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A b s t r a c t - - I n  the present paper, we deal with functions f(z) := ~ = 0  anzn whose coefficients 
satisfy a special smoothness condition. Theorems concerning the asymptotic behaviour as n --* c¢, 
m-fixed, of the normalized in an appropriate way Padd approximants 7~n, m are provided. As a 
consequence, results concerning the limiting distribution of the zeros are deduced. 

1. I N T R O D U C T I O N  

Let 
O O  

f ( z )  := ~ a j z  J (1) 
j=O 

be a function with a t ~ 0 for all nonnegative integers j (j c N) large enough. We set 

l]j := aj+l • a j -1  2 , J = J o , j l , . . . .  aj 

The basic assumption throughout the present work is that  

n~ ~ 1, as  j ~ ~ .  ( 2 )  

This kind of asymptotic behaviour of the Maclaurin coefficients has been introduced and studied 

by D. Lubinsky in [1]. More precisely, he considers a large class of functions for which the number 1 

in (2) is replaced by a number 7, 7} ~ oc. In [1], theorems resulting from this smoothness condition 

with respect to Toeplitz determinants and the uniform convergence of the row in the table of 

classical Padd approximants are proved. Therefore, in what follows, condition (2) will be called 
"Lubinsky's smoothness condition for 7/= 1." 

Further, we assume that  the numbers ~j tend to 1 in a prescribed "smooth way," namely: there 
c oo exist complex numbers { i}i=l with Cl ~ 0 such that for each positive integer N, N > 1, the 

representation 
N 

~n = 1 + cl + Z c~ + o (n  - N )  
- -  " - " w  o n n ~ (3) 

holds. 
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Important functions to which the presented considerations in this paper may be applied are 
the exponential function (see [2]) 

oo z j  

E -  l(z) = expz = j ! ,  
j=O 

and the Mittag-Lefler function of order A, A > 0 (see [3]) 
oo z j  

/ ( z )  = > o. 

j = 0 r  1 +  

Now let m be a fixed positive integer. In our further considerations, we shall assume that  f is 
holomorphic at the zero (in a neighborhood) and is not a rational function having less or equal 
than m finite poles (multiplicities included) in C (we write f ~ 7~m). 

For each n, n C N, let Try,m(= 7rn,rn(f)) be the Padd approximant to the function f of order 
(n,m). Recall that  7r,~,m = p/q, degp < n, degq _< m, q ~ 0, where the polynomials p and q are 
determined by the condition ( f . q -  p)(z) = O(z~+m+l). For each pair (n, m), the function ~rn,m 
always exists and is uniquely determined (see, for example, [4]). We set 

Pn,m 
7rn'rn --  Qn,rn ' 

where Qn,m(O) = 1 and both polynomials P,~,rn and Qn,m do not have a common divisor. 
Let D(n,m) = det{an-j+k}~,k=l be the Toeplitz determinant formed from the Maclaurin 

coefficients of the function f .  From the nonrationality of f ,  it follows that  the sequence A of 
those positive integers n for which D(n, m).D(n, m + l )  # 0, is infinite (see, [4,5]) and the equality 
7rn,rn - rk(~),m, where k(n) := max{k, k _< n, k E A} is valid. Without losing the generality, we 
shall assume that  A _= N. In this case, there holds (see [5]) 

Qn,m(Z) = 1 + . . .  + zrn. (-1) mD(n 
+ 1,m) 

D(n,m) ' 

and 
Pn,m(Z) = Z m D(n,m + l) 

• D(n,m) +""  +dn'm" 

Denote by Rn,rn(u) the numerator of the rational Padd function associated with f and normalized 
as follows: 

( u a n ~  
7rn'm \ a n + l /  

Rn,,n(u) := ( uan ~n . D(n,m + 1)" 

\ a n + l  / D(n, m) 

In [6], theorems concerning the asymptotic behaviour as n -* oo of the sequence Rn,m(u) in 
the case when the numbers ~n satisfy Lubinsky's smoothness condition for an arbitrary number 
7, ~ # oo are proved. In the present paper, we confine ourselves to the case when (3) holds. Of 
basic importance for the forthcoming considerations is that  (see [1]) 

( u a n ~ - * ( 1 - u ) m ,  asn---*oc. Qn,m \ a ~ + l  } 

THEOREM 1° Let m E N be fixed and f q~ T~m. Assume that aj # 0 for j large enough; assume, 
further that ~?,, admits the expansion (3) with ~ = 1, Cl # O and [z/n] < 1 for all n E N sumciently 
large. 

