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a b s t r a c t

For positive integers k and r , a conditional (k, r)-coloring of a graph G is a proper k-coloring
of the vertices of G such that every vertex v of degree d(v) in G is adjacent to vertices
with at least min{r, d(v)} different colors. The smallest integer k for which a graph G has
a conditional (k, r)-coloring is called the rth-order conditional chromatic number, and is
denoted by χr (G). It is easy to see that conditional coloring is a generalization of traditional
vertex coloring (the case r = 1). In thiswork,we consider the complexity of the conditional
colorability of graphs. Our main result is that conditional (3, 2)-colorability remains NP-
complete when restricted to planar bipartite graphs with maximum degree at most 3 and
arbitrarily high girth. This differs considerably from the well-known result that traditional
3-colorability is polynomially solvable for graphs with maximum degree at most 3. On
the other hand we show that (3, 2)-colorability is polynomially solvable for graphs with
bounded tree-width. We also prove that some other well-known complexity results for
traditional coloring still hold for conditional coloring.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

We follow the terminology and notation of [1] and consider simple connected graphs only. For a vertex v in a graph G,
the neighborhood of v in G is NG(v) = {u ∈ V (G) : u is adjacent to v in G}, and the degree of v is d(v) = |NG(v)|. Vertices
in NG(v) are called neighbors of v. With δ(G) and∆(G)we denote the minimum degree and maximum degree of a graph G,
respectively. With Pn we denote the path on n vertices. An edge e is said to be subdividedwhen it is deleted and replaced by
a path P3 of length 2 connecting its ends, the internal vertex of this path being a newly added vertex.
For a positive integer k, a proper k-coloring of a graph G is a surjective mapping c : V (G) → {1, 2, . . . , k} with the

property that if u and v are neighbors in G, then c(u) 6= c(v). The smallest k such that G has a proper k-coloring is the
chromatic number of G, denoted by χ(G). For a subset S of V (G), we use c(S) to denote {c(u)|u ∈ S}.
In the following we will consider a generalization of traditional coloring. For integers k > 0 and r > 0, a proper (k, r)-

coloring of a graph G is a surjective mapping c : V (G) → {1, 2, . . . , k} such that both of the following two conditions
hold:

(C1) if u, v ∈ V (G) are neighbors in G, then c(u) 6= c(v); and
(C2) for any v ∈ V (G), |c(NG(v))| ≥ min{d(v), r}.

For a given integer r > 0, the smallest integer k > 0 such that G has a proper (k, r)-coloring is called the rth-order
conditional chromatic number of G, and is denoted by χr(G).
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By the definition of χr(G), it follows immediately that χ(G) = χ1(G), and so conditional coloring is a generalization of
traditional graph coloring. The conditional chromatic number has a very different behavior from the traditional chromatic
number. For example, for when r = 2, Lai et al. [8] showed that for many graphs G, χ2(G−v) > χ2(G) for at least one vertex
v of G, and there are graphs G for which χr(G)− χ(G)may be very large.
From [7] we know that if G is a graph with∆(G) ≤ 2, then for any r there exists a simple polynomial time algorithm that

gives a (k, r)-coloring of G. In [9], Lai, Montgomery and Poon obtained the following upper bound on χ2(G): if ∆(G) ≥ 3,
then χ2(G) ≤ ∆(G) + 1. The proof of this result is very long compared with the almost trivial proof of a similar result for
traditional coloring. In [7], Lai, Lin, Montgomery, Shui and Fan got many new and interesting results on conditional coloring.
In the presentwork,we are going to investigate the complexity of decidingwhether a given graph is (k, r)-colorable.We first
give a simple proof that for any k ≥ 3 and r ≥ 2 it is NP-complete to decide whether a given graph is (k, r)-colorable. Then
we give the main theorem in the work that conditional (3, 2)-colorability remains NP-complete when restricted to planar
bipartite graphs with maximum degree at most 3 and arbitrarily high girth. This differs considerably from the well-known
result that traditional 3-colorability is polynomially solvable for graphs with maximum degree at most 3. On the other hand
we know from [7] that every tree is (3, 2)-colorable, and we will show that (3, 2)-colorability is polynomially solvable for
graphs with bounded tree-width.We also prove that some other well-known complexity results for traditional coloring still
hold for conditional coloring.

2. The complexity of conditional coloring

In this section, we shall analyze the complexity of (k, r)-colorability of graphs.We refer the reader to [4] for terminology,
notation and basic results on complexity not given here.
If a connected graph G has only one vertex, then clearly χr(G) = 1; if a connected graph G has only two vertices, then

χr(G) = 2. For any other connected graph G, we have χr(G) ≥ 3 for r ≥ 2. But the following theorem shows that for
any integers r and k with 2 ≤ r < k, the problem of deciding whether a given graph is (k, r)-colorable is NP-complete.
Formulated as a decision problem, the (k, r)-colorability problem, denoted by (k, r)-Col, is defined as follows:

Input: A graph G = (V , E) and two integers r and kwith k > r ≥ 2.
Question: Is χr(G) ≤ k?

