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Random-Effects Model Aimed at Discovering Associations
in Meta-Analysis of Genome-wide Association Studies

Buhm Han1 and Eleazar Eskin2,*

Meta-analysis is an increasingly popular tool for combiningmultiple different genome-wide association studies (GWASs) in a single aggre-

gate analysis in order to identify associations with very small effect sizes. Because the data of a meta-analysis can be heterogeneous, refer-

ring to the differences in effect sizes between the collected studies, what is often done in the literature is to apply both the fixed-effects

model (FE)under anassumptionof the sameeffect sizebetweenstudies and the random-effectsmodel (RE)underanassumptionofvarying

effect size between studies. However, surprisingly, RE gives less significant p values than FE at variants that actually show varying effect

sizes between studies. This is ironic because RE is designed specifically for the case in which there is heterogeneity. As a result, usually,

RE does not discover any associations that FE did not discover. In this paper, we show that the underlying reason for this phenomenon

is that RE implicitly assumes a markedly conservative null-hypothesis model, and we present a new random-effects model that relaxes

the conservative assumption. Unlike the traditional RE, the newmethod is shown to achieve higher statistical power than FE when there

is heterogeneity, indicating that the new method has practical utility for discovering associations in the meta-analysis of GWASs.
Introduction

Genome-wide association studies (GWASs) are an effective

means of detecting associations between a genetic variant

and traits.1 AlthoughGWASshave identifiedmany loci asso-

ciated with diseases, those identified loci account for only

a small fraction of the genetic contribution to the disease.2

The remaining contribution can be accounted for by loci

with very small effect sizes, so small that tens of thousands

of samples are needed if they are to be identified.3 One can

design and conduct a single study collecting such a large

sample, but it will be very costly. A practical alternative is

to combine numerous studies that have already been per-

formed or that are being performed in a single aggregate

analysis calledameta-analysis.4–6Recently, several large-scale

meta-analyses have been performed for diseases including

type 1 diabetes,7 type 2 diabetes,8–10 bipolar disorder,11

Crohn disease,12 and rheumatoid arthritis13 and have

identified associations not revealed in the single studies.

An intrinsic difficulty in conducting a meta-analysis is

choosing which studies to include. Ideally, one would

collect as many studies as possible to increase the sample

size. However, the decision is not always simple because

sometimes the studies differ enough that onewould suspect

that the effect size of the associationwould not be the same

between studies. For example, if the populations or the

environmental factors are substantially different between

studies, there is a possibility that the strength of the associ-

ation is affected by those factors.14,15 If the effect size of the

association varies between studies, we refer to this phenom-

enon as between-study heterogeneity or heterogeneity.16–19

The way in which one optimally designs and analyzes

a meta-analytic study is critically dependent on the

between-study heterogeneity. If one decides to limit the
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heterogeneity in the data as much as possible, one will

only collect studies that are highly similar to each other.

Therefore, the sample size might not be maximized, but

the heterogeneity in the data will be minimized. The

commonly applied method of analyzing a collection of

studies for which the effect sizes are expected to be similar

is the fixed-effects model (FE) under an assumption of the

same effect size between studies.4,20,21 Instead, if one

decides to allow some heterogeneity in the data, one can

collect a greater number of studies to maximize the sample

size. The commonly applied method of analyzing a collec-

tion of studies for which the effect sizes are expected to

vary is the random-effects model (RE), explicitly modeling

the heterogeneity.16,18,22,23 In practice, researchers often

apply both FE and RE.24,25 This way, they can discover

the maximum number of associations and compare the

results of the two methods; such a comparison might

help in the interpretation of the results.

A surprising phenomenon that caught our attention

with regard to meta-analysis is that when one applies

both FE and RE to detect associations in the dataset, RE

gives substantially less significant p values than FE at

variants that actually show varying effect sizes between

studies. This is ironic because RE is designed specifically

for the case in which there is heterogeneity. Because

RE gives the same p value as FE at markers showing no

heterogeneity, RE rarely, if at all, gives a more significant

p value than FE at any marker. Therefore, all associations

identified by RE are usually already identified by FE. We

verify this phenomenon through simulations. Because FE

is not optimized for the situation in which heterogeneity

exists and because RE finds no additional associations,

the causal variants showing high between-study heteroge-

neity might not be discovered by either method.
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In this paper, we show that the underlying reason for

this phenomenon is that RE implicitly assumes a markedly

conservative null-hypothesis model. The analysis in RE is

a two-step procedure extending the traditional estimation

of effect size to hypothesis testing. First, one estimates the

effect size and its confidence interval by taking heteroge-

neity into account.16,17,26,27 Second, the effect size is

normalized into a z score, which is translated into the p

value. We show that this second step is equivalent to

assuming heterogeneity under the null hypothesis.

However, there should not be heterogeneity under the

null hypothesis of no associations because the effect sizes

are all exactly zero. We find that this implicit assumption

of the method makes the p values overly conservative.

We propose a random-effects model that relaxes the

conservative assumption in hypothesis testing. Our

approach estimates the effect size and its confidence

interval in the same way that the traditional RE approach

does. However, instead of calculating a z score as is done

in traditional RE, we apply a likelihood-ratio test and

assume no heterogeneity under the null hypothesis. In

essence, we are separating the hypothesis testing from

the effect size estimation by informing the method that

the existence of the heterogeneity is dependent on the

hypothesis. By taking advantage of this information, the

new method, unlike traditional RE, achieves higher statis-

tical significance than FE if there is heterogeneity. Our

simulations show that the new approach effectively

acquires high statistical power under various types of

heterogeneity, including when the linkage disequilbrium

structures are different between studies.28,29 Applying the

method to the real datasets of type 2 diabetes9 and Crohn

disease12 shows that the method can have practical utility

for finding additional associations in the current meta-

analyses of GWASs.

The new method has several interesting characteristics.

