 00) and every 

compact subset K c D”, the sequence of functions (gn(m, t, l )),lcN converges uni- 

formly on K to gX(w, t, l ). 

Theorem 2.8 (Stability Theorem). (i) Under Hypothesis 2.S3 !Ize seqt?eEce ( pn),TrN is 
relatively sequentially compact in IL&( L? ). 

(ii) Assume that Hypotheses 2.6 and 2.7 hold as well. Then, all limit points of the 
sequence (P”) are weak solutions to (2.100). Further, if p” is such a limit point, 

Proof. Under Hypothesis 2.5, (i) follows from Theorem (2.8) of Jacod and Memin 

(1981). The result stated in (ii) can be derived using Theorem (3.24) of Jacod and 

Memin (1980), (hereafter simply [JIM]). The conditions [JM](3.1 l), CJMl(3.13) iii), 
[JM](3.20) and [JM](3.21) (resp. [JM](3.10)) are trivially satisfied in our situation. 

The condition [JM](3.18) is not required, since it is only used to demonstrate the 

relative compactness of the sequence (p”),,,N which we already have by (i), (see 

[JM] Lemma (3.56)). The condition EJMl(3.15) follows from Hypothesis 2.6 and 

the condition [JM](3.19) corresponds to our Hypothesis 2.7. Finally, the fact that 
.X 

I 1Y’qL r for any limit point follows directly from Hypothesis 2.5. 

Theorem (3.24) of [JM] is a very general stability theorem which also permits 

the starting values, the driving semimartingales and the basic filtered space to vary 

with n E N”. The proof itself is, as such, very complex. A reader only interested in 

the proof to Hypot!~~.., &. -‘c 7 8 is advised to consult Jacod and Memin (1981) a 

proof of the (simpler) Theorem (1.8) therein. This contains all the steps needed to 

demonstrate the theorem (although the proposition itself is actually an existence 

theorem). q 
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3* Point convergence for solutions to stochastic differential equatims with 

We recall the systems of equations (N), N E N, and (00) given in the introduction. 

In this paragraph we will show that under appropriate hypotheses on the array 

A=((K”,ZN,gN))N;N , I .eme+N of starting values, driving processes and coefficients for 

every N E k-J there exists a unique solution (XI“, . . . 9 Xz) to (N), and the array of 

solutions (X y) i”=;F.., N is point convergent with limit Z(X), where X is a unique 

solution to the equation @) induced by the limit Z{ ( K, 2, g)} of the point convergent 

array A. 

We require three conditions of the closed array (A, (K, 2, g)). The first, (CM), 

specifies the martingale theoretic structure which is required so that the equations 

make sense. The second hypothesis, (CL), is a Lipschitz and growth condition that 

insures the existence of a unique solution to the equation (.P*J) for every N E lU The 
final condition, (CP), is a point convergence property, sufiicient then to prove the 

point convergence of the array of solutions to (N), N E Rd. In the following, for k, 
IE N, x E IFP” we denote Ilxll'=cf'l', llxiil". 

Conditions 3.1. Let d, m E iU 

(CM) We assume to be given: 

(i) A closed array ( (Zy)E;N .-*., N, z) of &!‘“I valued semimartingales with 
2(0)=0=2(O)” for i=l,..., N, N&-l. 

(ii) A closed array ((K y)ritti ..a*. N, K) of R” valued, F(, measurable, square 
integrable random variables, and I > 0 a constant so that for every N EN, 

(iii) A closed array of coefficients (( gN) ,?,y..,N, g), 

gy, g : In + C([O, 00) x D” x M,( D“ ), IW“*“‘) 

with the following properties: 

(a) Define for every N E IV an (l/V”“‘) N valued random functional on the 
canonical extension (PN, &PN, PN), 

G N : L? x [O, co) x D“+ + ([W”*‘pl)N 

!~,~,(X,,-*,-YN)~-+ 
1 N 

W,d,X,,-- c g., 
N;_, ’ 

. i I.....N 

Then, GN is adapted, hence predictable. 

