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The theory of centre manifolds for infinite dimensional systems is described, with 
emphasis on the practical computational aspects of applying the theory to near- 
critical problems, and in particular to computation of the centre manifold. The 
calculations are illustrated by detailed analyses of two specific problems. 

1. INTRODUCTION 

This is the second of two papers dealing with the theory of centre 
manifolds and its application to critical and near-critical problems. In the 
first’ we described in general terms the type of results one may expect to 
obtain using invariant manifold theory, and also their relationships to 
methods of analysis using amplitude expansions based upon multiple time 
scales. In summarizing the main abstract results and illustrating their 
application to concrete problems, we restricted attention to systems of 
ordinary differential equations. In this paper we present corresponding 
results for infinite dimensional problems, and analyse in detail two non- 
trivial problems arising from partial differential equations. 
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2. GENERAL THEORY 

Let Z be a Banach space with norm (( (I, and consider the abstract equation 

ti = cu + F(u), u(0) E z. (2.1) 

Let C be the infinitesimal generator of a strongly continuous semigroup S(t) 
on Z7 and let F be of class C2 from Z to Z with E;(O) = 0 and DF(0) = 0 (D 
denotes a Frechet derivative). These conditions ensure that (2.1), considered 
as an ordinary differential equation on the Banach space Z, has a unique 
solution in some maximal time interval. 

We are interested in cases in which Z = X@ Y, where X is a finite- 
dimensional C-invariant subspace, Y is a closed subspace, and if U(t) is the 
restriction of S(t) to Y, then Y is U(t)-invariant for t > 0. Let P: Z + X be 
the projection on X along Y, and set A = PC, B = (I - P)C, f(x, y) = 
PF(x + y), and g(x, ~7) = (I - P) F(x + 4’). Then (2.1) becomes 

i = Ax + j-(x, y), x(0) E A-., 

ji = Bv + g(x, Y), y(0) E Y. 
(2.2) 

This is the canonical form of (2. I) corresponding to such a decomposition of 
Z. 

DEFINITION 1. A set M c Z is an invariant mantjiold for (2.2) iffor any 
solution (x(t), y(t)), (x(O), y(O)) E M implies that for some T > 0, (x(t), 
y(t)) E M for all t E [0, T]. 

The main results concerning the existence, asymptotic status, and approx- 
imation of centre manifolds are the following: 

THEOREM 1 (EXISTENCE). Let the real parts of the eigenvalues of A be 
zero, and assume there are positive constants a and b for which ]] u(t)/; < 
aeeht. Then there exists an inoariant manifold y= h(x), Ix < 6, for (2.2), 
where h has a Lipschitz continuous derivative, h(0) = 0, and Dh(0) = 0. If 
D’F is uniformly continuous on a neighbourhood of the origin, then D”h 
exists and is uniformly continuous. 

We call this manifold a centre manifold for (2.2). The flow on it is 
governed by the following ordinary differential equation on X: 

zi = Au + f (u, h(u)), u(O) E 1, (2.3) 

and in terms of it (x, v) = (u, h(u)) is a solution of (2.2). 
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THEQREM 2 (ASYMPTOTIC STATUS). (i) Let the zero solution of(2.3) be 
stable (asymptotically stable) (unstable). Then the zero solution of (2.2) is 
stable (asymptotically stable) (unstable). (ii) Let the zero solution of (2.3) be 
stable. Then for each solution (x(t), y(t)) of (2.2) with /1(x(O), y(O))/1 
sufJiciently small, there exists a solution u(t) of (2.3) such that as t + 00, 

x(t) = u(t) + O(e- “), 

y(t) = h(u(t)) + O(e-“), 
(2.4 j 

where y is a positive constant. 

Define an operator N by 

the domain of N being the set of all functions # of class C’ from a 
neighbourhood of the origin in X into Y such that for each x in this 
neighbourhood @(x) lies in the domain of B. Carr and Al-amood [2b, 
Remark 31 have proved that h(x) does lie in the domain of B for all x near 
zero, and so by invariance h is a solution of the equations Nh = 0, h(0) = 0. 
and Dh(0) = 0. These are the only conditions h must satisfy since, given any 
h satisfying them and any solution 24 of (2.3) for this h, (s, yj = (u, h(u)) is a 
solution of (2.2), and the set of all such solutions u forms an invariant 
manifold. 