First, the new method is closely related to existing

approaches in the meta-analysis. The statistic consists of

a part corresponding to the average effect size, equivalent

to FE, and a part corresponding to heterogeneity, asymp-

totically equivalent to Cochran’s Q.16 This shows that

heterogeneity as well as effect size contributes to the

discovery of associations in our method. Second, the

statistic asymptotically follows a mixture of c2 distribu-

tions,30 and therefore the p value can be efficiently calcu-

lated. Third, although the new method is more sensitive

to confounding than previous methods, a simple proce-

dure similar to genomic control31 can reduce the effect of

confounding.
Material and Methods

Heterogeneity
If there exists actual genetic effect but the effect size level varies

between studies, we refer to this phenomenon as heterogeneity.16

A simple example of heterogeneity is when the populations are

different between studies and the population-specific variation
The Ame
affects the pathways of disease and thus results in different effect

sizes.14,15 However, heterogeneity can also occur when the effect

size is the same but the linkage disequilibrium structures are

different between studies.28,29 In this case, the virtual or observed

effect sizes can vary at the markers as described below.

Because we define the heterogeneity as the difference in effect

sizes, under the null hypothesis of no associations, there should

be no heterogeneity. If there exists no genetic effect but we observe

unexpected variation in the observed effect size, as can be the case

for population structure, we will call it confounding and treat it

separately.31,32

LD Can Cause Heterogeneity

Assume N/2 cases and N/2 controls. Let p be the frequency of the

causal variant having odds ratio g. If we assume a small disease

prevalence, the expected frequency in controls and cases is

p�zp (1)

pþz
g p

ðg� 1Þpþ 1
: (2)

If g is relative risk, Equation 2 is an exact equality. The usual z

score statistic is

S ¼ bpþ � bp�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bp5�

1� bp5��
N

q
where p5 ¼ ðpþ þ p�Þ=2 and the hats (^) denote observed values. S

follows Nðl ffiffiffiffi
N

p
;1Þ where

l
ffiffiffiffi
N

p
¼ pþ � p�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p5ð1� p5Þ=Np
is the noncentrality parameter.33

Now, assume that we instead collect a marker whose

frequency is similar to that of the causal variant, with which it

has a correlation coefficient r. Pritchard and Przeworski34 show

that the noncentrality parameter at the marker (lm
ffiffiffiffi
N

p
) is approx-

imately rl
ffiffiffiffi
N

p
. The subscript m denotes that the values are for the

marker.

Thus, we can solve the equation

pþm � p�mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p5m

�
1� p5m

��
N

q ¼ r
pþ � p�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p5ð1� p5Þ=Np
to obtain the virtual odds ratio gm at the marker. By further

assuming that

p5ð1� p5Þzp5m
�
1� p5m

�
;

we find that gm is approximately

gmz
ððg� 1Þp� gþ 1Þr þ ð1� gÞp� 1

ðg� 1Þpr þ ð1� gÞp� 1
:

Table 1 describes the pattern by which gm varies depending on g

and r. Note that if log g ¼ 0 (no genetic effect), log gm is also 0. In

other words, there is no heterogeneity under the null hypothesis.

Traditional FE and RE Approaches
FE Approach

FE assumes that the magnitude of the effect size is the same,

or fixed, across the studies.20,21 The two widely used statistics

are the inverse-variance-weighted effect-size estimate35 and

the weighted sum of z-scores.4 Let X1;.;XC be the effect-size
rican Journal of Human Genetics 88, 586–598, May 13, 2011 587



Table 1. Pattern of Virtual-Effect Size under Various LD
Conditions

Effect at
Causal SNP

LD between Causal
SNP and Marker

Virtual Effect
at Marker SNP

b ¼ 0 (no effect) – bm ¼ 0 (no effect)

b > 0 r ¼ 1.0 (perfect LD) bm ¼ b (same effect)

b > 0 r < 1.0 (imperfect LD) bm < b (smaller effect)

b > 0 r ¼ 0 (no LD) bm ¼ 0 (no effect)

b > 0 r < 0 (negative LD) bm < 0 (effect in
opposite direction)

b is the effect size at the causal SNP, and bm is the virtual effect size observed
at the marker. The LD measure is r, the Pearson correlation coefficient.
estimates, such as the log odds ratios or regression coefficients, in

C independent studies. Usually, X1;.;XC follow normal distribu-

tions if the sample sizes in each study are sufficiently large. Let

SEðXiÞ be the standard error of Xi and Vi ¼ SEðXiÞ2. Although Vi

is estimated from the data, it is a common practice to consider it

as a true value in the analysis. Let Wi ¼ V�1
i be the inverse vari-

ance. The inverse-variance-weighted effect-size estimator is

X ¼
P

WiXiP
Wi

: (3)

It follows that the standard error of X is SEðXÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiP
Wi

p �1
.

Because X will also follow a normal distribution, we can construct

a statistic

ZFE ¼ X

SEðXÞ ¼
P

WiXiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Wi

p ;

which follows Nð0;1Þ under the null hypothesis of no associa-

tions. The p value of the association if we assume a two-sided

test will then be

pFE ¼ 2Fð � jZFE j Þ;

whereF is the cumulative density function of the standard normal

distribution.

The p value can also be obtained with z scores. Let Z1;.;ZC be

the z scores. A weighted sum of z scores is

ZWS ¼
P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nipi
�
1� pi

�q
i
ZiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Nipi
�
1� pi

�q :

Ni is the so-called effective sample size of study i and can be

approximated to 2Nþ
i N

�
i =ðNþ

i þ N�
i Þ when Nþ

i =2 cases and N�
i =2

controls are in study i. pi is the minor allele frequency of the

marker in study i. The p value is then

pWS ¼ 2Fð � jZWS j Þ:

pFE and pWS are usually very similar.36,37

Usually, theweights of only
ffiffiffiffiffi
Ni

p
instead of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nipið1� piÞ

p
are used

under the assumption that the frequencies are similar.4However, in

general, explicitly employing frequency information in theweights

can be the most powerful. One can easily demonstrate this in the

case of binary alleles and binary traits by showing the following

three things: (1) the Mantel-Haenszel test21 is the uniformly most

powerful unbiased test, as shown by Birch,38 (2) the inverse-

variance weighted odds ratio is approximately equivalent to the
588 The American Journal of Human Genetics 88, 586–598, May 13,
Mantel-Haenszel, and (3) the weighted sum of z scores is approxi-

mately equivalent to the inverse-variance weighted log odds ratio

only when the weights include the frequency information.