(b) Define for every p E n/a,( D‘l) a random functional gP on the canonical 
extension (EP, 219 

P . 
* 
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Then gP is adapted, hence predictable on this extension. Further, for any D” valued 

random element Y, (w, t, X) E @’ we have 

CK/e further stipulate that for every i = 1,. . . , N, N E N, the coefficient g,? satisfies 
the following Lipschitz and growth conditions: 

(CL) There exist constants L, G > 0 so that: 

(i) For every w E 0, t, S E [0, m), x1, yl,. . . , xN, yN, x, y E D”, 

a+ sup IlX(§At-)-J’(SA(t+S)-)[I’ \ f [0,x ) 

+- ’ ‘,.szzp, II~;(‘Ai)-y.(~A(r+fi)-)!‘). NiZ , 

(ii) For every (0, t) E 0 x [0, 00): llgy(o, t, 0, E’O)llz~ G. 
Finally, there exists a [O,a) valued increasing, continuous, adapted process A 

with A(0) = 0, so that: 

(W (9 A = w I”, c, gNNy...h! is point convergent with limit p = 

Z{(K Z &I. 
(ii) For every i= 1,. . . , N, N E N, A is a control process for 2:. 

The condition (CL) can he interpreted as stating that there is a bound to the size 

of the reaction an agent will exhibit by a small variation of his environment and 
experiences. The condition (CP)(ii) may be seen as stipulating the existence of a 

common bound to the expected maximal growth of the processes Z;?, i = 1,. . . , N, 

NE&J. 

By (CM)(iii), for every N E N, GN is a predictable functional on the de N- 

dimensional canonical extension. Further, as a consequence of (CL) the functional 
GN satisfies classical growth and Lipschitz conditions, therefore we have, 

‘Theorem 3.2. For every N E IW there exists a unique strong solution (Xl”, . . . , XE) 
to (N). 

Proof. See Metivier and Pellaumail (1980, Chapter 111, Sections 6,7). 0 

We now present the result which will permit us to demonstrate the point conver- 

gence of arrays of approximative sohnions. Set P = C( [0, Cc) X D” X 
cl ): Rd.)?1 )_ 

3.3. Let A = (( Kp, Z:“, g~))~,~.._,, be a point convergent array in 53” X 

D”’ x c with limit Z{ ( K, Z, g)}. Furtl. zr let ( fi) ;‘ pd be a strictly increasing sequence in 
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(o,oo) with +-+oo for j+m nnd T={tj:jeN} c S(Z) (see (12)). DeJine Jbr every 

i=1,...,N, . EN, 1E [O, a), 

KY *for t E [O, r,]., 
X(Vit,~+g,Y(tir, :“,(l/N)T,y, &~j(Z,N(t)-z~(t~)) 

I 

for t E (&, &+,I, kN, 

X(t)= K { 
for f E io, &I, 

x(t,)+g(t~,x,Lf{x})(Z(t)-z(~~j) for?E(t~,t~+,], HEN. 

Then A= (X~),N_c,~._+N is point convergent with limit 3(X). 

. We define recusively for every k E N a closed array in D” x D”’ x (?‘? 

(“A, (“x, z, &)) = ((‘,x:v, Zy9 g:“));_‘lN N, (%, 2, g)). ...., 

To define the first array (‘A, (‘X, Z.. g)), interpret for every i = I, . . . , IV, IV E N the 

random element K,! in Rd as a (constant) process in DC’, then set ‘X,! = K,?. One 
defines ‘X = K analogously. 