Then 
Urn+ 1 

R,~,rn(u) --* (u - 1) rn+l' as n --* c~ 

uniformly inside in {u, [u[ > 1 }. 

As usual, "uniformly inside" means a uniform convergence on compact subsets in the metric 
of Chebyshev. 
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From Theorem 1, we have the following corollary. 

COROLLARY 1. With the assumptions of Theorem 1, for each fixed m E N and any positive e, 
the Pad~ approximant rn,m(z) has no zeros in [z[ > la,~/an+l[ • (1 + ¢) for n sufficiently large. 

The next result provides more precise information concerning the behaviour of the zeros of the 
sequence of the normalized Pad~ approximant Rn,m(u) as n ~ c~ for the special case when the 
first coefficient cl in (3) is a real negative number. 

THEOREM 2. (See [6]). If Cl < O, then u = 1 is a limit point of zeros of {Rn,m(U)}~n=l . 

Set An(e) : :  {z, (1 - e)lan/an+l [ <_ Izl <_ (1 + e)lan/an+l[ }. 
Combining Theorem 1 and Theorem 2, we come to the following corollary. 

COROLLARY 2. In the conditions of Theorem 2, for each fixed m E N, any ¢, 0 < e < 1 and n 

large enough the Padd approximant 7rn,m(Z) has at least one zero in the annulus An(e). 

For n E N, we denote by P~ the set of the zeros of Rn,m. Set Pn := {~n,k}~=l with the 
normalization [1 -~n,k[ ~ ]1 -~n,k+ll ,  k = 1 , . . .  , n -  1. From Theorem 2, we have 

dist(Pn, 1) ~ 0, as n - ,  oc. 

For any positive e, denote by tn(e) the number of the zeros of ~n,k that  lie in the disk of radius e 
and are centered at u = 1. In the present paper, we prove the following theorem. 

THEOREM 3. In the conditions of Theorem 2, for any ¢ small enough, we have 

liminf tn(c) > 0. (4) 

From here, we have the following corollary. 

COROLLARY 3. In the conditions of Theorem 2, for each fixed m E N, any e, 0 < ~ < 1 and n 
large enough, the Pad~ approximant 7rn, m has at/east  kn zeros in the annulus An(e), where the 
numbers ~,~ fulfill, as n --* oo, condition (4). 

The structure of the paper is as follows. First, for the sake of perfection, we state the general 
idea of the proof of Theorem 2; then we provide the proof of Theorem 3. 

The basis of all the forthcoming considerations is the following lemma. 

L E M M A .  

with 

(See [6]). In the conditions of Theorem 2, for any n, it is valid: 

Rn,m(u) = 1 + ~ bn,jAn,,~,yU - j ,  (5) 
j=l 

J 
b, 3 := I- I t , ~ n - 3 + l "  

I=1 
The asymptotic behaviour of A,~,j,m is as follows: for j < n/3m 

An,m,j -~ f i  ( j ~  l__~) + Afm(j,n), 
l=1  

and 

for j >_ n /3m 

In "Afm(j,n)l < Cl (m) .  j,~+l, 

a s  ?~ --~ o o ,  

a S  ?t ~ (:X:); 

IAn,m,jl <_ cl(m)jm+l~ 

with Cl(m) a positive constant not depending on n. 

In what follows, we shall denote by C( . . .  ) positive constants that do not depend on n. 

(6) 
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2. P R O O F S  OF T H E  RESULTS 

PROOF OF THEOREM 2. Recall that m is fixed and n --- oc. 
Arguing in the same way as in [6], we shall establish that  for every 6 small enough there 

exists a positive integer n~ such that  for any n > n~ the inequality 

Re Rn,m (e -2~) >_ C(O) . e n'a(6) (7) 

is valid, where 
5 2 

~(~) := ~ ,  

and C(0) is a positive constant. 