RE Approach

On the other hand, the RE approach assumes that the true value of

the effect size of each study is sampled from a probability distribu-

tion having variance t2.16 The between-study variance t2 is esti-

mated by various approaches,26,27,39–41 such as the method of

moments,16 the method of maximum likelihood,42 and the

method of restricted maximum likelihood.17 Given the estimated

between-study variance bt2, the effect size estimate is calculated

similarly to Equation 3 but with the additional variance term ac-

counted for, as follows:

X
� ¼

P�
W�1

i þ bt2��1

XiP�
W�1

i þ bt2��1
:

It follows that SEðX�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðW�1

i þ bt2Þ�1
q �1

. The test statistic

can be similarly constructed as

ZRE ¼ X
�

SEðX�Þ; (4)

and the p value is

pRE ¼ 2Fð � jZRE j Þ:

Note that if the frequency and sample size are equal between

studies (W1 ¼ . ¼ WC), then X
� ¼ X. However, because

SEðX�ÞR SEðXÞ, we obtain pRERpFE. That is, it is easily shown

analytically that RE never gives a more significant p value than

FE if the sample size is equal.

RE Assumes Heterogeneity under the Null Hypothesis

To show that RE implicitly assumes heterogeneity under the

null hypothesis, we describe FE and RE as likelihood ratio tests.

In a typical meta-analysis, the analysis is a two-step procedure:

(1) the result of each study is summarized in a statistic (e.g.,

effect-size estimate), and (2) the statistics of the multiple studies

are combined. Thus, each statistic can be considered as a single

observation. Here we consider the likelihood of these observations

rather than of the raw data. We make an assumption that each

statistic follows a normal distribution; such an assumption is

usually acceptable in GWASs because of the large sample size.

Let X1;.;XC be the effect-size estimates of C studies. Let Vi and

Wi be the variance and inverse variance of Xi. Consider the likeli-

hood ratio test under the fixed-effects model. Let L0 and L1 be the

likelihood under the null and alternative hypotheses, respectively.

Then,

L0 ¼
Y
i

1ffiffiffiffiffiffiffiffiffiffiffi
2pVi

p exp

�
� X2

i

2Vi

	

L1 ¼
Y
i

1ffiffiffiffiffiffiffiffiffiffiffi
2pVi

p exp

 
� ðXi � mÞ2

2Vi

!
;

where m is the unknown true mean effect size. The test is whether

ms0. Solving vL1=vm ¼ 0 shows that themaximum likelihood esti-

mate of m is

bm ¼ X ¼
P

WiXiP
Wi

:

Thus, the likelihood ratio test statistic for the composite hypoth-

esis is
2011



�2logðlÞ ¼ �2log

�
sup L0

sup L1

	

¼P
i

X2
i

Vi

�
X
i

ðXi � bmÞ2
Vi

¼P
i

2XiX�X
2

Vi

¼ 2X
P

WiXi �X
2P

Wi

¼ X
P

WiXi

¼ Z2
FE;

(5)

showing that this likelihood ratio test is equivalent to FE.

Similarly, RE can be described as a likelihood ratio test. The

current RE framework estimates the between-study variance t2

first and subsequently uses the value in the statistical test. Letbt2 be the between-study variance as estimated by any method.

Consider a likelihood ratio test assuming the same bt2 as a constant
under both the null and the alternative hypotheses. The likeli-

hoods are

L0 ¼
Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p
�
Vi þ bt2

�r exp

 
� X2

i

2
�
Vi þ bt2�

!

L1 ¼
Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p
�
Vi þ bt2

�r exp

 
� ðXi � mÞ2

2
�
Vi þ bt2�

!
:

The maximum likelihood estimate of m is

bm ¼ X
� ¼

P�
W�1

i þ bt2��1

XiP�
W�1

i þ bt2��1
:

Thus, the likelihood ratio test statistic is

�2logðlÞ ¼
X
i

2XiX
� �X

�2

Vi þ bt2
¼ Z2

RE;

showing that this likelihood ratio test is equivalent to RE.

This conversely shows that the current RE calculates heteroge-

neity under the alternative hypothesis and then implicitly

assumes the same heterogeneity under the null hypothesis, which

we find to be the cause of the conservative nature of the method.
New RE Approach
We propose a new RE that assumes there is no heterogeneity under

the null hypothesis. We employ the same likelihood ratio frame-

work that considers each statistic as a single observation. Because

we assume there is no heterogeneity under the null hypothesis,

m ¼ 0 and t2 ¼ 0 under the null hypothesis. The likelihoods are

then

L0 ¼Q
i

1ffiffiffiffiffiffiffiffiffiffiffi
2pVi

p exp

�
� X2

i

2Vi

	

L1 ¼Q
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðVi þ t2Þp exp

 
� ðXi � mÞ2
2ðVi þ t2Þ

!

Themaximum likelihood estimates bm and bt2 can be found by an

iterative procedure suggested by Hardy and Thompson.42 Specifi-
The Ame
cally, given the current estimate bmðnÞ and bt2ðnÞ, the next estimates

are obtained by the formula

bmðnþ1Þ ¼

P Xi

Vi þ bt2ðnÞP 1

Vi þ bt2ðnÞ

bt2ðnþ1Þ ¼

P�
Xi � bmðnþ1Þ

�2
�Vi�

Vi þ bt2ðnÞ�2P 1�
Vi þ bt2ðnÞ�2

:

Once we find the maximum likelihood estimates bm and bt2, the
likelihood ratio test statistic can be built as follows:

SNew ¼ �2logðlÞ ¼
X

log

�
Vi

Vi þ bt2
	

þ
XX2

i

Vi

�
X ðXi � bmÞ2

Vi þ bt2 : (6)

The statistical significance of this statistic can be assessed in

various ways. The naive way is to permute the data within

each study to obtain the null distribution. A more efficient

approach is to sample Xi from Nð0;ViÞ on the basis of the

normality assumption. However, for highly significant p values,

sampling approaches can be inefficient. An even more efficient

approach is to use asymptotic distribution. Because m is unre-

stricted and t2 is restricted to be non-negative in the parameter

space, m corresponds to a normal distribution and t2 corresponds

to a half of normal distribution in the orthonormal-transformed

space. Therefore, the statistic asymptotically follows an equal

mixture of 1 degree of freedom (df) c2 distribution and 2 df c2

distribution. See Self and Liang30 for more details. However,

the asymptotic result only holds when the number of studies is

large. Given only a few studies, the asymptotic p value is overly

conservative because of the tail of asymptotic distribution is

thicker than that of the true distribution at the genome-wide

threshold. This phenomenon is similar to that observed by

Han et al.33 in the context of correcting p values for multiple

hypotheses.