If (“A, (“X, Z, g)) is already defined, then set for every i = 1, . . . , N, N E N, 

and 

For s, I E [0,~) recall tne set (s, t) defined in connection with Lemma 1.6. We 
will show using induction that for every k EN, the array “A is point convergent with 

limit 2’{(“X, Z, g)} and that Y{(“X, Z)}(H&, tk+,)) = 1. For k = 1 this is part of the 

hypothesis. Assume that the proposition has been shown for k EN‘ By Corollary 
1 .l 1 the array 

is point convergent wit 

y Corollary 



efine then the mapping 

By induction and Lemma 1.6, the mapping f k+l and the closed array (d, q) satisfy 

the conditions of Theorem 1.8(i). Since k+lA =fk+,(& and (recalling (4)(ii)), 

Tk+$Z{q} = Z{(““X, 2, g)}, the point convergence of (“?I, (k+‘X, 2, g)) then fol- 

lows from this theorem. The fact that P’{(k+lX, Z)}( N( fk+l, fk+*)) = 1 follows from 

our hypotheses and the definition of “‘X_ 

To verify that the array (X y) 2iy_., N is point convergent with limit Z{ 

adequate by Lemma 1.3(iii) to conside r the array restricted to bounded intervals of 

[0, 00). For any bounded interval I c [O,O@ there exists aj E N so that lj > sup{ t: t E I}. 

Since for every i=l,..., N, N E N, -jX,y and X7 (resp. ‘X and X) coincide on I9 

the proposition is immediate. Cl 

nitisn 3.4 (Approximating arrays). For every n E NJ let (“lk )krZ+ be an increasing 

sequenceinS(Z)(see(l2),Lemma1.5(i))withnt,,=O,and1/(2n)~~”t~_,-”~,~<l/n 

for every n, k E IV. We then define to (A, Z{( K, 2, g))) and (n~k)kFz+ a point conver- 

gent array A ” = (“X y) ~~~__, N with limit JE’{“X}, as in Theorem 3.3. Further define 

foreverynEN,iEl,..., IV, IV E N a predictable functional on the de N dimensional 

canonical extension by setting 

“gy : L? x [O, 00) x DdeN -3 @“” 

for t E [0, ‘7t,], 

Let “y. = Z{“X} for every n E NJ. We then define 

For every IV, n EN, (“Xr,. . . , “XE) is a solution of the equation 

‘7Xy(f)= KY+ “gy(.s, “X:, t&l) dZr(s), i = 1,. . . , IV. 

)(iii )(b) for every n E N, ” is a solution of 
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TO complete the third step of our program we need some technical results. 

. Let 7; c’i E [O, q, 5% ai. 
(i) Set 

q&K, T) = sup{)/+, S) - A(w, r)l: W E X, s, t E [Q, a], 1s - t! 6 6). 

We now define a number of stopping times. 

(ii) T(X) = inf(t E [0, W]: A(t) > q,r (X, T)} A T. 

(iii) For every n E N, PC E B, set 

“7&V’, T)=inf{t~[“t~,~]: A(t)-A(“tk)>T,,t,(X, T)}A +f(~)~‘lt~+~. 

(iv) For every rf E N set “k = min{ k E N: ‘Itli > T}. Then define the adapted process 

“k- 1 

“‘6/ = G IjN,/qt H,T)) 
k =o 

and stopping time 

“T=inf{tE[O,m): “V(t)=O}. 

In the following, the indexes X and T will be dropped whenever the reference is clear. 

For eoery T, E > 0 there exisfs a set 2: E d with: 

(ii) qT(%‘T, T) <co and q,,,,(X~, T) -4 for n -+ a. 

he process Allf,,Tl is realized in the Polish space C[O, T] (= C([O, T], R)). 
re, for every E > 0 there exists a compact set K, c CIO, T] so that Y{Al,,, T1} . 

(K,) <: E. Set 

By the Arzela-Ascoli theorem, the set K, is uniformly bounded and equicontinuous. 
The result is then immediate. fl 

In the following two lemmata we will assume that T, I E [OS m) are arbitrarily 

chosen, but fixed and X== 2i?T E & is the set given in Lemma 3.6. Further, any of 

* the symbols v(,, “7k, etc., which ear, will be assumed to refer to T and 
inally, for every s E [O, cr0), n E NY w i ite 

+,]forsomekN. 