Theorem 2.1. For every fixed integers k and r with 2 ≤ r < k, (k, r)-Col is NP-complete.

Proof. First, it is easy to see that the problem (k, r)-Col is in NP.
Secondly, it is known that the traditional k-colorability problem is NP-complete. So, in order to complete the NP-

completeness proof, it is sufficient to reduce the traditional k-colorable problem to (k, r)-Col.Wewant to relate any instance
G of the k-colorability problem to a graph G′, such that G is k-colorable if and only if G′ is (k, r)-colorable.
For each vertex v in V (G), we add a new complete graph Kr and add new edges such that v and Kr form a complete graph

of order r + 1. The resulting graph is denoted by G′. So, G′ has (r + 1)|V (G)| vertices, and every vertex in G′ is contained in
a Kr+1. It is easy to see that G is k-colorable if and only if G′ is (k, r)-colorable. �

If we compare 3-colorability and (3, 2)-colorability, there are several interesting phenomena to note. First of all, it is
well known within traditional coloring that all graphs with maximum degree 3 are 3-colorable except for K4 (by Brook’s
Theorem). So the 3-colorability problem is trivial for this class of graphs. In contrast, the next theorem tells us that the
problem (3, 2)-Col remains NP-complete even when restricted to planar bipartite graphs with maximum degree 3 and
arbitrarily large girth. The girth condition can be interpreted as that these graphs come ‘‘as close to trees’’ as possible. On the
other hand, from [7] we know that any tree is (3, 2)-colorable, so for trees the related decision problem is trivial. Moreover,
we will use Monadic Second-Order Logic (MSOL) to show that the problem (3, 2)-Col is polynomially solvable for graphs
with bounded tree-width. The latter class includes, e.g., all outerplanar graphs.
We begin with the NP-completeness result on (3, 2)-colorability.

Theorem 2.2. The problem (3, 2)-Col remains NP-complete for planar bipartite graphs with maximum degree at most 3 and
arbitrarily high girth.

Proof. First note that the problem (3, 2)-Col restricted to planar bipartite graphs withmaximum degree at most 3 and girth
at least g for any integer g is obviously in NP.
Nowwewant to reduce a variant of the 3-colorability problem to the problem (3, 2)-Col for planar bipartite graphs with

maximum degree at most 3 and girth at least g . We use the following restricted version 3-Col* of planar 3-colorability, in
which one is given a planar graph G with δ(G) ≥ 3, and the question is whether G is 3-colorable. To verify that 3-Col* is
NP-complete, we first note the following easy observation: if a graph G has a vertex v with degree less than 3, then G− v is
3-colorable if and only if G is 3-colorable. One way is trivial, and for the other way we can always use a color for v that has
not been used for its atmost two neighbors. So, startingwith a planar instance graph G for 3-colorability, one can recursively
delete vertices with degree less than 3 in the current graph. If this process terminates with a trivial graph (on one vertex),
then G is clearly 3-colorable; otherwise, we end up with a planar graph G∗ with δ(G∗) ≥ 3, and such that G∗ is 3-colorable
if and only if G is 3-colorable. This clearly shows that 3-Col* is an NP-complete problem.
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Fig. 1. The local transformation in the proof of Theorem 2.2.

To complete the proof that (3, 2)-Col is NP-complete for our restricted graph class, we start with a planar instance graph
G for 3-Col*.We replace each vertex v of G by a cycle Cv of length 6d(v), with an outgoing ‘‘half-edge’’ at each of the positions
1, 4, 7, 10, 13, . . . along the cycle, representing twice the d(v) edges in G incident with v, and all other vertices on Cv having
degree 2. For every edge uv ∈ E(G) we identify one of the half-edges at positions 1, 7, 13, . . . from each of the Cu and Cv ,
and we glue the two half-edges together at a newly added vertex xuv with degree 2. So xuv is the internal vertex of a P2
representing the edge uv of G. For each of the half-edges at positions 4, 10, . . .we put a newly added vertex with degree 1
at the other end. We denote the resulting graph by G̃. The local transformation is shown in Fig. 1.
The newgraph G̃ is clearly bipartite, since every edge ofG is replaced by a P2while the segments of the cycles representing