Instead, we provide tabulated values. For each possible number

of studies from 2 to 50, we generate 1010 null statistics to construct

the p value tables that provide p values with reasonable accuracy

up to 10�8. For p values more significant than 10�8, we use the

asymptotic p value corrected by the ratio between the asymptotic

p value and the true p value estimated at 10�8. Because the ratio

keeps decreasing with significance level, using the ratio estimated

at 10�8 will make the resulting p value slightly conservative but

not anti-conservative. The tabulated values are built on an

assumption of equal sample size between studies. Because the

discrepancy between the asymptotic p value and the true p value

is usually greater for unequal sample size than for equal sample

size, using our tabulated values for unequal sample size case will

make the resulting p value slightly conservative but not anti-

conservative.

Relationship to FE and Cochran’s Q Statistic

Our new method has the following relationship to previous

methods. The statistic in Equation 4 can be decomposed into

two parts,
rican Journal of Human Genetics 88, 586–598, May 13, 2011 589



SNew ¼P log

�
Vi

Vi þ bt2
	

þ
XX2

i

Vi

�
X ðXi � bmÞ2

Vi þ bt2

¼
(XX2

i

Vi

�
X�

Xi � bm0�2
Vi

)
þ
(X

log

�
Vi

Vi þ bt2
	

þ
X�

Xi � bm0�2
Vi

�
X ðXi � bmÞ2

Vi þ bt2
)

¼ SFE þ SHet

where bm0 is the maximum likelihood estimate of m under the

restriction t2 ¼ 0, which may be different from bm.
The first part of the statistic, SFE, is equal to the FE statistic Z2

FE

shown in Equation 5. This is the contribution of the mean effect.

The second part of the statistic, SHet , is equal to the statistic that we

would obtain if we test t2s0. That is, this is the test statistic

testing for heterogeneity. This shows that heterogeneity can actu-

ally help to find associations in our method. SFE asymptotically

follows a 1 df c2 distribution, and SHet asymptotically follows an

equal mixture of zero and 1 df c2.30

SHet tests the same hypothesis as the Cochran’s Q statistic.16 In

the usual case, Q should be preferred because SHet requires a large

number of studies for an asymptotic result. However, asymptoti-

cally they should give the same results.

This decomposability of the statistic can help interpretation

because we can assess what proportion of the statistic is due to

the mean effect and what proportion is due to the heterogeneity.

Correcting for Confounding

An advantage of the decomposability of the statistic is that one

can apply a simple procedure similar to genomic control31 to

each part to correct for confounding. Because the first part, SFE,

is exactly Z2
FE, applying genomic control is straightforward. For

the second part, SHet , one can apply genomic control by assessing

the median value under the restriction SHet > 0 and then

comparing it to the expected value under the null hypothesis.

We also provide the tabulated null median values of SHet for

various numbers of studies.

Given the inflation factors lFE and lHet calculated for the first

and the second parts separately, the corrected statistic will be

S0New ¼ SFE=lFE þ SHet=lHet :

Interpretation and Prioritization

In the usual meta-analysis where one collects similar studies and

expects the common effect of the variant, the results found by

FE should be the top priority, but the results found by our method

can also suggest interesting regions. As suggested by previous

studies,18,22 an association showing large heterogeneity requires

careful investigation of the cause of heterogeneity. If the heteroge-

neity is caused by the between-study difference in the underlying

pathways of disease, a correct identification of the cause of hetero-

geneity might help researchers to understand the disease.

Note that the effect-size estimate and its confidence interval in

our new RE remain the same as those in the current RE. This is

because we changed the assumption only under the null hypoth-

esis, whereas estimating effect size and its confidence interval can

be thought of as happening under the alternative hypothesis.

Note that an extremely wide confidence interval might not always

correspond to a statistically nonsignificant result in our framework.
Simulation Framework
In the Results, we use the following simulation approach. Under

the assumption of a minor allele frequency, an odds ratio, and
590 The American Journal of Human Genetics 88, 586–598, May 13,
the number of individuals of Nþ=2 cases and N�=2 controls,

a straightforward simulation approach is to sample Nþ alleles for

cases and N� alleles for controls according to the probabilities

given in Equations 1 and 2. However, because we perform exten-

sive simulations in which we assume thousands of individuals,

we use an approximation approach that samples the minor-allele

count from a normal distribution and rounds it to the nearest

integer.
Results

Motivating Observation: RE Never Achieves Higher

Statistical Significance than FE in Practice

We first describe our motivating observation that the

current RE approach never achieves higher statistical

significance than the FE approach in practice. In the Mate-

rial and Methods, we have already analytically shown that

if the sample size is equal between studies, the p value of RE

(pRE) cannot be more significant than the p value of FE

(pFE). Therefore, our interest is in the situation in which

the sample size is unequal.

We assume five independent studies with unequal

sample sizes of 400, 800, 1200, 1600, and 2000. Through

all experiments, the sample size refers to the combined

number of cases and controls in a balanced case-control

study, and a population minor-allele frequency of 0.3 is

assumed. Note that the specific values of the parameters

are not the major factor affecting the results. For example,

if we increase the sample size and decrease the minor-allele

frequency or the assumed effect size, we will have the

similar results (data not shown).