THEOREM 3 (APPROXIMATION). Let I$ lie in the domain of N and satisjj 
4(O) = 0 and D@(O) = 0. Iffor some q > 1, N#(x) = O(/.Y)~) as x--t 0, then 
h(x) = #(x) + O(Jx(“) as x + 0. 

These three theorems parallel those for ordinary differential equations 
described in [I]. Remarks l-4 in that paper apply here also, and should be 
noted in applications, particularly of Theorem 2, to specific problems. 

Because the real parts of the eigenvalues of A are zero, the system (2.2) is 
critical. Near-critical systems are ones involving a parameter E E [Rp such 
that for E # 0, A = A(E) has fewer eigenvalues with zero real part than A (0). 
Systems of this type are very common in applications, and they can be 
reduced to the critical case by enlarging the space Z so as to include E as an 
additional dependent variable. This is done by adjoining to (2.1) the equation 
B = 0 and analysing this new system on Z = Z x IFi“. Then Z = 80 Y, 
where 2 3 X X IRp, and the new canonical form consists of (2.2) and .@ = 0. 
To it Theorems l-3 may be applied directly. This technique is described in 
greater detail in Section 3 of [I]. For near-critical systems the following 
modified version of Theorem 3 is often more useful: 
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THEOREM 4 (APPROXIMATION). Let 4 lie in the domain of N and sat&.& 
#(O, 0) = 0, D,$(O, 0) = 0, and D,d(O, 0) = 0. iffor some q > 1 and r > 1, 
N$(.x,~j=O(]x]~(l t ]&I’)) as (x,&)+0, fhen h(x,E)=$(s.c)+ 
O(lxpyl + j&y)) as (X,&)-+0. 

Proofs of these four main theorems, as well as numerous applications. 
may be found in the article of Carr [l] (cf. also Carr and Al-amood [2a, b]). 
Certain generalizations and specializations have also been considered in the 
literature. Proof of the existence of a centre manifold for equations which 
generate a nonlinear semigroup T(t, x) such that x + T(t, x) is smooth may 
be found in Marsden and McCracken [8]. Theorems 1, 2(i), and 3 have been 
proved for a class of semilinear parabolic equations by Henry [7, 
Chapter 61. A presentation of centre manifold theory with particular 
emphasis on Hopf bifurcation can be found in the work of Hassard el al. [6 ic 

3. EXAMPLE: A SEMILINEAR WAVE EOUATION 

Consider the semilinear wave equation 

IV,, + IV, - w,, + af(w) = 0, 

w(0, t) = w(z t) = 0, 
(3.1) 

for a real-valued function MI = W(S, t), (s, f) E (0, n) x (0. co ). The function I* 
is of class C’ with f(z) = z + Q.T? + O(z’) as z - 0, and u and a # 0 are real 
constants. 

First we formulate (3.1) as an ordinary differential equation on a Hilbert 
space. Set Q, = d2/ds2 - a, D(Q,) = H'(0, n) n HA(O, n). Then Q0 is 
positive and self-adjoint, and D(Qi:‘) = Hi(O, rc). Let Z be the Hilbert space 
HA(O. n) x L"(0, x). Then (3.1) can be written in the form 

zi = cu + F(u), 40) E z WI 

with Cu = C(U’, u’)~ = (u’, Q, U’ - u’)~, F(u) = (0, g(u’))‘. and g(zj G 
-~(f(x) - z). Since C is the sum of a skew self-adjoint operator and a 
bounded operator, it generates a strongly continuous semigroup on Z. pIIs 
each U’ E Hi(O, n) is continuous, so F: Z + Z. Moreover F is of class C’ on 
Z with F(0) = 0 and DF(0) = 0, so (3.2) has a unique solution on a maximal 
time interval. 

To obtain a decomposition Z = X @ Y, we look first at the spectrum of C. 
By straightforward calculation this spectrum consists only of eigenvalues, 
which in terms of E = -1 - u can be written AI(e) = [- 1 + (1 + 4~)r~‘]/2, 
/2*(e) = -1 -a,(e), and A I:+,(E) = I-1 + (1 + 4(1 + E - n’))‘;‘]/2 for 12 > 2, 
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Corresponding to each eigenvalue there is a one-dimensional eigenspace. For 
A,(E) it is spanned by e,,(s) = (I,A,(e))‘sin s, for AZ(e) by e&) = 
(I, A,(E))’ sins, and for L:+,(E) by (1, L,‘+~(E))~ sin ns, n > 2. 