the vertices of G are obviously of even length equal to 6. One easily checks that G̃ has maximum degree 3 and girth at least
18. We can clearly push up the girth arbitrarily further by extending the segments and adding more half-edges ending in
newly added vertices with degree 1, as long as the size of the new graph is polynomial in the size of G. This can all be done
without destroying the planarity of the graph.
We complete the NP-completeness proof by showing that G is 3-colorable if and only if G̃ is (3, 2)-colorable.
Suppose first that G̃ is (3, 2)-colorable. Observe that any (3, 2)-coloring forces the same colors at the two ends of a P3

with internal vertices with degree 2. This implies that in any (3, 2)-coloring of G̃ all vertices at positions 1, 4, 7, 10, 13, . . .
of a Cv have the same color. We use this color on vertex v in G. Since every edge uv of G is represented in G̃ by a P2 with
an internal vertex with degree 2, any (3, 2)-coloring forces different colors at the ends of this P2. So the restriction of any
(3, 2)-coloring of G̃ to G does indeed yield a 3-coloring of G.
For the converse, assume we have a particular 3-coloring of G. For each vertex vi ∈ V (G) we assign the color of vi to all

vertices at positions 1, 4, 7, . . . of the Cvi representing vi in G̃. The middle vertex of the P2 representing the edge vivj of G in
G̃ can receive the color which is not used for vi or vj in G. For each neighbor in the Cvi of a vertex at position 1, 7, 13, . . .we
use the third color (that is not used at vi or the middle vertex adjacent to it). This fixes the other colors in the Cvi . We can
extend this to a (3, 2)-coloring by assigning suitable colors to the vertices with degree 1. �

Alternatively, we could have modified the method given in [5] to prove the NP-completeness of 3-colorability, by reducing
the 3-SAT problem to the problem (3, 2)-Col for graphs with maximum degree at most 3. Pushing up the girth and
guaranteeing bipartiteness can then be accomplished by using arguments similar to those in the above proof. It is more
tricky to cope with the planarity, though.
From [7] we know that if ∆(G) = 1 or 2, χ2(G) can be determined in polynomial time. From [9] we also know that if

∆(G) = 3, then χ2(G) = 3 or 4. So by Theorem 2.2 we can get the following result.

Corollary 2.3. Within the class of graphs with∆(G) = 3, it is NP-hard to determine whether χ2(G) = 3 or χ2(G) = 4.

3. Tree-like graphs

We have seen in the previous section that (3, 2)-Col remains NP-complete when restricted to graphs with high girth, so
that they are ‘‘locally’’ the same as trees. In [7] there is a simple proof of the fact that all trees are (3, 2)-colorable, implying
that the corresponding decision problem is trivial for trees. Moreover, we are going to use MSOL, that is, that fragment of
second-order logic where quantified relation symbols must have arity 1, to show that (3, 2)-Col is polynomially solvable for
graphs with bounded tree-width.
To start with, it is well known that the following sentence, which expresses that a graph (whose edges are given by the

binary relation E) can be 3-colored, is a sentence of monadic second-order logic:

∃R∃W∃B {∀x ((R(x) ∨W (x) ∨ B(x)) ∧ ¬(R(x) ∧W (x)) ∧ ¬(R(x) ∧ B(x)) ∧ ¬(W (x) ∧ B(x))) ∧ ∀x∀y (E(x, y)
⇒ (¬(R(x) ∧ R(y)) ∧ ¬(W (x) ∧W (y)) ∧ ¬(B(x) ∧ B(y))))}

(the quantified unary relation symbols are R, W and B, and should be read as sets of ‘red’, ‘white’ and ‘blue’ vertices,
respectively). Thus, in particular, there exist NP-complete problems that can be defined in monadic second-order logic.
A seminal result of Courcelle [3] is that on any class of graphs of bounded tree-width, every problem definable in MSOL

can be solved in time linear in the number of vertices of the graph. Moreover, Courcelle’s result holds not just when graphs
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are given in terms of their edge relation, as in the example above, but alsowhen the domain of a structure encoding a graphG
consists of the disjoint union of the set of vertices and the set of edges, as well as unary relations V and E for distinguishing
the vertices and the edges, respectively, and also a binary incidence relation I which denotes when a particular vertex is
incident with a particular edge (thus, I ⊆ V × E). The reader is referred to [3] for more details as regards MSOL on graphs
and also for the definition of tree-width which is not required here. For the proof of our claim that the (3, 2)-Col problem is
solvable in linear time for graphs with bounded tree-width, it is sufficient to show the following.