Our goal is to simulate every possible situation with

a large number of random simulations to examine in

which situation RE gives more significant results than FE.

Because FE is optimal if there is no heterogeneity, we

assume heterogeneity and randomly sample odds ratios

of the studies from a probability distribution. We assume

a mean odds ratio of g ¼ 1:1 and sample the log odds ratio

of each study from NðlogðgÞ; logðgÞ2Þ. This is large hetero-
geneity; with a high chance of Fð�1:0Þz15:9, the direc-

tion of the effect will even change.

On the basis of the sampled odds ratios, we sample the

cases and controls for each study. Then we calculate pFE
and pRE by using the inverse-variance weighted-effect-size

approach. In calculating pRE, we estimate bt2 by themethod

of moments of DerSimonian and Laird.16 If at least one of

pFE and pRE is significant (p%0:05), we accept the study.

Otherwise, we repeat the procedure. We construct one

million sets of meta-analyses.

Figure 1 shows that our one million trials cover a variety

of situations. Figure 1A shows that the p values (pFE) are

distributed in a wide range of significance levels covering

the level above the genome-wide threshold. Figure 1B

shows the distribution of the I2 statistic, which is a metric

of the amount of heterogeneity.17 Except for the peak

at the zero, I2 is distributed evenly from low to high.

Figure 1C shows the distribution of the correlation
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Figure 1. Our One Million Trial Simulations Comparing p Values of FE and RE
We assume five studies of sample sizes of 400, 800, 1200, 1600, and 2000. (A), (B), and (C) show that our simulations cover a wide range
of p values (pFE), heterogeneity (I2), and correlations between the effect size and sample size, respectively. (D) shows that RE never gives
a more significant p value than FE in our simulations.
between the sample size and the observed effect size.

Because RE assigns a greater weight to smaller studies, it

will be favorable to RE if smaller studies show larger effect

sizes.5 Figure 1C shows that in half of the simulations, the

correlation is negative, and therefore the situation is favor-

able to RE.

Table 2 shows that RE gives a more conservative p value

than FE in 75% of trials and that it gives an equally signif-

icant p value in 25% of trials. However, surprisingly, in

none of the trials does RE give a more significant p value

than FE (Figure 1D). That is, we observe an extreme

phenomenon that RE never achieves higher statistical

significance than FE in our extensive random simulations.
Table 2. Comparison of p Values of FE and RE in One Million
Random Simulations

pFE< pRE pFE¼ pRE pFE> pRE

747,443 252,557 0

Our simulations are designed to explore many different situations, such as
differing p value levels or heterogeneity levels. We assume five studies of
sample sizes of 400, 800, 1200, 1600, and 2000.

The Ame
We can explain this phenomenon at the statistics level.

In order to obtain pRE < pFE, smaller studies must show

larger effect sizes so that RE can re-weight the studies. For

the weights to drastically change in such a way, the esti-

mated between-study variance bt2 has to be large. However,

if bt2 is large, the denominator of ZRE in Equation 4 also

increases, diminishing the statistical significance. It seems

that the significance-decreasing effect of the additional

variance (bt2) is always greater than the significance-

increasing effect of re-weighting in practice.

This result suggests that the current RE might not be

suitable for discovering candidate associations in GWAS

meta-analysis, indicating the need for a new method.
False-Positive Rate

At threshold a ¼ 0:05

We examine the false-positive rate of FE, RE, and the new

RE method (new RE). We assume the null hypothesis of

no associations and assume that there is no confounding.

Because the effect sizes are all exactly zero, there is no

heterogeneity. We construct five studies with an equal

sample size of 1,000 and calculate the meta-analysis
rican Journal of Human Genetics 88, 586–598, May 13, 2011 591



Table 3. False-Positive Rate of FE, RE, and the New RE at Threshold
a ¼ 0.05

# Studies Sample Size FE RE New RE

3 equal 0.0506 0.0381 0.0501

3 unequal 0.0504 0.0368 0.0488

5 equal 0.0493 0.0370 0.0496

5 unequal 0.0495 0.0364 0.0490

10 equal 0.0504 0.0394 0.0503

10 unequal 0.0495 0.0375 0.0484

20 equal 0.0499 0.0406 0.0497

20 unequal 0.0496 0.0395 0.0485

A sample size of 1000 is assumed when sample sizes are equal. For unequal
sample sizes, we use evenly spaced values such as 100, 200, ., 2000 for 20
studies.

Table 4. False-Positive Rate of FE, RE, and the New RE at
Thresholds of Increasing Significance

Threshold
a FE RE New RE

0.05 4.98 3 10�2 (1.00) 3.75 3 10�2 (0.75) 4.98 3 10�2 (1.00)

1 3 10�2 9.94 3 10�3 (0.99) 7.03 3 10�3 (0.70) 9.93 3 10�3 (0.99)

1 3 10�3 9.90 3 10�4 (0.99) 6.67 3 10�4 (0.67) 9.88 3 10�4 (0.99)

1 3 10�4 9.78 3 10�5 (0.98) 6.36 3 10�5 (0.64) 9.80 3 10�5 (0.98)

1 3 10�5 1.03 3 10�5 (1.03) 6.65 3 10�6 (0.67) 1.02 3 10�5 (1.02)

1 3 10�6 9.20 3 10�7 (0.92) 5.70 3 10�7 (0.57) 8.90 3 10�7 (0.89)

The ratio between the false-positive rate and the threshold a is shown in the
parentheses. The estimates are obtained from 100 million null panels. Five
studies of equal sample size 1000 are assumed.
p value. We repeat this 100,000 times and estimate the

false-positive rate as the proportion of the repeats whose

p value is %0:05. We also differ the number of studies to

3, 10, and 20 studies. When we assume unequal sample

sizes, we use evenly spaced values from 0 to 2000, such

as 100, 200, ., 2000 for 20 studies. For new RE, we use

the tabulated values to assess p values.

Table 3 shows that the false-positive rate of FE is

constantly accurate regardless of the number of studies.