Since I.,(O) = 0, (3.2) is near-critical in a neighbourhood of E = 0. We will 
choose our decomposition of 2 so that we can use centre manifold theory to 
analyse small solutions of (3.2) near E = 0. Set X,= span{e,,\, Yla= 
span{e,,}, YzE = (X, @ Y,,)‘. Then Z = X, @ Y,, where Y, = YIE@ Yz,. The 
projection P, of Z onto X, along Y, is 

P, li 
‘, (U’-Az(&) 

i 1 U2 
= 

(A,(E) -A,(&)) elEy 
(3.3) 

an overbar denoting the weighted average 

2 -II ),q=- 
1 

w(u) sin ado. (3.4) 
2-c 0 

Write u E Z in the form -ye,, + ~7, x E R and 4’ E Y,. In terms of .x and 4’ the 
canonical form of (3.2) is 

i = A@)-~ + (e,,, P,F(=,, + v>)/(el,, e,,), 

J; = B, Y + (I- P,) F(xe, E + Y), (3.5) 

E: = 0, 

where B, E (I- P,)C and we have adjoined to (3.2) already the equation 
i = 0. (., .) denotes the inner product in Z. 

By Theorem 1, (3.5) has a centre manifold 4’ = h(x, E), 1x1 < 6,) 1~1 < ii,, 
and the flow on this manifold is governed by the system of ordinary 
differential equations 

i =4(&)x + (e,,, PAxe,, + h(x, E)))l(ela, e,,), 

E’ = 0. 
(3.6) 

To approximate h, set 

N#(x, E) = D&, E)[&(E)-K + (e,,, PAxe,, + 4(x, ~)>)l(e,,, e,Jl 
-B&(x, E) - (I - PJ We,, + 4(x, &)I. (3.7) 

Using (3.3) and the definition of F we see that 

(I-P,) F(u) = -m sin s/(Ar(e) -A,(s)) 

= g(u’> -4(e)&‘) sins/(J,(c)--2(e)), 
(3.8) 
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and since g(z) is at least cubic in z it follows from (3.7) and (3.8) that 

N(0)(x,~)=-(I-PP,)F(xe,,)=0(~x(3(1 +lei)j (3.9) 

as (x, &)A 0. Thus, by Theorem 4 we find that h(x, E) = O([x13( 1 + is])) as 
(x, F) + 0. Therefore the second term on the right-hand side of (3.6j, 
becomes 

(el$, PEF(XelE + h)j __ 
(e l&T e,,) 

= g(xsins + O(lx13(l + IsIjjj/(L,(s)-~Z(s)j 
(3.1Oj 

= a3 sin3 s + O(]xj3(]xl + Is])). 

Since s& = i ~ (3.6) reduces finally to 

i =A1(&)X + ;ux3 + O(lx13(lxj f \&I)). 

G = 0. 
(3.11) 

In analysing the behaviour of small solutions of this system we consider 
separately the cases a < 0 and a > 0. If a < 0 the zero solution of (3.1 I) is 
stable, so the representation of solutions given by (2.4) of Theorem 2 applies 
here. Hence if E is small and negative the zero solution of (3.1) is 
asymptotically stable. If E is small and positive, the unstable manifold of the 
origin consists in two stable orbits connecting the origin to two small 
equilibria. 

Suppose now that a > 0. When (3.11) is considered as a dynamical system 
on ((x,s)ls<O’ ;, the zero solution is asymptotically stable. Hence by 
Theorem 2 (cf. Carr and Al-amood [2a, Remark S]), if E < 0 the zero 
solution of (3.1) is asymptotically stable. Finally, if E > 0 the zero solution 
of (3.1 I), and hence also of (3.1), is unstable. 

4. EXAMPLE: A SEMIL~NEAR PARABOLIC SYSTEM 

The system 

v, = d,v,, + u[-(0 - FJU - 1) - CZH’], 

wt = d, w,, + w [-E* - pw + cm], 

o,(O, t) = u&r, t) = w,(O, t) = w&r, t) = 0, 

for two scalar functions ZI = a(s, t) and 1%’ = w(s, t), (s, t) E (0, E) X (0, co j, 
has been studied by Conway and Smoller [5] as a model for the evolution in 
time of two populations undergoing both interaction and spatial diffusion. 
The constants d, > 0, d2 > 0, si, sZ, u, and /3 represent measurable quantities 
of the two populations such as rates of spatial diffusion, birth, death, and 
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predation. We will use centre manifold theory to examine small solutions of 
(4.1) in the near-critical case in which E, and s2 are small. 