Theorem 3.1. The problem (3, 2)-Col can be defined in MSOL.
Proof. We already have the sentence that expresses 3-colorability in MSOL. Let V (v) denote that v ∈ V , and let E(u, v)
denote that uv ∈ E. (To be precise, instead of uv ∈ E, we should write ∃e : e ∈ E ∧ (u, e) ∈ I ∧ (v, e) ∈ I).
If we can write a formula of MSOL that says
a vertex with degree larger than 1 has at least two neighbors with different colors,

then we have proven the proposition by combining this for all vertices of V with the expression for 3-colorability.
It is very simple to find the proper expression for this as a logical implication A⇒ B, where A expresses that a vertex v

has at least two neighbors, whereas B expresses that such a v has at least two neighbors with different colors.
For A consider the following:

∃V (u)∃V (w) (u 6= w ∧ E(u, v) ∧ E(w, v)) .

For B consider the following:

∃V (x)∃V (y) {E(x, v) ∧ E(y, v) ∧ ((B(x) ∧ ¬B(y)) ∨ (R(x) ∧ ¬R(y)) ∨ (W (x) ∧ ¬W (y)))} . �

4. Further NP-completeness results

Next we will briefly show howwe can establish further NP-completeness results if we consider special classes of graphs,
e.g., hamiltonian graphs, planar graphs, and claw-free graphs.

Theorem 4.1. The problem (3, 2)-Col remains NP-complete when restricted to hamiltonian graphs with∆(G) ≤ 6.
Proof. A known result is that to determine whether a hamiltonian graph with maximum degree at most 4 is 3-colorable
is NP-complete. Now, suppose we are given a hamiltonian graph G with V (G) = {v1, v2, . . . , vn} and, without loss of
generality, let v1v2 . . . vnv1 be a hamiltonian cycle of G. We construct a new hamiltonian graph G′ as follows: For each
vi we add two new vertices xi1 and xi2 and three new edges vixi1, xi1xi2 and xi2vi (a triangle). Then, add new edges x12x21,
x32x41, x52x61, . . . , x(n−1)2xn1 for n even; add new edges x12x21, x32x41, x52x61, . . . , x(n−2)2x(n−1)1 and add a new vertex u and
three edges xn1u, xn2u and x(n−1)2u for n odd.
It is easy to check that G′ is a hamiltonian graph with ∆(G′) ≤ 6. Now first suppose that G′ is (3, 2)-colorable. Then

restricting a (3, 2)-coloring to the vertices v1, v2, . . . , vn, one easily sees that it is a proper 3-coloring of G. For the converse,
suppose G is 3-colorable. Then we color the vertices v1, v2, . . . , vn in G′ with the same color that they are colored with in G.
Since there are 3 colors, the remaining vertices of G′ can easily be colored properly, in such away that we obtain a 3-coloring
of G′. Since every vertex in G′ is contained in a triangle, G′ is 3-colorable means G′ is (3, 2)-colorable. So we have shown that
G is 3-colorable if and only if G′ is (3, 2)-colorable. This gives the result. �

Next we consider planar graphs. From [2] we know that the 3-colorability problem for planar hamiltonian graphs is NP-
complete. With the help of this result we can prove the following theorem.

Theorem 4.2. The problem (3, 2)-Col is NP-complete for planar hamiltonian graphs.
Proof. Supposewe are given a planar hamiltonian graphGwithV (G) = {v1, v2, . . . , vn} inwhich,without loss of generality,
v1v2 . . . vnv1 is a hamiltonian cycle Cn of G. For each edge vivi+1 of Cn, we do a local transformation to get a new graph G′
as follows: For each edge vivi+1 in Cn, we add four new vertices xi1, xi2, y(i+1)1, y(i+1)2 and seven new edges xi1vi, xi2vi,
xi1xi2, y(i+1)1vi+1, y(i+1)2vi+1, y(i+1)1y(i+1)2, xi2y(i+1)1, and so two triangles with an edge connecting them. Then G′ has 5|V (G)|
vertices, and every vertex is in a triangle, and moreover, each ‘‘two triangles with an edge joining them’’ can be drawn in
the local space of vivi+1 without crossing the boundary of any face, so that the new graph G′ remains planar. It is easy to see
that it is also hamiltonian. By the same reasoning as in the proof of Theorem 4.1, it is easy to see that G is 3-colorable if and
only if G′ is (3, 2)-colorable. This completes the proof. �

In a similar way, we can easily show that (3, 2)-Col remains NP-complete for claw-free graphs. The details are omitted here.
To conclude thework, we point out that there are polynomial algorithms for solving the (k, r)-Col problem for some other

special classes of graphs. From the proof of [9], one can design a polynomial algorithm to color the graph G by ∆(G) + 1
colorswhen∆(G) ≥ 3. For some classes of perfect graphs, such as triangulated (or chordal) graphs and comparability graphs,
there are polynomial algorithms for coloring the graph G by χ(G) colors for traditional coloring in [6]. For these classes of
graphs, one can also design polynomial algorithms to obtain colorings corresponding to the conditional coloring number,
with minor adaptations of the original algorithms in [6]. The details are omitted.
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