RE is conservative and has a false-positive rate smaller

than 0.05. This is because the between-study variance bt2
is often estimated as non-zero because of the stochastic

nature of the sampling. As the number of studies increases,

the conservative nature is reduced because more studies

provide accurate information that the true t2 is zero.

New RE shows accurate false-positive rates. New RE is

slightly conservative when the sample size is unequal

because, as explained in the Material and Methods, the

tabulated values are constructed under an assumption of

equal sample size. However, the false-positive rate is very

close to the desired value even in that case.

At More Stringent Thresholds

It is often of interest to examine the false-positive rate at

a more stringent threshold close to the genome-wide

threshold. Assuming the same settings for five studies,

we simulate 100 million meta-analyses under the null

hypothesis. With this large number of simulations, we

can estimate the false-positive rate with reasonable accu-

racy for up to a threshold of approximately 10�6.

Table 4 shows that, at all thresholds that we tested, the

false-positive rates of both FE and new RE are accurately

controlled. On the other hand, RE becomes more conser-

vative as the threshold becomes more significant.

Genome-wide Simulations

In this genome-wide simulation, we examined whether

each of the meta-analysis methods shows a noninflated

QQ plot under the null hypothesis. We simulated a GWAS

meta-analysis of seven studies by using theWellcome Trust
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Case Control Consortium (WTCCC) data.43 We used the

seven case groups of seven diseases as our cases of seven

studies. Then we evenly divided the two groups of

controls, 58C and NBS, one group at a time, into seven

subgroups and used them as our controls. We removed

all SNPs that are significant (p < 5 3 10�7) either in the

original WTCCC study or in our simulated studies. Thus,

most of the remaining SNPs should have been null. We

also removed the SNPs with no rsIDs, SNPs filtered by

WTCCC QC, and the chromosome 6 SNPs that include

the major histocompatibility complex region. This re-

sulted in 364,035 SNPs, which is still large enough to allow

an examination of the characteristics of the methods.

The WTCCC results43 and previous studies32 show that

there can be a small amount of cryptic relatedness in the

data of WTCCC. The genomic control factor of WTCCC

is slightly more than 1.0, and the QQ plot of each disease

shows a slight inflation at the tail. We were interested in

whether this small confounding affects each method and

by how much.

Figure 2 shows the QQ plots and the genomic control

factors. The QQ plot of FE (Figure 2B) is very similar to the

QQ plot of the single study (Figure 2A), showing that FE is

not sensitive to the confounding. The QQ plot of RE

(Figure 2C) looks completely null. The genomic control

factor (0.86) is below 1.0, showing that RE is conservative.

The QQ plot of new RE (Figure 2D) is more inflated than

that of the single study or other methods. This shows that

our method is more sensitive to the small confounding in

the dataset. To correct for this, we calculate the genomic

control factors for the mean-effect part of the statistic (SFE)

and the heterogeneity part of the statistic (SHet) separately;

these values are 1.04 and 1.11, respectively. After we correct

the calculations with these factors, the inflation is reduced

(Figure 2E). However, our method is still more inflated

than other methods, suggesting that a more sophisticated

method can be developed for a further correction.

Power

We compared the power of FE, RE, and new RE. We used

the similar simulation settings of the five studies of equal
2011



Figure 2. QQ Plot of Various Methods in
the Simulated GWAS Meta-Analysis
Involving the WTCCC Data
Lambda denotes the genomic control31

inflation factor.
sample size of 1,000. We constructed 10,000 sets to esti-

mate the power as the proportion of the sets whose p value

exceeds a genome-wide threshold 10�7.

We first assumed that the variability in effect size

induced by between-study heterogeneity follows a normal

distribution.26,41 Starting from no heterogeneity, we grad-

ually increased the between-study variance and examined

how power changes. Specifically, given the mean odds

ratio g, we set the standard deviation of the effect size to

be k logðgÞ, where we change k from 0 to 1. We used

g ¼ 1:3. We also simulated different settings. We assumed

unequal sample sizes and assumed ten studies with an

odds ratio of 1.2. When assuming unequal sample sizes,
The American Journal of Human
we used the sample size of 400,

800, ., 2000 for five studies and

200, 400, ., 2000 for ten studies.

Figure 3 shows that, when there

is no between-study heterogeneity, FE

is the most powerful. As the between-

study heterogeneity increases, the

power of FE drops. The power of RE

is always the lowest among the three

methods and drops with the amount

of heterogeneity. The power of new

RE is slightly lower than FE when no

heterogeneity exists. As the between-

study heterogeneity increases, new

RE becomes the most powerful. New

RE starts to outperform FE at a level

of moderate heterogeneity, between

k ¼ 0:3 and k ¼ 0:4. The relative

performance between methods is the

same for all four settings.

Different LD

Although it is usual in the meta-anal-

ysis literature to assume the normal

variability in the effect size, as in

the previous experiment,26,41 there

can be other situations. Here we

assume that the actual effect size

is the same between studies but

that different LD structures induce

different virtual effect sizes at the

marker. Assuming five studies of

equal sample size of 1,000, we varied

the correlation coefficient between

the causal variant and the marker

by the three patterns (cases 1, 2,

and 3 in Table 5). We assumed an
odds ratio g ¼ 1.3, 1.5, and 1.7 for cases 1, 2, and 3,

respectively.

Figure 4 shows that, in case 1 under an assumption of no

heterogeneity by LD, FE is the most powerful. In case 2

under an assumption of heterogeneity by LD, our new

RE is the most powerful. In case 3, we assumed larger

heterogeneity by LD and that the direction of the correla-

tion is opposite in some studies. This situation should be

rare, but it is certainly possible. In this case, FE and RE

have low power, whereas our new RE has high power.