W. EbmojT/ LLN for WE 177 

Since all norms on II??*“’ 
’ for any g E IV”“. 

are equivalent, there exists a d > 0 so that ligll& S 
Let Jd be the constant belonging to the control process 

and d, (described in the section on stochastic differential equations), then set 

c = &,. 
(1) Let U be some stopping time, U 6 ? Then, for every 

,() c,) llg;“( t, x:, t&‘,-)&, dA(t) ((cp)(ii)) 
T 

‘\ 
sup IIX:(h)ll’dA( t) +2433:j; 

i 

(2) For any t E [0, a) define 

(fiN( t) =+ .i sup IlX”(h)!i’. 
1 I h.t 

Recalling (CM) (ii), we have for any stopping time U c I?, 

(qlN(U-))G21+2 + _i sup IIXIYW - ~W) I 1II.U 

S 8CL,,.E 
I 

+2i-+4CC& 
TO. /’ 1 

Setting K = 21+ 4CG$-, p = 8CLqT, it foliows from Lemma 2.1 that there exists a 

constant 1 2 0, such that 

equalities in (1), it follows for a 
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(3) Finally, let n E N be arbitrarily chosen but fixed. Then, 

A ‘2-) - X,F(h-)I[’ dA(s) 

. For every n E N, dejne 

Then we haoe “p -j 0 for n + 00. 

By the definition of the stopping time “T, we have for every n E NV 1 N x[o,T) c 
Therefore, for every n, N E N, 

+ ,i SUD sup II”X;( h) - Xy( h)ll’l N +- f sup_ ((“X;(h) - X”(h>ll’. (*) 
I I ‘* T I I II “7 

Now let n E N be arbitrarily chosen but fixed and U any stopping time, U s ‘7 
en, for every 
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+ ,t sup IlnXN(t) - XY(t)ll” dA(s)) 
I I f- \ 

Il$(‘k XN, &)-g% Xf”, q&)ll’dA(s) 

((CL)) 

(I d 
SHE F .i S,UP II’W(h) -X”(h)ll’dA(~) + H&n + HW7;,;,, 

[KU) I I I‘- \ 

(Lemma 3.7). 

Define then for t E [0, a), 

Further, for n E N set 

Finally, define p = H and I= ?-jr. Then, by Lemma 2.1, 

I WI 
(+r(“T--))62K(n) C (2~1)’ 

i -0 

By LemmcP 3.6, qlllt, -j 09 for n -+ a. Therefore, 

K(n)-4 forn-+m. 

step of our progra 
e sequence of measures (“p )nCK given i 
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. There exists a ely dejned Borek’ probability pJc on LY’ so that 

np+px for n+m and so that ( , px ) is point convergent. 

his follows directly fro ma 2.2, 3.8 and 

e now can complete the final step of our program. That is the subject of the 

following: 

. (i) 7Iere exists a weak solution 

marginal of p is uniquely dejned and equal to pL,. 

ecall the processes n n E N, introduced in Definition 3.4. Define for every 

nh:.O+fi’, w-(o,” 

and the induced measure ’ on the canonical extension (al’, 2“). For every 

is the unique weak lution to (n, 00). We want to apply the stability 

(2.8) to the sequence ( For this purpose we introduce the predictable 

random functional 

and equation 

I 

1 

its, JO dZ 
0 (db) 

are now in the skration described by the stability theorem. A measure 

it is a solution to (co). To apply 
continuity con 

Mess property ( 

hat remains to be demonstrated, is 

othesis 2.7) is fulfilled. 

(w, t) E f2 x [0, 00). We must show that 
sequence of functions (“g(a), t, *)I ) h I)! 1~ converges uniformly to i(w, 

n E N it follows from t e definition of “t that 1”s .- tl < 1/n. 

set 
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I the conditions of Theorem 2.8 have been fulfilled. An a 

then completes the proof. El 
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