For convenience, we shall use the notation cl := -2d l .  In the conditions of Theorem 2, dl > 0. 
In [6], the validity of the following inequalities for each n large enough (n > no) was established: 

d l  

n 

and 

Both of the previous inequalities lead to 

I~1 ~ I~n+l[. (9) 

Ibn,jl < (Jr]hi) ~(y+l)/~ < 1 - (10) 

Let 6 be a fixed positive number, 6 < 1. 
In our further considerations, we assume that  for n > no the following inequalities are fulfilled: 

(~11) l o g ( 1 - - ~ )  __>1-6, (11) 

and 
[ Im~n[ < C(1) .  Re ~__~n (12) 

- -  n 2 

for a suitable positive constant C(1). Without loss of generality, we may assume that  C(1) > 1. 
In accordance with the lemma, we may also write 

jm+l 
[Afl,m(j,n)[ <_ C(1).  - - ,  (13) 

n 

for j < n /3m and 
[A,~,j,m[ _< C(1)j m+ l, 

otherwise. Select a positive number 6o such that  

(14) 

6C(1) m!6o 1 
0 <  d l ( 1 - e )  < 3 '  (15) 

and set 

d(6) :-- dl(1 -- 6). 

In what follows, we shall assume that  each n > no satisfies the inequality 

(2dl + 60) 
Rer/n > 1 > 0. (16) 

n 
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Let 6 be a positive number such that 6 < ~0. Set :D(¢, ~) := 1 - 6$/d(e). Obviously, there is an 
integer n~, n~ > no, such that for any n _> ne the inequalities 

Rer/n > 1 (2dl + ~- - - - - - ) ,  (17) 
n 

and 
l o g (  dl ) n.  ~)(~,6) 1 ~ ) ( ~ , 6 )  < 2 (18) 

are fulfilled. Set J1(5) := 65/d(z). In accordance with (10) and (11), we may write for j > J l (5) 'n  
that 

Ibn,jl <_ e-3J 6, 

which, in view of (13),(14) and of the choice of 6, implies the inequality 

I f i  bn,jAn,j,m u-j < C(5o)e-SJl('s) n. 
j----j1 (rS)n u = e  ~ 

(19) 

Consider the product 1-1~=1 (Re ~ln-j+t)( Applying (17), for j + 1 < Jl (6) .n, we obtain 

J ( dl ~j(j+l)/2 
U ( a e  ~?,~_j+l)~ > 1 nTP-~,~)] " (20) 
/ = l  

For the same number j we obtain by (8),(9),(12), and by the choice of 5 the inequalities 

bn,j ~ - 1 
J 

1-I (Re~n-J+l)l 
l = l  

< C(2). ~2, (21) 

where C(2) < 18C(1)/d~e). The choice of 5 ensures that C(2). ~2 < 1/2. 
Further, from inequality (21), we obtain 

J 
(1- C(2)52) I I  (Re~n_j+t)z < Rebn,j <_ (1 + C(2)52 

/ = 1  

J 
U (Re ~?n_j+z) z , 
/ = 1  

and 
J 

I Imbndl <_ C(2)~ 2 U (Rer/n-J+l)l " 
l = l  

Using (13),(16),(17), and the last inequalities, we obtain 

with 

ReAn,j,m" Rebn,j - ImA,~,3,m " Imb,~,j > Qeo(J) • U (Rerln-J+l)l ' 
1=1 

(J + l) Q6o(J) := ( 1 -  c(2)~2) • ~ 1 [  
l----1 m! k - -  

c (1)Jm d - ~ /  " a(~) 
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As we see, Q6o is a polynomial of degree exactly m and all its coefficients are positive. Further, 
in view of (18),(20), and to the choice of 50, we may write 

Re A n , j , m  • Re bn,j - Im A n , j , m  • Im bn,j  > O. (22) 

Recall that  the last inequality is valid for n > ne and for any j with j + 1 < J1(5) • n. Now set 

• v'J2(e)(n+U-1 bnjAn,j,m(e2eJ). In view of (20), j2(5) := 5 Z)(e,5) and consider R,~,m,e(e 2~) := z--j=0 

for j < j2(5)(n + 1) - 1 and for n large enough, we may write 

J 

H (Re ~ - J  +l)z > e-aJ '  
/=1 

Now, combining (19),(21),(22), and the last result, we obtain 

R e R n , m  @-25) > 
j 2 (5 ) (n+ l ) - i  

E Q~o (J) e5J - C(5o)e -6(~)2n/d(E'~). 
j=O 

Inequality (7) results from here• 

Now, it easily follows that  the point u = 1 attracts,  as n --~ oo, at least one zero of the 
sequence Rn,m. Before presenting the proof, we set w = 1/u and R~,m(1/w) := Rn,m(w). In 
accordance with (4), it is valid that  

Also, in view of (7), we have 

R~,m(W) = 1 + ~ b~,jA~,m,jw j. (5') 
j = l  

Re R,~,,~(w)w=(da) _> C(0)-  e n'~(~). (7') 

We introduce the notation Ua(r); that  is a disk of radius r, centered at the point a; further, we 
set Fa(r)  := OUa(r). 