When Effects Exist in the Subset of Studies

Here we simulate another situation, in which the genetic

effect of the variant only exists in a subset of the studies.
Genetics 88, 586–598, May 13, 2011 593



Figure 3. Power of FE, RE, and Our New
RE Method in a Simulation Varying
Between-Study Heterogeneity
We simulate various settings of the
number of studies and sample size. The x
axis denotes heterogeneity k, where we
simulate the standard deviation of the
effect size (log odds ratio) to be k times
the effect size. We assume the mean odds
ratio of 1.3 for five studies and 1.2 for ten
studies. When we assume equal sample
sizes, we use the sample size of 1000.
When we assume unequal sample sizes,
we use the sample sizes of 400, 800, .,
2000 for five studies and 200, 400, .,
2000 for ten studies.
This can happen when the populations are different

between studies and the effect is dependent on the popu-

lation.14,15 Assuming five studies of equal sample size of

1,000, we decreased the number of studies having effect,

CE, from 5 to 2. We use an odds ratio g ¼ 1.3, 1.37, 1.45,

and 1.6 for CE ¼ 5, 4, 3, and 2, respectively. Figure 5 shows

that as the number of studies having an effect decreases,

the power of FE and RE drops. By contrast, our new RE

method achieves high power.

The reason that we increase the odds ratio as the hetero-

geneity increases in this and previous experiments is to

easily compare the power of methods at a moderate power

level. Figure S1 shows a different setting where we assume

a fixed odds ratio of 1.3, which shows decreasing power as

CE decreases, as it should, for each method.
Table 5. Correlation Coefficient r between the Causal Variant and
the Marker in Three Different Scenarios Simulating Different LD
Structures between Studies

Study 1 Study 2 Study 3 Study 4 Study 5 Note

Case 1 1.0 1.0 1.0 1.0 1.0 no heterogeneity
by LD

Case 2 1.0 0.8 0.6 0.4 0.2 heterogeneity
by LD

Case 3 1.0 0.8 0.6 �0.2 �0.6 larger
heterogeneity
by LD

Figure 4. Power of FE
Structures Are Differen
The LD patterns that
Table 5. We assume an
2, and 3, respectively.
five studies.
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Application to the Type 2 Diabetes Data

We applied our method to the real

data of the meta-analysis of type 2

diabetes by Scott et al.9 The meta-

analysis consists of three different

GWASs, the Finland-United States

Investigation on NIDDM Genetics

(FUSION),9 the Diabetes Genetics

Initiative,10 and the WTCCC.8,43

Although amore recentmeta-analysis

of type 2 diabetes exists,44,45 we used

these data because Ioannidis et al.18

re-analyzed the data to compared FE
and RE. In their analysis, Ioannidis et al. emphasize that

the results of FE and RE can be critically different when

heterogeneity exists, and results showing high heteroge-

neity should always be further investigated. However, the
, RE, andOur New REMethodwhen the LD
t between Studies
we assume for each case are described in
odds ratio of 1.3, 1.5, and 1.7 for cases 1,
We assume equal sample sizes of 1000 for



Figure 5. Power of FE, RE, and Our New RE when the Number of
Studies Having an Effect Varies
We assume five studies and gradually decrease the number of
studies having an effect from five to two. We assume equal sample
sizes of 1000. We increase the odds ratio as the number of studies
decreases to show the relative performance between methods.
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Figure 6. The Performance of RE andOur NewRE in the Real Da-
taset of Type 2 Diabetes
The relative gain in statistical significance relative to FE is plotted
for each method. We use the meta-analysis data of Scott et al.9
phenomenon whereby RE never gives more significant

p value than FE also persists in their analysis.

Table 6 shows that at two SNPs (rs9300039 and

rs8050136) out of ten associated SNPs, our new RE method

achieves the highest statistical significance among all

three methods. In Figure 6, we sort the SNPs by heteroge-

neity (I2) and plot the relative gain in statistical signifi-

cance for both the traditional RE and our new RE compared

to FE. This shows that FE achieves the highest statistical

significance at low heterogeneity but that, as the heteroge-

neity increases, our newmethod achieves higher statistical

significance. In contrast, the traditional RE gives the same

p value as FE when there is no observed heterogeneity and

becomes substantially conservative with heterogeneity. As

a result, the traditional RE does not give a more significant

p value than FE at any SNPs.
Table 6. Application of the Three Methods to the Type 2 Diabetes
Meta-Analysis Results of Scott et al.9

SNP I2 FE p Value RE p Value New RE p Value

rs8050136 76.80 1.30 3 10�12 1.48 3 10�2 6.60 3 10�13

rs9300039 74.95 4.33 3 10�7 1.53 3 10�2 1.83 3 10�7

rs1801282 47.42 1.72 3 10�6 3.41 3 10�4 2.16 3 10�6

rs7754840 46.44 4.09 3 10�11 3.17 3 10�6 5.69 3 10�11

rs13266634 31.60 5.34 3 10�8 8.68 3 10�6 7.23 3 10�8

rs4402960 24.67 8.57 3 10�16 6.48 3 10�12 1.61 3 10�15

rs10811661 0.00 7.76 3 10�15 7.76 3 10�15 1.41 3 10�14

rs1111875 0.00 5.74 3 10�10 5.74 3 10�10 8.63 3 10�10

rs7903146 0.00 1.03 3 10�48 1.03 3 10�48 3.39 3 10�48

rs521911 0.00 6.68 3 10�11 6.68 3 10�11 1.05 3 10�10

The boldface denotes the top p value among three methods.

The Ame
Both of the SNPs at which our new method achieves the

highest statistical significance show high heterogeneity.

Ioannidis et al.18 suggest that the heterogeneity at

rs9300039 might reflect in part the different tag polymor-

phisms used in the other two GWASs, suggesting that the

virtual effect size varies at the marker because of the use

of different markers between studies. Ioannidis et al. also

provide an insightful suggestion that rs8050136 (in FTO)

might be caused by an unaccounted-for effect of obesity

given that it is not significant in the Diabetes Genetics

Initiative study, where the body-mass index is matched

between cases and controls.10 This shows that our new

RE method can be sensitive to unaccounted-for factors,

including confounding.

Note that because in this analysis we used Scott et al.’s

report9 that provides the odds ratios up to two digits after

the decimal point, the actual results will be different from

our results. However, our results suffice to show the relative

performance between methods.