Set Qi = did*/&’ - si, i = 1, 2, with D(Q,) = D(Q,) = 
{v E Hi(O, rc) / u,(O) = v,(rc) = O}. Then Q, and Qz are self-adjoin& and when 
E = (E, , E?) = 0, both are positive. We analyse (4.1) on the Hilbert space Z = 
Hi(O, 7r) X Hi(O, rr). Setting 

c=(eo, i*), 
F(u)=F ;: 3 

0 ( 

u’[(l + E&4’ -cm* - (u’)‘] 
(4.2) 

u’[-/3u’ + au’] 13 

we may write (4.1) as the ordinary differential equation 

li = cl4 + F(u), u(0) E z. (4.3) 

By standard theory of elliptic systems, C generates a strongly continuous 
semigroup on Z. Since each u E Hi(O, rc) x Hi(O, rc) is continuous and F has 
polynomial components, F: Z-, Z. Also F is C”O on Z and F(0) = 0 and 
DF(0) = 0, so (4.3) has a unique solution on a maximal time interval. 

The spectrum of C consists only of eigenvalues I,(E) = -E, , A?(E) = -E,, 
AnI = -4, - d, n2, and A,z(c) = -E, - dznZ, II > 1. The corresponding 
eigenspaces, all one-dimensional, are spanned by e,(s) = (1, O)‘, ez(s) = 
(0, l)‘, e,,(s) = (cos ns, O)‘, and e,,(s) = (0, cos n~)~, respectively. Thus 
A,(O) = A*(O) = 0, so for s near zero (4.1) is near critical. 

Set X = span{e, , e2} and Y = X’, so that Z = X @ Y. The projection P of 
Z onto X along Y is simply the orthogonal projection 

(4.4) 

the overbar denoting an average: 

1 .‘I ii=- 
! 71 0 

u((T) do. (4.5) 

ForeachuEZwewriteu=x,e,+x,e,+ywithx,,x,EIRandyEY.In 
terms of x1, x2, and y the canonical form of (4.3) is 

1, =A,(E)x, + F’(x,e, +x?e, + y). 

i2 = /Z,(E)X, + F’(x,e, + x2ez + y), 

j=By+(I-P)F(x,e,+x,e,+y), 

i = 0. 

(4.6) 

where B = (I- P)C. 
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By Theorem 1, (4.6) has a centre manifold y = h(x, E), /xi < 6,) 1 E 1 < ?& - 
and the flow on this manifold is governed by the system obtained by 
substituting JJ = h(x, E) into (4.6),,2.1. To simplify this system we first 
approximate h. Set 

for functions # of class C’ lying in the domain of B. We note that 

(I-P)F(x,e, +x,e,)=O (4.8) 

for all x,, x2 E R. This follows from the facts that e, and e2 are constant 
vectors and C= u for any constant function c. However, (4.8) implies that 
the system of equations N/I = 0, h(0, 0) = 0, D,iz(O, 0) = D&z(O, 0) = 0. 
which governs h has the exact solution h(x, E) = 0. Moreover, Theorem 3 
shows that any other solution of this system satisfies h(x, E) = O((l x/ + /E I)“) 
for all II > 0 as (x, E) -+ 0. 

If we set y= h(x, E) G 0 in (4.6),.,., and use the definition of F. we obtain 
the following equations for the flow on the centre manifold: 

1, =x*[-(xI -&,)(X, - 1) - &Y2]. 

.ez = X,[--E2 -pxz + ax,], (4.9) 

6 = 0. 

These, apart from the added equation c = 0, are preciseiy what we would 
obtain from (4.1) by setting d, = d2 = 0 and ignoring the boundary 
conditions, and so the behaviour of small solutions of (4.1) when E is near 
zero is essentially unaffected by diffusion. The replacement of a system of 
partial differential equations with a system of ordinary differential equations 
by treating all spatial derivatives as negligible is often termed the “lumped 
parameter assumption,)’ and Conway et al. [41 have examined the validity of 
this assumption for certain semilinear parabolic systems by use of energy 
estimates. The analysis here justifies the lumped parameter assumption for 
(4.1) since the corresponding system of ordinary differential equations. 
namely, (4.9), governs the flow on a centre manifold for (4.1). 
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