We prove Theorem 2 by arguing the contrary. Suppose tha t  w = 1 is not a limit point of zeros 

of the sequence {Rn,m(W)}, as n --~ ~c; then there is a disk Ul(e -p) such that  Rn,m(w) # 0 
there. Set r := log(1 + e-P). Set V := Uo(1)LJUl(e-p ) and let Xn(w), be the regular branch 
of (R~,m) 1/n determined by the condition X~(0) = 1. Now select a positive number r with 

r < 1 - e -p. Obviously, the sequence {X~(w)} is uniformly bounded on U0(r), and hence, by the 
well-known result of Bernstein-Walsh, inside V, as well. On the other hand, Theorem 1 ensures 

tha t  X~(w) --~ 1, uniformly inside U0(1). Thus, by the theorem of uniqueness for holomorphic 
functions, X~(w) --~ 1 uniformly inside V. Combining this result and ( ' )  (namely tha t  for 

any 5 < 60, the inequality X,~(e~) >_ exp(n(52)/8dl) holds for n large enough), we come to a 
contradiction. 

This contradiction proves Theorem 2. 

PROOF OF THEOREM 3. Preserving the notations of Theorem 2, denote now by {n,k, k = 1, . . . ,  ~n 
the zeros of R~,m(W) in UI(e-P). By Theorem 2, ~ _> 1. We shall show that  

lim inf tn - -  > O. ( 4 ' )  n~oo n 

Select a positive number 0 such that  r < 1 - e -v.  e e. Set r(0) := log(1 + e-V+°). Without  loss 
of generality, we may assume that  the number r/2 satisfies inequality (15). 

Suppose, to the contrary, that  there is an infinite sequence A, A C N such tha t  

lim ~---~ = O. (23) 
n~oo ,nCA n 
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Set 

and 

with Xn(0) = 1. 
Consider the sequence {~ .} . eh .  
For q.(w),  we have 

qn(w) := 1-I (1 - ~n--~k ) , 
k = l  

~ Rn,m ~ 1In 

tq ( )J ' 

e - P ( e  - 1) }L.. 
min(0 ) Iqn(w)l > 

On the other hand, applying the well-known Bernstein-Walsh lemma to R,,m(w), we get 

iiR,~,m(W)liro(~(o ) < ][R,,m(w)iiVo(r) " (1 + e-V+°) n 
-- r n 

Combining both inequalities and (23), and applying Theorem 1, we easily obtain that  the sequence 
{Xn},~eh is uniformly bounded inside V (recall that  according to the geometric construction and 
to the choice of 0, we have V C UO(T(O)). Further, for w e Uo(r) ,  we obviously have 

{ ( l + e - O + r ) }  ~" { ( 1 - e - O - r ) }  ~" 
-(i ZeY) _> Iq.(w)l _> -(l Te~) " 

Therefore, in view of Theorem 1 and (23), we may write 

Xn ---* l ,  as n--+ co, n E A 

on the disk Uo(r) .  Then 
X~ --* 1, as n --* oc, n E A (24) 

uniformly inside the domain V. 
Select a positive number e0 such that  

e - p  
¢o < - -  4 

l, n 
Set fl(¢o) := U~eh L.Jk=l { w ,  Iw - 6~,k] < eO/~n " n2}.  Obviously, 

e - p  
mesl(g~(¢o)) < eo < - T -  (25) 

Further, for w ~ U l ( e - V )  - t2(eo), we have 

{ 2 e - ° ( l  - e-P) } ~ ' > ' q n ( w ) l " -  (26) 

The choice of e0 and (25) imply the existence of a positive number 6, ~ < w such that  e ~ c 
U l ( e  - ° )  - fl(eo). Applying (7) to those numbers 6, using (26) and (23), we conclude that  
x(e e) > e e~/sa' . This inequality contradicts (24). 

Consequently, (4') holds and Theorem 3 is valid. 
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