Application to the Crohn Disease Data

We also apply our method to the data of the recent meta-

analysis of Crohn disease of Franke et al.12 This meta-anal-

ysis consists of six different GWASs comprising 6,333 cases

and 15,056 controls and even more samples in the replica-

tion stage. In this study, 39 associated loci are newly iden-

tified, increasing the number of associated loci to 71. We

apply our method to 69 loci, excluding rs694739 and

rs736289, for which detailed allele counts are missing in

that study’s Table S3. We use the data of six GWASs but

exclude the replication samples.

Table 7 shows that at six loci out of 69, our new method

achieves the highest statistical significance among three

methods. See Table S1 for the results for all 69 loci. Again,

the results show that our new RE can achieve higher

statistical significance than FE, whereas the traditional
rican Journal of Human Genetics 88, 586–598, May 13, 2011 595



Table 7. Application of the Three Methods to the Crohn Disease Meta-Analysis Results of Franke et al.12

SNP Chromosome Position FE p Value RE p Value New RE p Value I2

rs4656940 1 159,096,892 1.05 3 10�6 6.89 3 10�4 6.91 3 10�7 57.01

rs3024505 1 205,006,527 7.03 3 10�9 5.29 3 10�5 5.49 3 10�9 46.49

rs780093 2 27,596,107 1.12 3 10�4 5.95 3 10�2 2.78 3 10�5 61.85

rs17309827 6 3,378,317 5.62 3 10�6 1.00 3 10�4 4.98 3 10�6 22.98

rs17293632 15 65,229,650 6.17 3 10�13 2.11 3 10�6 3.41 3 10�13 52.11

rs151181 16 28,398,018 3.32 3 10�10 3.80 3 10�6 3.08 3 10�10 35.22

The boldface denotes the top p value among threemethods. Only the six SNPs at which new RE achieves the top p value are shown in the table. See Table S1 for all
69 SNPs tested.
RE does not provide a more significant p value than FE at

any SNPs.
Discussion

We propose a new RE meta-analysis method that achieves

high power when there is heterogeneity. We observe that

the phenomenon whereby the traditional RE gives less

significant p values than FE under heterogeneity occurs

because of its markedly conservative null-hypothesis

model, and we relax the conservative assumption. Applica-

tion to the simulations and real datasets shows that our

new method can have utility for discovering associations

in GWAS meta-analysis.

In essence, the new method is an attempt to separate

hypothesis testing from effect-size estimation. Hypothesis

testing and point estimation are both important but

distinct subjects in statistics.46 The difference is that, in

point estimation, the null hypothesis is not considered,

and therefore it is conceptually equivalent to considering

only the alternative hypothesis. Many of the traditional

meta-analytic studies primarily focus on accurate estima-

tion of the effect size, confidence interval, and heteroge-

neity (t2), which is the point estimation.16,35,42,47 The

traditional RE approach is a naive extension of this frame-

work to hypothesis testing, but this approach turns out to

be conservative in association studies where assuming no

heterogeneity is natural under the null hypothsesis.

Our method assumes no heterogeneity under the null

hypothesis and assumes heterogeneity under the alterna-

tive hypothesis. Higgins et al.39 describe many possible

null and alternative hypotheses that are appropriate

in various situations in meta-analysis, and our method

is one specific combination of a null and an alterna-

tive hypothesis among those. Lebrec et al.48 considered a

similar combination, but our method differs from theirs

in several ways. First, our formulation allows correcting

for population structure, which is crucial in these studies

because the effect of confounding is exaggerated in the

new formulation. Second, we use a more accurate approx-

imation of the statistical significance. Our simulation
596 The American Journal of Human Genetics 88, 586–598, May 13,
shows that one might lose power by using the asymptoti-

cally calculated p values, which can be conservative in

comparison to this more accurate approximation

(Figure S2).

In the application to the real datasets of type 2 diabetes9

and Crohn disease,12 our method achieves higher statis-

tical significance than FE at some SNPs, whereas the tradi-

tional RE does not. However, this occurred only at a rela-

tively small number of SNPs, two SNPs out of ten for

type 2 diabetes data and six SNPs out of 69 for Crohn

disease data. Themain reason for this small number should

be the low heterogeneity in the overall data, but one

reason might be that we applied our method only to the

FE-uncovered associations that were readily available in

the literature. The causal SNPs with high heterogeneity

might not be discovered by FE and therefore might not

be included in our analysis, which can be revealed by an

application of our method to the whole-genome data.

In our experiments of both simulated and real datasets,

FE always performs better than our method when there is

no heterogeneity. However, Figures 3, 4, and 5 show that

the relative power gain of FE is not very dramatic. This is

in some sense surprising because our method assumes

higher degrees of freedom than FE. Figure S2 shows that

the performance gap is greater if we use the asymptotic

p values. Thus, it seems that our estimation procedure

aimed at obtaining more accurate p values is helping our

method to have comparable power to FE in this situation.

In this paper, we explored many different scenarios of

heterogeneity, including the case in which the effect size

actually varies between studies as well as the case in which

the observed effect size varies because of the different LD

structures. Another scenario in which the observed effect

size can vary in spite of unvarying effect size is that

involving the ‘‘winner’s curse,’’49 which might inflate the

observed effect size in the initial stage in the multi-stage

design. If the effect of this phenomenon is huge, our

method can be useful for detecting such variants, although

the interpretation should distinguish such phenomenon

from the actual heterogeneity of varying effect sizes.

One important challenge in applying our method is

the interpretation. Given the associations with high
2011



heterogeneity, a follow-up will always be essential for

understanding the cause of heterogeneity and verifying

the results. The ability to account for the heterogeneity

and carefully investigate the results might allow us to

expand the subject of meta-analysis to a broader area.

The application of our method can extend beyond the

analysis of a single disease to that of multiple diseases

with similar etiology,43 analysis of eQTL data indepen-

dently collected frommultiple tissues, or analysis of mixed

samples with similar phenotypes but multiple causal path-

ways, as in the case of mental diseases.50
Supplemental Data

Supplemental Data include one table and two figures and can be

found with this article online at http://www.cell.com/AJHG/.
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